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Abstract. Traffic congestion in emerging megacities is exacerbated by rapid population 

growth and urbanization. Traditional Traffic Signal Control (TSC) methods struggle with 

dynamic and unpredictable conditions, facing computational and storage challenges. This 

paper explores modern TSC methods using advanced technologies, focusing on 

reinforcement learning (RL) and its variants like Deep Reinforcement Learning (DRL) and 

Deep Deterministic Policy Gradient (DDPG). Given the impracticality of centralized RL 

for large-scale Adaptive Traffic Signal Control (ATSC), we investigate Multi-Agent 

Reinforcement Learning (MARL) algorithms, specifically the Multi-Agent Advantage 

Actor-Critic (MA2C) algorithm, to address scalability and partial observability. Using 

SUMO for simulation, we compare various TSC algorithms, noting that RL-based 

algorithms, particularly DDPG and A2C, outperform traditional methods in terms of travel 

time. 
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1 Introduction 

With the rapid growth of the global population and accelerated urbanization, “megacities” are 

emerging worldwide. While we enjoy the convenience and prosperity of urban development, 

we must not overlook the drawbacks of traffic congestion. Due to population growth, 

industrialization, economic expansion, and technological advancements, the number of vehicles 

on the roads is increasing, putting pressure on existing urban transportation infrastructure and 

leading to daily traffic jams. Additionally, congestion results in longer travel times, increased 

fuel consumption, higher costs, and environmental pollution. If traffic issues are not addressed, 

they will inevitably lead to a decline in the quality of social life and limit urban development. 

Traffic signal control serves as a fundamental solution to urban traffic congestion. Since 

intersection delays constitute a significant portion of overall travel time, optimizing intersection 

signal planning has become a critical focus. Strategic coordination of signal changes aims to 

minimize vehicle waiting times, prevent traffic congestion, and enhance safety for pedestrians 

and vehicles [1]. Traditional Traffic Signal Control (TSC) methods can be classified into three 

distinct categories: 
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a. Deterministic TSC implements fixed-time control systems derived from historical traffic 

patterns, utilizing the Webster formula to calculate optimal traffic phase durations. 

b. Semi-dynamic TSC incorporates actuated control mechanisms that respond to real-time 

traffic conditions, such as triggering green lights only when detecting vehicle presence. 

c. Fully dynamic TSC employs sophisticated actuated control systems that adapt signal timing 

based on comprehensive traffic metrics, including average vehicle waiting times and queue 

lengths over extended periods. 

However, these methods have significant limitations [2]. Firstly, they are unable to adapt to 

dynamic and unpredictable traffic conditions. Traditional deterministic and semi-dynamic TSC 

methods cannot dynamically adjust according to real-time traffic situations, making them less 

effective in handling unexpected events and traffic changes. Secondly, there are computational 

complexity and storage capacity issues. Fully dynamic TSC methods require exploring many 

state-action pairs, leading to long learning times and high storage demands. 

Modern traffic signal control methods leverage advanced technologies and algorithms for real-

time optimization to address these limitations. The current mainstream approach combines 

reinforcement learning with traffic management, resulting in various reinforcement learning-

based TSC algorithms, such as DRL and DQN, and the improved DDPG algorithm [3] based 

on DQN. However, because of the high dimensionality of the joint action space, centralized 

reinforcement learning (RL) is not feasible for large-scale ATSC [4]. Researchers have proposed 

MARL algorithms to overcome this issue by assigning control to local RL agents at each 

intersection. Nevertheless, MARL introduces new challenges, such as partial observability, 

where each local agent can only observe limited local information and cannot access the global 

traffic situation. The Multi-Agent Advantage Actor-Critic (MA2C) algorithm can be introduced 

to address these challenges in multi-agent systems. 

In summary, each algorithm, from RL to A2C, has strengths and weaknesses. This paper will 

introduce the environment setup for TSC, the specific mechanisms of each algorithm, and their 

comparisons, using SUMO for simulation and modeling. 

2 Related Work 

Existing literature on traffic research identifies several causes of traffic congestion, including 

rapid urban population growth, increased vehicle ownership, inadequate road infrastructure 

development, and poor urban planning and management. An analysis of traffic control measures 

in Latin America highlights the importance of optimizing urban planning and implementing 

traffic demand management [5]. Artificial intelligence, big data analytics, and traffic simulation 

technologies are proposed to develop more effective solutions. 

Early work has highlighted the limitations of traditional Traffic Signal Control (TSC) methods 

[6]. Reinforcement Learning (RL) has been applied to fully dynamic TSC, but it suffers from 

the “curse of dimensionality,” leading to high computational costs and storage requirements. 

Deep Reinforcement Learning (DRL), which combines deep learning and RL, shows promise 

in overcoming these limitations by enabling continuous state space representation, reducing 

learning time, and effectively approximating Q-values. 



DRL offers several advantages for TSC, such as adapting to real-time traffic conditions, model-

free learning, and considering multiple performance factors in the reward function. 

In addition to traditional RL, existing literature compares various TSC algorithms to minimize 

wait times and queue lengths to improve traffic flow. The authors model intersections as Markov 

Decision Processes and explore various methods, including round-robin schedulers, feedback 

control mechanisms, and two RL techniques—Advantage Actor-Critic (A2C) algorithms and 

Deep Q-Network (DQN) [7]. These algorithms were tested in a simulated environment of a real 

intersection in Bangalore, India, using traffic data randomly generated according to a Weibull 

distribution. 

A Multi-Agent Deep Reinforcement Learning (MARL) algorithm has been proposed for solving 

Adaptive Traffic Signal Control (ATSC) problems on large scales [8]. MARL has eliminated 

the scalability problem of centralized learning by assigning control to local RL agents at each 

intersection. However, MARL introduces new challenges, as the overall situation becomes 

limited accessible from the perspective of each local agent due to limited communication. 

Subsequent research [9] proposed a Multi-Agent Advantage Actor-Critic (MA2C) algorithm to 

address these challenges. Two methods were introduced to stabilize the learning process: 

integrating observations and footprints of neighboring agents into the state to improve 

observability and introducing a spatial discount factor to decrease the impact of neighboring 

agents’ observations and reward signals. This approach was evaluated on a real large-scale 

traffic network in Monaco, demonstrating superior robustness, optimality, and sample 

efficiency compared with other decentralized MARL algorithms. 

The Deep Deterministic Policy Gradient (DDPG) algorithm, developed by the DeepMind team, 

is an online deep reinforcement learning algorithm specifically designed for continuous control 

problems [10]. It borrows concepts from the Deep Q-Network (DQN) algorithm. When solving 

continuous action space problems, there are two main approaches: discretizing the continuous 

actions and then using RL algorithms (e.g., DQN) to solve them, or introducing Policy Gradient 

(PG) algorithms (e.g. Reinforce) directly. However, discretization can deviate from practical 

engineering applications, and PG algorithms often perform poorly in continuous control 

problems. The DDPG algorithm was proposed to address these issues and achieved remarkable 

results in many continuous control situations. 

3 Experimental Setting  

All simulations in this study were conducted using SUMO, with interactions facilitated through 

the Traffic Control Interface (TraCI) and Python. We focus on a multi-agent decision-making 

problem for network system control, where each agent’s observability and communication are 

limited to its neighborhood. We used Python 3.11, TensorFlow 1.15, and SUMO 1.20.0 for our 

experiments. Figure 1 is an introduction to the algorithms: 



 

Fig. 1. Fixed Time TSC Control (Built-in SUMO) 

3.1 RL and DRL 

Reinforcement Learning (RL) allows the agent to exploit and explore variable state-action pairs 

to maximize positive rewards or minimize negative costs, thereby enhancing system 

performance. In each time step t of the RL algorithm, the agent observes its Markov decision 

factor (state st) in a dynamic and random operating environment, selects an action at, observes 

the next state 𝑠𝑡 + 1, and receives an immediate reward or cost 𝑟𝑡 + 1(𝑠𝑡 + 1). Subsequently, 

the agent updates the Q value of the state-action pair (st, at), indicating the action in state st is 

appropriate. This process continues until convergence or a predetermined termination condition 

is achieved. Q-value updates are typically performed using the Bellman equation, with the action 

value function Q(s,a) expressed as: 

 Q(st, at) ← Q(st, at) + α[rt + 1 + γmaxaQ(st + 1, a) − Q(st, at)] (1) 

DRL (Deep Reinforcement Learning) is an advanced form of RL that leverages deep learning 

(DL) [11]. DRL utilizes deep neural networks (DNNs) to approximate the Q function, 

addressing RL's "curse of dimensionality" problem. It can be implemented as either a model-

based or model-free method, allowing agents to autonomously learn without fully understanding 

their operating environment, such as traffic conditions and network dynamics. DRL represents 

system goals and performance indicators by designing a reward function considering multiple 

factors influencing system performance. Compared to other methods, DRL offers numerous 

advantages for solving traffic signal control problems [12]. 

3.2 Deep Q-Learning 

Deep Q-Network (DQN) is a multi-agent method based on reinforcement learning that uses 

neural networks to approximate the Q-value function. In DQN, the traffic signal control for each 

arm is managed by an independent agent responsible for learning and decision-making. The 

agent observes the environment state 𝑠𝑡, selects an action 𝑎𝑡 according to the Markov Decision 



Process (MDP), and receives a corresponding reward 𝑟{𝑡+1} The agent’s goal is to choose a 

series of actions to maximize the cumulative reward. For DQN algorithm,  deep neural networks 

are used to estimate the optimal Q-function  𝑄 ∗ (𝑠, 𝑎) . 

The network’s input is a state vector of length 36, and the output is the Q-values for four possible 

actions. The state representation follows a method similar to that in the literature, where each 

lane is divided into nine cells of different sizes, represented by a 36-length boolean vector 

indicating the presence of vehicles in each cell. The agent continuously updates the Q-function 

through experience replay and temporal difference (TD) learning to better estimate the optimal 

Q-function and make more optimal decisions. 

Overall, DQN is a multi-agent method based on deep reinforcement learning in traffic signal 

control, capable of effectively learning optimal traffic signal control strategies. The function for 

Q-Learning updates using neural networks is: 

 𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃)] (2) 

3.3 A2C or MA2C 

A2C (Advantage Actor-Critic) is a synchronous Actor-Critic algorithm that improves training 

efficiency through multi-threaded parallelization (Figure 2). 

In the Actor-Critic method, a neural network approximates the action-value function  𝑄^𝜋(𝑠, 𝑎). 

This neural network is called the “value network,” denoted as  𝑞(𝑠, 𝑎;  𝑤), where  𝑤 represents 

the trainable parameters of the neural network. The input to the value network is the state 𝑠, and 

the output is the value of each action. If the action space 𝐴 has several actions, the output of the 

value network is a vector with each element corresponding to an action. 

To address inconsistencies, the coordinator in A2C waits for all parallel actors to complete their 

tasks before renewing the global parameters. In the next iteration, the parallel actors use the 

same policy. Synchronous gradient updates make the training more cohesive and potentially 

faster in convergence. A2C has been shown to utilize GPUs more effectively and perform better 

at large scales. Its core idea is to combine the Actor and Critic networks [13]: 

● Actor: Responsible for selecting actions based on the policy 𝜋(𝑎|𝑠) 

 θ ← θ + α∇θlogπθ(a|s)A(s, a) (3) 

● Critic: Responsible for evaluating the value of the actions selected by the Actor, based 

on the value function  𝑉(𝑠)  

 L(ϕ) = E[(r + γV(s′) − V(s))2] (4) 

A2C improves training stability and efficiency by using the Advantage function  

 𝐴(𝑠, 𝑎)  =  𝑄(𝑠, 𝑎)  −  𝑉(𝑠)  (5) 

to reduce variance in the policy gradient. Specifically, it executes multiple environment 

instances in parallel, collects experiences, and then synchronously updates the Actor and Critic 

networks. 



The MA2C (Multi-Agent Advantage Actor-Critic) algorithm is a distributed version of the A2C 

algorithm designed to address scalability and partial observability challenges in Adaptive 

Traffic Signal Control (ATSC) problems. 

 

Fig. 2. A2C Algorithm 

3.4 DDPG 

The Deep Deterministic Policy Gradient (DDPG) algorithm simultaneously learns a Q-function 

and a policy. Specifically, it exploits off-policy data and the Bellman equation to learn the Q-

function and then uses it to learn the policy. The DDPG algorithm architecture uses dual neural 

network model architecture for both policy function and value function, which makes the 

learning process of the algorithm more stable and the convergence speed speeds up. At the same 

time, the algorithm introduces the empirical playback mechanism, Actor interaction with the 

environment is stored in the empirical pool, and batch data samples are extracted for training, 

making the algorithm easier to converge. This approach is closely related to Q-learning and 

shares the same motivation: finding the best action-value function Q*(s,a) at any given state: 

 𝑎∗(𝑠)  =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎)   (6) 

DDPG alternates between learning an approximation of Q*(s,a) and learning an approximation 

of a*(s), which is particularly well-suited for environments with continuous action spaces. In 

such environments, there are numerous actions to consider when computing 𝑚𝑎𝑥𝑎𝑄 ∗ (𝑠, 𝑎). 

While this is manageable with a finite number of discrete actions because we can compute each 

action's Q-value separately and compare them directly, it becomes challenging in continuous 

action spaces where exhaustively evaluating all possibilities is not feasible. Using a regular 

optimization algorithm would be prohibitively expensive due to the need for frequent 

computation of 𝑚𝑎𝑥𝑎𝑄 ∗ (𝑠, 𝑎)  every time the agent takes an action in the environment. 

However, since we can assume that the function Q*(s,a) is differentiable wt ncerningthe action 

parameters in continuous action spaces, we can develop an efficient gradient-based learning rule 

for policy 𝜇(𝑠), exploit this fact, and approximate it with  𝑚𝑎𝑥𝑎𝑄 ∗ (𝑠, 𝑎) ≈ 𝑄(𝑠, 𝜇(𝑠)) while 

still being able to find a near-optimal policy without incurring excessive computational costs. 

3.5 Other Methods 

For comparison, we also included the Webster method in our algorithm implementation; the 

traffic signal max-pressure algorithm based on network flow theory aims to reduce vehicle 

congestion at intersections. Fig 3 shows the max pressure control. This method allocates green 

light time by prioritizing the most pressured intersections to improve overall traffic efficiency. 

Additionally, we incorporated the adaptive signal control algorithm, which allows traffic lights 

to dynamically adjust control strategies based on real-time traffic conditions. These are more 



traditional algorithms that do not use reinforcement learning. We included them in the 

comparison to demonstrate the superiority of reinforcement learning algorithms [14]. 

 

Fig. 3. Max pressure control 

3.6 Sumo Introduction 

In the past decade, SUMO has developed into a comprehensive traffic modeling utilities, 

including roads, capable of reading network importer formats, requirement generation, and 

routing utilities from different sources. They use multiple input sources, such as raw target 

matrices, traffic counts, etc., and can be used for high-performance simulation of individual 

intersections and entire cities. They include remote control interfaces to adapt to online 

simulations and a large number of additional tools and scripts. 

3.7 Sumo Network Settings 

The SUMO network consists of nodes and unidirectional edges representing streets, bike lanes, 

sidewalks, etc. Several line segments describe each edge and consists of one or more parallel 

running lanes. Width, speed limits, and access rights are set as parameters along the lane. The 

SUMO network includes detailed information about the intersection structure, traffic flow, and 

the corresponding road rules used to determine the simulated behavior. The SUMO road 

network represents the real-world network as a graph, where nodes are intersections and roads 

are represented by edges. The intersection is determined by location, shape, and right-of-way 

rules. An edge consists of two nodes and contains a fixed number of channels. 

3.8 OpenStreetMap 

We use OpenStreetMap to download road network environment information and extract real-

world traffic road environments OpenStreetMap has a wide range of users from different regions, 

and due to its focus on collecting more local and on-site data, OpenStreetMap has rich and 

accurate map resources. The open street map includes both spatial and characteristic parameters. 

Spatial parameters mainly include three types: points, roads, and relationships, which make up 

the entire map image.  



4 Results 

We primarily focus on the total queueing time of vehicles under various algorithms. We 

replicated the algorithm comparison studied by a professor at Cornell University and used the 

metric library in Python to create comparison charts. The comparison of travel is as follows 

(Figure 4) [15]: 

 

Fig. 4. Traffic Signal Controller Travel Time 

The key observations are: 

1. DDPG and DQN controllers have relatively lower median travel times, indicating better 

performance in reducing travel time. 

2. Max Pressure and SOTL controllers show higher variability in travel times, with some outliers 

indicating occasional longer travel times. 

3. Uniform and Webster’s controllers have higher median travel times than IDQR and DQN, 

suggesting less efficient traffic flow management. 

The chart highlights that DDPG and DQN controllers are more effective in minimizing travel 

times, while Max Pressure and SOTL show potential but with more variability. Uniform and 

Webster’s are less effective in comparison. 

We analyzed and reproduced the experiment and success of Tianshu Chu et al [16]. We created 

an agent using the TensorFlow instruction library and trained it to implement the A2C algorithm. 

We set the initial seed as a random number with a total step size of 100. After training, we tested 

and evaluated the model. By analyzing the results, we compared the optimization of ATSC 

achieved by other methods. We also constructed an MA2C model and evaluated the results after 

training MA2C in both synthetic high-traffic grids and real-world high-traffic networks, with 



excellent special optimized traffic dynamics to ensure a certain difficulty level for MDP. 

Numerical experiments have confirmed that MA2C outperforms IA2C and state-of-the-art IQL 

algorithms regarding robustness and optimality. Although traditional ATSC algorithms have 

achieved good results in intersection optimization, they still have a slight disadvantage 

compared to RL based algorithms, especially in the collaborative optimization of intersections 

with large traffic changes and adjacent intersections.  

In recent years, the implementation of RL in ATSC has been extensively studied. C. Cai et al. 

designed heuristic state features, S. Richter used an actor-critic algorithm to improve LR's fitting 

accuracy and optimization effect in ATSC, and T. Chu et al. verified the superior ability of Q-

learning in simplifying traffic environment. On the one hand, our work comprehensively studied 

the practice of MARL in ATSC, and on the other hand, compared various proposed algorithms 

in the benchmark environment. We first extended the observation results of IQL to the actor-

critic method to formulate IA2C. In addition, we experimented with two methods proposed by 

Tianshu Chu et al. for stabilizing IA2C to MA2C. In the constructed MA2C method, information 

on neighborhood policies is included to improve the observability of each local agent. Policy 

information sharing among intelligent agents helps them better coordinate their actions, thereby 

improving overall performance. By introducing spatial discount factors, we have improved the 

stability of the MA2C learning process. Under limited communication and local observation 

conditions, MA2C achieved stable convergence.MA2C exhibits the best and most robust 

learning ability, steadily increasing its training curve before becoming stable in narrow shadows. 

5 Conclusion 

This article introduces various algorithms of TSC and their expected optimization objectives, 

and their environmental settings, and uses SUMO to simulate and model them. In recent years, 

their respective advantages and limitations have been compared among the methods mentioned, 

including A2C and DQN. Although traditional TSC methods have limitations in dealing with 

dynamic traffic conditions, modern RL based methods provide the possibility of real-time 

optimization. However, these methods face computational and storage challenges when 

extended to large-scale ATSC. Researchers attempt to overcome local observability and other 

challenges in multi-agent environments to improve traffic signal control algorithms' 

optimization level and stability. We believe that by applying MARL, especially the MA2C 

algorithm, the performance and robustness of traffic signal control systems can be improved 

while maintaining localized control. This article demonstrates the application and effectiveness 

of these algorithms in TSC problems through simulation and comparative analysis. Table 1 

includes a variety of reinforcement learning (RL) algorithms. 

Table 1. The table includes a variety of reinforcement learning (RL) algorithms 

Algorithm Pros Cons Speed Accuracy 

Deep Q-

Network 

(DQN) 

1. Stable training 

2. 2. Simple and 

efficient 

1. Difficulty in handling 

continuous actions 

2. Poor performance in 

high-dimensional state 

spaces 

Low Low 



Deep 

Deterministic 

Policy 

Gradient 

(DDPG) 

1. Better 

performance in high-

dimensional action 

spaces 

2. Suitable for 

continuous action 

spaces 

1. Sensitive to 

hyperparameters 
High High 

Advantage 

Actor-Critic 

(A2C) 

1. Good for large-

scale problems 

2. Parallel training 

improves learning 

speed 

1. Hard to tune and 

stabilize 

2. It requires two 

networks to be trained 

simultaneously, which 

can be computationally 

expensive 

High High 

Multi-Agent 

Advantage 

Actor-Critic 

(MA2C) 

1. Scalability to 

Multi-Agent Settings 

2. Stabilized Training 

By using the 

advantage function, 

MA2C reduces the 

variance in policy 

gradient estimates, 

leading to more 

stable and efficient 

learning compared to 

methods that rely 

purely on raw 

rewards. 

3. Continuous and 

Discrete Action 

Spaces 

1. Complexity in 

Training. Training 

multiple agents 

simultaneously can be 

computationally 

expensive and complex. 

The interactions between 

agents can lead to non-

stationarity, making the 

learning process more 

challenging. 

2. In multi-agent settings, 

it can be difficult to 

attribute rewards to 

individual agents. 

3. Performance is highly 

sensitive 

Medium 

to high 

Medium 

to high 

Q-Learning 

1. Q-learning does 

not require a model 

of the environment, 

meaning it can learn 

optimal policies 

directly from 

interactions with the 

environment. 

2. The algorithm is 

relatively simple to 

understand and 

implement compared 

to other 

reinforcement 

learning techniques. 

1. Q-learning can 

struggle in environments 

with sparse or delayed 

rewards, as it might take 

a long time to propagate 

the reward information 

back to relevant states 

and actions. 

2. The algorithm is 

relatively simple to 

understand and 

implement compared to 

other reinforcement 

learning techniques. 

3. Time-consuming 

process. 

Low Low 

 



We have conducted a basic comparison of various algorithms, and the advantages and 

disadvantages are illustrated in the figure. While simple algorithms such as DQN and Q-

Learning are easier to implement, they lack performance and scalability compared to more 

advanced methods. On the other hand, algorithms like DDPG, A2C, and MA2C offer higher 

accuracy and are suitable for complex environments; however, they also increase the sensitivity 

of computing resources and require hyperparameter adjustment. 

There is still much important work to be done in the future for the practical deployment of the 

proposed MARL algorithm. These measures include: 

1. improving the realism of traffic simulators to provide training data on real-world traffic 

demand; 

2. improve the robustness and tolerance of algorithms for road delay state measurement 

and sensor noise; 

3. following practical engineering assumptions and combining appropriate learning and 

communication methods to enhance the superiority of existing MARL algorithms. 

Acknowledgement. Zihua Ding, Yanbin Hou and Yunfan Zhang contributed equally to this 

work and should be considered co-first authors. 
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