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Abstract. Chinese cursive calligraphy, characterized by fluid and complex strokes, presents
a significant challenge in character recognition due to the variations in character structure and
style. This paper proposes an innovative approach to recognize Chinese cursive characters using
two Vision Transformer (ViT)-based models. We enhance the models with curriculum learning
to optimize training efficiency by dynamically adjusting the difficulty of samples, allowing the
models to progressively learn from easier to harder examples. Additionally, we integrate skeleton
embeddings into the ViT encoder input to capture the underlying structural information of cursive
characters. Our method demonstrates superior performance compared to baseline approaches,
achieving higher recognition accuracy on a self-made cursive calligraphy datasets.
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1 Introduction

The vast number and diversity of Chinese characters present significant challenges for recog-
nition systems. The commonly used character set includes over 6000 characters, with an even larger
extended character set [1]. This results in an exceptionally large number of categories. Additionally,
the complex and varied structures of Chinese characters, characterized by a high average number of
strokes. Many different characters exhibit similar spatial structures and stroke patterns, and same
character has different handwriting styles, leading to confusion during recognition.

Despite years of research, there are still significant challenges in offline handwritten Chi-

nese character recognition tasks, especially regarding unconstrained handwritten font recognition
tasks [2].
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In the past, handwritten Chinese character recognition methods have typically been catego-
rized into three approaches: holistic methods, radical-based methods, and stroke-based methods [3].
These methods have achieved considerable success. For example, Tang et al. [4] proposed Convolu-
tional Neural Networks (CNNis) that automatically extract high-level features from character images
through multiple convolutional and pooling layers for classification. He et al. [5] introduced Deep
Residual Networks (ResNet), which incorporate residual connections to address the degradation
problem in deep networks, thereby improving recognition performance. However, due to the free
and unrestrained calligraphy structure of cursive fonts, the development of Chinese cursive character
detection, has been relatively slow [6].

As a treasure of Chinese calligraphy, cursive script is renowned for its unique writing style and
elegant brushstrokes. However, its complex structures pose significant challenges to the automatic
recognition of computers. In addition, there may be significant differences in alignment between
cursive scripts using the same Chinese characters, which could significantly affect the accuracy of
predictions. In recent years, advances in computer vision technology and deep learning algorithms
have been able to meet the demand for automatic recognition of various complex fonts. In this con-
text, the Visual Transformer (ViT) model has demonstrated outstanding performance in numerous
visual tasks due to its powerful representation capabilities and parallel processing advantages. How-
ever, on the one hand, due to the complexity of cursive font structure, using ViT alone cannot achieve
a desirable performance. On the other hand, in the current task of using CNN for skeleton-based
Chinese character recognition. Tang et al. [4] found that extracting the skeleton structure of Chinese
characters is an effective method for enhancing datasets. However, ViT did not consider enhancing
feature extraction by this crucial step.

Therefore, we attempt to transfer this approach to the recognition of cursive script. In this pa-
per, we propose a curriculum learning-based method as shown in the figures 1. Initially, the model
focuses on processing easy samples, gradually transitioning to more complex tasks. By training the
model in stages, we can incrementally enhance its capability to handle intricate samples. Moreover,
to elevate recognition accuracy, our proposed method incorporates a novel approach of skeletoniza-
tion applied to cursive script images. Specifically, for cursive script images in the dataset, we retained
only the geometric and topological structures of the original characters while eliminating irrelevant
information and noise. To further emphasize the structural features of the characters, we preserve
patches from the original images and superimpose these patches onto corresponding hollowed-out
cursive script image patches.

Ultimately, these superimposed patches are embedded into the embedding layer of the model,
optimizing feature extraction and representation, and achieving feature fusion within the encoder
embedding.

Thus, our research aims to integrate curriculum learning and skeleton embedding into the ViT
model to better improve the accuracy of cursive script recognition tasks. By this method, we have
made significant progress in the task of Chinese Cursive Calligraphy recognition, demonstrating
the broad application potential of this method in complex character recognition. This innovative
application in the field of handwritten Chinese character recognition not only helps enhance the
recognition accuracy of cursive characters but also provides new methods for recognizing other
complex fonts.
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Fig. 1. Three sets of Chinese character images are displayed, a standard character, and its corresponding easy
and hard samples.

The main contributions of our paper are summarized below:

e We apply Curriculum Learning to mimic the human learning process. Starting with the entire
dataset, we first focus on simple samples, gradually introducing complex ones to enhance
learning efficiency and performance.

* We introduce Skeleton Embedding, combining structural information of the image with orig-
inal embeddings to boost the Vision Transformer’s recognition capability.

* We constructed a dataset containing 10,180 images of single character cursive script. We
enhanced ViT’s performance through data augmentation and skeleton extraction, further opti-
mizing training with Curriculum Learning under specific conditions.

2 Related Work

2.1 Traditional Vision Model in Character Recognition

In the domain of character recognition, traditional vision models have made significant con-
tributions, particularly to the recognition of complex Chinese scripts. Liao et al. [7] enhanced the
M6 model (EM6) by incorporating batch normalization and an additional fully connected layer,
demonstrating the effectiveness of deep neural networks in recognizing cursive Chinese calligraphy.
Additionally, Li et al. [8] addressed the challenges of the one-to-many relationship between stroke
sequences and Chinese characters by proposing a zero-shot stroke-based method, which effectively
recognizes handwritten, artistic, and scene characters.

The integration of classical image processing techniques with deep learning models has also
shown promise. Si et al. [9] combining Histogram of Oriented Gradients (HOG) feature extraction,
Euler distance calculation, and the Inception-v3 model to achieve high recognition accuracy for
Chinese calligraphy characters. Similarly, Jin et al. [10] developed an offline handwritten Chinese
character recognition method using Character-SIFT and an elastic grid partitioning technique.

Addressing the challenges of cursive script recognition, Qin et al. [11] created a dataset of
cursive images and improved the SE-seglink method by incorporating Squeeze-and-Excitation op-
erations to enhance feature extraction for cursive scripts. Furthermore, Zhong et al. [12] combined



Spatial Transformer Networks (STN) and Deep Residual Networks (DRN) to handle handwritten
Chinese characters with varying positions, scales, and orientations. Our work integrates curricu-
lum learning with skeleton embedding for feature extraction, with the aim of further improving the
accuracy and adaptability of models to recognize cursive characters across diverse conditions.

Focusing on handwritten character recognition in different languages, Shanthi et al. [13] de-
veloped a system for Tamil characters using optimized preprocessing techniques and pixel density-
based feature extraction methods combined with Support Vector Machine (SVM) classifiers. Shi
et al. [14] introduced the CRNN model to efficiently process image sequences of varying lengths,
particularly excelling in scene text recognition. Further enhancing robustness in text recognition,
Shi et al. [15] developed RARE which uses spatial transformation networks (STN) to correct text
images and attention-based sequence recognition networks (SRN) to accurately recognize irregular
text. Additionally, Ptucha et al. [16] proposed a fully convolutional neural network architecture that
directly outputs symbol streams from handwritten text images, eliminating the need for complex
sequence alignment.

2.2 Transformer-based in Character Recognition

With the advancement of deep learning technologies, particularly the successful adoption of the
Transformer architecture, the Vision Transformer (ViT) [17] model has become a pivotal research
focus in image recognition. Its robust performance across various visual tasks has sparked significant
interest among researchers in exploring its potential applications in character recognition.

The Transformer-based approaches have shown remarkable progress in this field. For instance,
Xie et al. [18] achieved a breakthrough in artistic text recognition by integrating corner point fea-
tures, character contrastive loss, and Transformer. Similarly, Gan et al. [19] proposed the PyGT
method, which combines Transformer with Graph Convolutional Networks (GCN) to enhance the
accuracy of handwritten Chinese character recognition. Mostafa et al. [20] introduced OCFormer,
a Transformer-based model, to improve the accuracy of optical character recognition (OCR) for
Arabic handwritten texts. Furthermore, Campiotti et al. [21] presented an efficient OCR model
that combines Convolutional Neural Networks (CNNs), Transformer encoders and Connectionist
Temporal Classification (CTC) layers, demonstrating remarkable performance on the SROIE2019
dataset.

The success of ViT in character recognition is further exemplified by its application in vari-
ous tasks. TrOCR model uses ViT as the encoder, combined with the pretraining text converter, to
achieve advanced performance in the field of OCR [22]. Yang et al. [23] proposed the Transformer-
based Radical Analysis Network (RTN), which improves the accuracy of Chinese character recog-
nition. Rouhou et al. [24] introduced an end-to-end Transformer architecture that simultaneously
achieves handwritten text recognition and named entity recognition.

Moreover, researchers have optimized ViT for specific character recognition challenges. Dan
et al. [25] enhanced ViT with multi-level parallel branches to improve efficiency in Chinese char-
acter recognition. Geng et al. [26] designed LW ViT specifically for handwritten Chinese character
recognition, combining Transformer with MobileNetV2, making it suitable for mobile deployment.
Additionally, Azadbakht et al. [27] proposed the Multiplath ViT OCR model to tackle the license
plate OCR problem.



Given the outstanding performance of ViT in character recognition, we plan to apply it to the
more challenging task of cursive script recognition.

3 Method

3.1 Base models

We use two base models: TrOCR [22] and ViTSTR [28]. TrOCR uses the standard Transformer
Encoder-Decoder structure. The TrOCR model contains two parts: an image transformer to capture
features of images and a text transformer to generate wordpiece sequences. ViTSTR is a Vision
Transformer-based model that, compared to ViT, can recognize multiple characters while ensuring
the correct sequence and length of the characters. The only difference between ViT and ViTSTR is
the prediction head, which is used to recognize multiple characters and their sequence.

3.2 Notation

The notations used in this section are presented in Table 1.

3.3 Training with Curriculum Learning

The concept of curriculum learning, derived from the educational system in human society [29],
begins with easy concepts and gradually introduces more difficult ones to improve the efficiency and
effectiveness of learning.

Typically, we start by filtering out the hard samples from the training set, focusing on a subset
of easier samples for the initial stages of model training. After a certain number of training epochs,
we gradually introduce subsets containing the more challenging samples. The two key challenges
in this stage arise: distinguishing between easy and hard samples, and deciding when to incorporate
the harder subsets into the training process. These methods are predefined, relying on prior human
knowledge, such as manually annotated data sets, task-specific complexity metrics, and the popular
scheduler Baby Step [30], which groups training data by difficulty and merges them after certain
epochs. However, most current Chinese cursive scripts have no tag complexity metric for indicating
the classification difficulty. Thus, we choose to deal with this problem during training process.
To address these challenges, researchers decompose CL into two independent yet closely related
subtasks [31], which is also the strategy we applied in our experiments. In this paper [32], these two
subtasks are abstracted as Difficulty Measurer and Training Scheduler.

3.3.1 Difficulty Measurer

For the input feature x; of each training sample i, the cross-entropy loss -#(x;) and confidence
% (x;) are computed by the classification model. The difficulty Z(i) of each sample is then assessed
using a combined metric.

P(i) = a-L(xi)+B-(1-%(x)) (1



Table 1: Notation used in this section.

Symbol Description
i A training sample
Xi An input feature of training sample i
L (xi) Cross-entropy loss for the sample i
€ (xi) Confidence predicted for the sample i
2(i) Difficulty metric for the sample i
T Threshold for classifying a sample as easy or hard
a Weight coefficient for the cross-entropy loss
B Weight coefficient for the confidence
ES Set of easy samples
HS Set of hard samples
Lirain The training loss
Tpre Duration of the pretraining phase
TcL End time of the dynamic curriculum learning phase
N Total number of samples in the training set
Neasy Number of easy samples
pj The j-th flattened image patch
Pclass The class token
s; The j-th flattened skeleton patch
E Learnable embedding matrix for image patches
Epos Positional embedding matrix
E; Learnable embedding matrix for skeleton patches
I Concatenation operation along the embedding dimension
20 Combined embedding as input of ViT encoder

where o and B adjust the weights of the loss and confidence. The sample is classified as easy
or hard based on whether (i) exceeds a threshold 7 .

Difficulty (i) Hard Sample (HS) if 2(i) > 1, @)
)=
Y Easy Sample (ES) else if 2(i) <.

3.3.2 Training Scheduler

Initially, the entire training dataset is used for model training, which denoted as the pretraining
phase Tyre. The training loss Lyiq at this stage includes all samples,

1
N

M=

Lizain = L(xi)7 for0<r < Tprea 3

Il
-

During the dynamic curriculum learning phase, from Tjyre + 1 t0 Tyre + 7, the training loss only



includes easy samples:

1
Lirain = T Z L(x,-), for Tpre +1<t< Tpre +n, “4)
€asy jcES

After this phase, from t>T}e + 7, both easy and hard samples are used:

Lmin_<ZLx, +ZLx,>, fort > Tye +1 )

i€cES ieHS

3.4 ViT with Skeleton Embedding

The Vision Transformer (ViT) [17] converts images into embeddings via patch-wise linear
projection.

20 = [Petass; P1E; p2Es .. pyE] + Epos (6)
where z is the input of ViT encoder, pciass is the class token, and Eyos is the positional embed-
ding matrix.
In our modified ViT architecture, we integrate skeleton embeddings extracted from the images.
For each sample, the embeddings from the image and its corresponding skeleton are concatenated
before being fed into the ViT encoder. The combined embedding sequence is:

20 = [Pelass; PIE || $1Eg; p2E || $2E; .. s pvE || sSWEs] 4 Epos (7

where p;E and s;E; represent the embeddings of the image and skeleton patches, respectively.
The process is detailed in Figure 2.
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Fig. 2. Illustration of the modified Vision Transformer (ViT) architecture with skeleton embedding. The input
image and skeleton embeddings are concatenated and combined with positional encoding before being fed into
the encoder.




4 Experiment

4.1 Dataset

For the task of recognizing Chinese cursive calligraphy characters, the quality of the dataset
is crucial [7]. Publicly available datasets for cursive calligraphy are limited, often derived from
scanned images of ancient books, and typically require complex preprocessing or specialized model
design.

To focus on the classification of cursive calligraphy images, we have developed a custom
dataset consisting of single-character images labeled with their corresponding Chinese characters.
The following sections will outline the generation, composition, and pre-processing steps of our
dataset.

4.1.1 Dataset Generation

To simplify data pre-processing and achieve higher quality images of individual cursive charac-
ters, we chose to use TTF files for generation. We first carefully selected 20 noncommercial cursive
font styles from some font library applications, obtaining their TTF files. Then we filtered the Uni-
code that were not within the dictionary range according to the label dictionary. After selecting the
target glyphs, we rendered them into 512x512 pixel images and saved them to the dataset. The in-
formation of each image was recorded in a corresponding annotation file. The acquisition process is
illustrated in the figure 3. Our dataset includes a total of 510 unique Chinese characters, each with
nearly 20 samples, resulting in a total of 10,180 images.

jong IS p
% YA
PNG Files
FRMER-SERENH |

Labels

512 x 512 510 characters

PNG Unicode
Converter Filter

TTF Files

10,180 tuples
510 classes

Fig. 3. The generation of our dataset. After converting TTF files into 512x512 images, the corresponding data
pairs are obtained through filtering.

4.1.2 data augmentation

Given the artistic and aesthetic nature of cursive scripts, we draw inspiration from contrastive
learning, highlighting the critical role of data augmentation in learning robust and discriminative
features [33] [34]. Therefore, we emphasize the importance of data augmentation to enhance the



accuracy of Vi-T models in cursive script recognition. The parameters of the augmentation process
are random translation using one of the following methods,

¢ Translated in the vertical and horizontal directions by a factor within the range of 0.1 to 0.2 of
the image dimensions.

* Gaussian blur with a random kernel size randomly between 11 and 21.

* Gaussian noise with a standard deviation (std) randomly chosen between 0.3 and 0.5.

Each image underwent these three augmentation methods in a fixed sequence. We retained
both the original images and the augmented images, thereby expanding the dataset and enhancing
the model’s ability to generalize across different styles and complexities of cursive handwriting.

4.1.3 skeletonization

Chinese characters are ideographic, with radicals and stroke structures rich in meaning. Cursive
calligraphy not only reveals the structure of characters but also the style of strokes, such as thickness
and connectedness, which can vary greatly among different authors, adding artistic and aesthetic
value to the writing but is not essential for recognition tasks. Specifically, through structural infor-
mation alone, we can accurately identify the specific unique Chinese character. Therefore, we hope
to enhance Vi-T models for cursive calligraphy recognition task, drawing inspiration from current
studies on skeletonization-based classification tasks for Chinese characters [21] and skeleton-based
Chinese character generation tasks [35], though the present research in this area predominantly fo-
cuses on modern standard characters or font library characters rather than cursive calligraphy. Next,
we performed skeleton extraction on each cursive calligraphy character image in our dataset, using
this as a conceptually atypical form of prior knowledge to augment our dataset. For the cursive
character images, we applied an iterative process of marking and removing edge pixels until only a
single-pixel-wide skeleton remained. Throughout this process, we preserved the original character’s
geometric and topological structures (such as connectivity and holes). Examples of the skeleton
extraction are illustrated in the following figure 4.

4.1.4 Test Dataset

Lacking an authoritative test dataset for our cursive single-character recognition, we randomly
split the generated dataset into training, validation, and test subsets in an 8:1:1 ratio for subsequent
use.

4.2 Settings

We use 4 NVIDIA GeForce RTX 3090 GPUs with the memory of 24GBs for training and 1
NVIDIA GeForce RTX 3090 GPU for testing.
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Fig. 4. The standard modern Chinese character "yu” in SimHei font (right), two cursive ”yu” images from the
dataset, and their corresponding one-pixel-wide skeleton images.

4.3 Dynamic Scheduling of Curriculum learning

When computing the difficulty 2(i) of samples i, there are two cases of the value of & and f3,
which are the weight coefficients of cross-entropy loss and confidence scores,

ca=1,=0.
ca=0,=1.

4.3.1 About Cross-entropy Loss

For the initial 256 iterations, the dataset is dedicated entirely to the training process without
exception. As the training progresses from batch 257 to batch 1000, a loss-based filtering criterion
is introduced, where batches are discarded if their loss exceeds a threshold 7 of 3. Subsequently,
from batch 1001 up until the 2000th batch, this threshold 7 is lowered to 1, tightening the criteria
for batch inclusion. Beyond the 2000th batch, the threshold 7 is further reduced to 0.1, allowing for
a more inclusive approach where the vast majority of samples contribute to the training phase.

4.3.2 About Confidence scores

During the training process, the confidence score will continue to rise. We calculate each
sample’s confidence score, comparing it to the recent average confidence score, which resets every
1,024 samples. Samples with scores below average are masked, and if the number of masked samples
in a batch exceeds the threshold, the batch will be skipped. The masking threshold also adjusts during
training based on the recent average masked rate.



4.4 Results
4.4.1 Evaluation metrics

We evaluate the effectiveness of the model by the precision of test dataset, which is described
as follow,

Number of correct positive predictions
Total number of positive predictions

Precision =

4.4.2 Results of using Curriculum Learning

Table 2: Performance data for ViTSTR

BS Skit CL FE Acc(%) Prec | BS Skit CL FE Acc(%) Prec
- 82.809 0.810 - 82.809 0.879

© Resnet 83.006 0.845 " Resnet 83.595 0.793

i Loss - 87.917 0.914 i Loss - 87.328  0.897

Resnet 87.819  0.897 Resnet  82.024  0.845

Conf - 86.248  0.793 Conf - 84.479  0.879

32 Resnet  80.354 0.776 64 Resnet 86.248 0.862
- 85.855 0.862 - 82.809 0.845

) Resnet 82.711  0.879 ) Resnet 82.417 0.828

- 86.051  0.828 - 83.8900 0.897

SKIt - Loss  posnet 80157 0.879 SKIt LSS posnet 83792 0.897

Conf - 81.827 0.879 Conf - 84.086  0.793

Resnet 81.336 0.759 Resnet  81.925 0.828

In table 2, BS stands for Batch Size, Skit indicates using skeleton embedding, FE represents the feature
extraction tool, CL denotes Course Learning, Conf is the confidence method, Acc stands for Accuracy, and
prec represents Precision.

As demonstrated in Table 2, when the ViTSTR model is employed with a batch size of 32,
both curriculum learning approaches—those grounded in the loss function and those based on con-
fidence scores—substantially boost the model’s predictive accuracy. However, when the batch size
is increased to 64, employing the loss function for curriculum learning remains the most effective
strategy, whereas reliance on confidence scores detrimental to the model’s performance.

As figure 5 shown, for the TrOCR model, the adoption of curriculum learning strategies involv-
ing the Loss function or confidence scores does not yield a pronounced enhancement in the model’s
recognition accuracy.
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Fig. 5. Effects of Curriculum Learning and Changing Batch Size of TrOCR

4.4.3 Results of using Skeleton Embedding

The integration of the skeleton embedding has markedly enhanced the performance of the
VIiTSTR model, particularly evident when the batch size is set to 32. Conversely, when the batch
size is doubled to 64, the performance improvement observed is less pronounced. Although CL
and skeleton embedding alone can both enhance the performance, using CL method and skeleton
embedding simultaneously is not effective.

4.4.4 Effects of Other Parameters and Strategies

Within a certain range, changes in batch size have a limited impact on model performance.
The ViTSTR model achieves its best overall performance with a batch size of 32 samples, while the
TrOCR model achieves higher accuracy with a batch size of 8 images. Using Resnet for feature ex-
traction decreases the performance of the ViTSTR model. Data augmentation significantly improves
the convergence rate of the model but has a limited effect on accuracy. As shown in the figures 5,
changes in batch size have little impact on the convergence rate of the ViTSTR model.

5 Conclusion and Future work

This paper introduces a novel method for recognizing Chinese cursive calligraphy characters,
utilizing Vision Transformer (ViT)-based models enhanced by curriculum learning and skeleton em-
beddings. The curriculum learning strategy allows the models to gradually increase the complexity
of the training samples, leading to better convergence and more robust recognition capabilities. The
incorporation of skeleton embeddings adds critical structural information, improving the model’s
ability to discern intricate cursive characters. Experimental results on Chinese cursive calligraphy
datasets demonstrate significant improvements in recognition accuracy, underscoring the effective-
ness of our approach. Future research could explore the integration of additional features and re-



finement of the curriculum learning strategy to further enhance model performance in this complex
recognition task.
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