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Abstract. Multimodal emotion recognition has become a critical component in enhancing 
human-computer interaction systems due to its capacity to integrate multiple modalities. 
In this paper, a novel cross-modal fusion model CFNSR-MSAFNet was proposed with 
Multi-Head Attention mechanism and modality drop out to improve the accuracy of 
emotion recognition. The Multi-Head Attention mechanism allows the model to learn and 
observe multiple aspects from both audio and video input, capturing complex interactions 
between these two modalities. Additionally, modality dropout is introduced during training, 
forcing the model to learn representations to handle the missing or noisy data. The 
proposed model achieved 78.33% of accuracy on the RAVDESS dataset. Our results 
demonstrate the effectiveness of MHA and modality dropout in improving the performance 
of multimodal emotion recognition systems by enhancing cross-modal alignment and 
generalization. 
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1 Introduction 

A recent trend in AI technology is the growing application of services that draw upon emotions 
to improve human-computer interaction systems. Emotion recognition has become one of the 
most popular topics due to its ability to enabling machines to understand and interpret emotions 
from human [1]. Its ability to recognize emotions has made it applicable in various areas. The 
ability to help doctors monitor the mental health of patients makes it valuable in healthcare [2], 
it also can improve the efficiency of online teaching when used in the education [3], and it stood 
out for capacity to improve the user experience by better handling responses based on the user's 
emotional state in customer service [4]. As the demand for more stable and accurate systems 
grows, integrating multimodal data such as audio and video to improve model’s performance is  
one of the most popular trends in current research field.  

Previous study on emotion recognition mainly focused either analysing speech or facial 
expressions independently. Although these methods have advancements in certain area, their 
performance is relatively poor due to lacking the ability to capture the whole picture of human 
emotions that are often expressed through multiple modalities [5]. Recent research has focused 
on the multimodal approaches that combine both audio and visual data to better represent the 
complexity of emotional expression. However, several challenges remain in effectively 
integrating these modalities [6-8]. 
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Zadeh et al. [6] proposed a Memory Fusion Network (MFN) that can independently process the 
temporal dynamics of each modality, but it cannot effectively interact across modalities and is 
significantly affected by noise or missing data in a particular data stream. Pham et al. [7] 
introduced the Deep Canonical Correlation Analysis (DCCA) model to use shared 
representation and enhanced fusion method to aligns audio and video modalities. However, the 
model failed to process the weakly correlated or missing modalities. Poria et al. [8] presented a 
Multi-level Multiple Attention Model, which applied attention at multiple levels to improves 
interpretability, but its single-modal modality structure restricts its ability to fully exploit cross-
modal interactions due to. 

To address these limitations, we propose CFNSR-MSAFNet, a cross-modal fusion model that 
enhancing the SFN-SR architecture proposed by Fu et al. [9] by integrating Multi-Head 
Attention (MHA) with residual connections, layer normalization, and modality dropout. MHA 
is known for its ability to handle both audio and video streams at the same time thus improve 
cross-modal feature integration and ensure high-accurate training [10]. The residual connections 
preserve crucial information flow, while layer normalization helps stabilize the gradients [11], 
ensuring more effective learning. Additionally, we introduce modality dropout during training, 
where either the audio or video stream will be randomly dropped, forcing the model to learn 
more stable representations. These innovations help the model generalize better when one 
modality is noisy or ambiguous, enhancing performance on real-world data compared to 
traditional LSTM-based models.  

Our contributions in this paper are as follows: 

1. We introduced a Multi-Head Attention with residual connections and layer normalization to 
more effectively aligns and integrates audio and video data for emotion recognition. 

2. We propose the use of modality dropout to improve the stability of the model, enabling it to 
handle noisy or confused data more effectively. 

3. We demonstrate the accuracy of the proposed model on the RAVDESS dataset, achieving a 
state-of-the-art accuracy of 78.33%, outperforming existing approaches. 

The remainder of this paper is organized as follows: In Section 2, we introduce the dataset used 
for this study and describe the data pre-processing steps, followed by an overview of the 
proposed CFNSR-MSAFNet model, detailing its key components, including Multi-Head 
Attention and modality dropout. Section 3 presents the experimental results and provides a 
comparison with existing models. Section 4 discusses the implications of the results, potential 
limitations, and some possible areas for improvement. Finally, in Section 5, we conclude the 
paper and suggest future research directions. 

2 Method 

2.1 Dataset 

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) is a well-
known dataset for the recognition of emotions in speech. It consists of 1440 files with audio 
from 24 professional actors (12 men and 12 women) who express eight different emotions 
through speeches: calm, happy, sad, angry, fearful, surprised, disgusted, and neutral [12]. The 



 

distribution of these emotions is shown by figure 2. One of RAVDESS's greatest strengths is its 
professionally produced audio, which reduces background noise and guarantees distinct 
emotional indications. This clarity is essential for training models in emotion perception 
especially for the multimodal model. Our work aims to improve the efficacy of emotion 
recognition systems using RAVDESS, hence advancing the field of affective computing. 

 
 

Fig. 1. Representative examples of the dataset [12]. 

 
 

Fig. 2. The distribution of the dataset [12]. 

 

2.2 Data Pre-processing 

We processed the audio and video data in the RAVDESS separately to ensure consistent input 
formatting and effective feature extraction. Mel-frequency cepstral coefficients (MFCCs) were 
used to capturing the perceptual properties from the audio that are crucial for emotion 
recognition [13], then standardization was applied to normalize features. For the video part, 
Frames were extracted at 30 frames per second and resized to 224x224 pixels, additional 



 

augmentation through cropping and flipping ensure the high quality of the data. Next, by using 
the temporal alignment, corresponding segments of audio and video can be processed together. 
Finally, all features were normalized to zero mean and unit variance, and mini-batch processing 
was employed with a batch size of 16, supporting accurate training and generalization. 

 
Fig. 3. Architecture of Data Pre-processing (Figure Credits: Original). 

2.3 Model 

The CFNSR-MSAFNet model is a modified based on the original CFNSR model [12]. The 
CFNSR -MSAFNet model processes multimodal data consisting of video frames and audio 
(MFCC) features. The video stream is passed through several convolutional layers and max-
pooling layers, followed by ResNeXt blocks for feature extraction, while the audio stream is 
processed through a series of convolutional layers and pooling operations. Both streams are 
fused in the Cross-modal Blocks, where interactions between the audio and video modalities are 
captured and aligned, and the resulting fused representation is passed through a dense layer for 
final emotion prediction. Key modifications include adding residual connections to maintain 
information flow and prevent gradient degradation, Multi-Head Attention (MHA) to focus on 
important features from both streams, and layer normalization to stabilize training. What’s more, 
including the modality dropout during the training process can enhance the stability and 
generalization of model by let it handle noisy or missing data. 



 

 
Fig. 4. Architecture diagram of CNN (Figure Credits: Original). 

2.4 Multi-head attention 

By allowing the model to simultaneously focus on multiple aspects of the input data, Multi-
Head Attention can enhance enhancing model’s ability to process complex relationships for both 
within and between modalities. This structure was first introduced in the Transformer 
architecture by Vaswani et al. [10], its effectiveness at handling long-range dependencies and 
the ability to integrate complementary information from multiple modalities making it an ideal 
choice for improving recognition accuracy. In the tasks of multimodal emotion recognition, 
MHA plays a crucial role in matching and fusing features from both modalities. In addition, it 
can also facilitate a deeper interaction between the streams by focusing on key elements such as 
speech patterns and facial expressions. Each head processes different subspaces of the data, 
ensuring the model captures a wide range of temporal and spatial dependencies.  

 
Fig. 5. Architecture diagram of MHA (Figure Credits: Original). 



 

Scaled Dot-Product Attention. The Scaled Dot-Product Attention is the fundamental part of 
the Multi-Head Attention. It computes attention scores by applying the SoftMax function to the 
dot product between the query (Q) and key (K) matrices scaling by !

"#!
	to obtain a probability 

distribution. This distribution represents how much attention each key should receive and the 
values (V) are weighted accordingly. The formula is given by equation (1) 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥($%
"

"#!
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SoftMax function ensures the attention scores sum up to 1 and emphasizes the relevant parts of 
the input based on the similarity between queries and keys. The values will be scaled by the 
attention scores before summing up as an output, allowing the model to focus on important 
features in the input.  

Multi-Head Attention Structure. Multi-Head Attention extends the single attention 
mechanism by using multiple attention heads. Each head operates on its own set of projections 
for Q, K, and V, and focuses on different parts of the input sequence, learning diverse 
representations across different subspaces. The key benefit of having multiple heads is that it 
allows the model to attend to various positions and interactions in parallel, providing a more 
comprehensive understanding of the input [10]. For each attention head, the following steps are 
performed: 
Linear projections of the input features are computed to generate the queries Q, keys K, and 
values V, where 𝑊&, 𝑊%, and 𝑊'  are learnable weight matrices. The formula is given by 
equation (2) 

  Q = X𝑊& ,   K = X𝑊% ,  V = X𝑊' (2) 

Scaled dot-product attention is applied to each head independently, as described earlier. The 
formula is given by equation (3) 

  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛((𝑄( , 𝐾( , 𝑉() =  𝑆𝑜𝑓𝑡𝑀𝑎𝑥(&#%#
"

"#!
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The outputs of the attention heads are concatenated and projected through a linear 
transformation, where 𝑊) is a learnable output projection matrix, and h is the number of 
attention heads. The formula is given by equation (4) 

  MultiHead (Q, K, V) = Concat (ℎ𝑒𝑎𝑑!, … . , ℎ𝑒𝑎𝑑*) 𝑊)     (4) 

Finally, after the operations above, each attention head will output the weighted sum of the value 
vectors (V), 

2.5 Residual Connections and Layer Normalization 

In order to ensure the stability during the training process, residual connections are introduced 
after the MHA module to make model capable for retaining information from previous layers. 
The output of the attention mechanism is added in to the input X, forming a residual connection. 
The formula is given by equation (5) 

  Output =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(X +MultiHead(Q	, K	, V))   (5) 



 

By allowing gradients to flow more easily, this residual connection can helps prevent vanishing 
gradients and facilitates the training of deep models [14]. What’s more, layer normalization is 
applied to ensure that the distribution of activations remains stable throughout the network after 
the residual connection. 

2.6 Modality Dropout 

Modality Dropout is a regularization technique designed to enhance the generalization 
capability of multimodal models. In our model, modality dropout is applied with a predefined 
probability during training. For each batch, either the audio or video modality is randomly set 
to zero, while the remaining modality is processed normally. For each training step, modality 
dropout can be expressed as the formula given by equation (6). 
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The model will then process the remain modality as the formula given by equation (7) 

  x:;<=# =  𝑓(𝑥,5;#(3	, 𝑥′>(#=3)  (7) 

This removal of modalities encourages the model to learn useful, independent feature 
representations from both streams, which leads to better overall fusion during intersection when 
both modalities are present. 

3 Results 

3.1 Experiment Setup 

In this study, we used the RAVDESS dataset to perform multimodal emotion recognition, 
leveraging both audio and video data. The proposed CFNSR - MSAFNet model integrates audio 
and video streams using Multi-Head Attention (MHA) and modality dropout to enhance feature 
fusion and robustness. The audio stream was processed using a Transformer-based encoder, 
while the video stream was passed through a CNN. The model was trained on the L4 GPU 
provided by Colab, with a batch size of 16, using the Adam optimizer and a learning rate of 
0.001. Categorical cross-entropy was employed as the loss function, with both standard and 
modality dropout applied to prevent overfitting. The model was trained for 45 epochs, and 
accuracy was used as the primary evaluation metric. 

3.2 Performance Analysis 

The Training and Test Accuracy/Loss Comparison Over 45 Epochs shown by Figure 6 
demonstrates that the model effectively learned from the training data, achieving a near-perfect 
accuracy of 98-99% by epoch 7. However, there is a clear issue with overfitting, as seen from 
the significant gap between training and test accuracy. The test accuracy fluctuated throughout 
training, ranging between 65% and 78%, with the highest test accuracy of 78.33% occurring at 
epoch 18. The fluctuation of test accuracy and the increasing test loss in later epochs indicate 
that the model struggles to generalize well to unseen data, even as it fits the training data almost 
perfectly. 



 

This overfitting problem be revealed in the loss curves. While the training loss continually 
decreased, almost reaching zero, the test loss showed a volatile pattern. By the final epoch, the 
test loss had increased to 2.5261, indicating that the model was memorizing the training data 
rather than learning features that generalize to the test set. These results suggest that despite the 
strong fit to the training data, the model's generalization capability could benefit from other 
techniques to reduce overfitting, such as early stopping, stronger regularization, or data 
augmentation. 

 
Fig. 6. Training and Test Accuracy/Loss Comparison Over 45 Epochs (Figure Credits: Original). 

3.3  Confusion Matrix 

The confusion matrix shown by Figure 7 offers a detailed insight for model’s performance 
across various emotion categories, with predictions shown on the x-axis and true labels on the 
y-axis. The correspondence between emotions and index is shown in the Table 1. This model 
shows its best performance in predicting "Happy" (index 2) and "Surprised" (index 7), as 
indicated by the darkest blue diagonal cells at (2,2) and (7,7). These darker cells indicate a high 
number of correct predictions, suggesting that the model effectively captures the distinguishing 
features of these emotions from both audio and video modalities. 

However, this model also struggles with certain categories, particularly with distinguishing 
"Neutral" (index 0) and "Sad" (index 3). The confusion between these two emotions is 
highlighted by the lighter shading along cells (0,3) and (3,0), indicating frequent 
misclassification. This difficulty might caused by shared subtle expressions in facial and vocal 
cues between "Neutral" and "Sad" [15], making it challenging for the model to differentiate 
them accurately. 

Table 1. Emotions and their corresponding index 

Emotions Index 
Neutral 0 
Calm 1 
Happy 2 



 

Sad 3 
Angry 4 
Fearful 5 
Disgust 6 

Surprised 7 

 
Fig. 7. Confusion Matrix (Figure Credits: Original). 

3.4 Performance Comparison 

The performance comparison table shown by Table 2 highlights the evaluation results for 
various methods used in emotion recognition. The CFNSR-MSAFNet model we proposed 
achieved the highest accuracy of 78.3%, demonstrating significant improvements over other 
models in the comparison. The CFN-SR model, which also leverages cross-modal fusion, 
obtained an accuracy of 75.76%, marking it as a strong performer but slightly below than the 
enhanced CFNSR-MSAFNet. 

Among the baseline methods, Multiplicative fusion approaches and MCBP (Modality 
Confidence-Based Pooling) methods demonstrated comparable results with accuracies around 
70-71%. Models such as MSAF and ERANNS, which focus on integrating spatial and temporal 
features, performed in the 74-75% range. The Averaging model achieved the lowest accuracy 
at 68.82%, suggesting that simple fusion techniques are less effective compared to more 
advanced strategies involving attention mechanisms and residual connections. 

The results clearly shows that models utilizing advanced fusion techniques, like CFNSR-
MSAFNet, has the best performance, highlighting the effectiveness of leveraging both spatial 
and temporal information across modalities. These advancements address feature redundancy 
and enhance emotion recognition accuracy. 



 

Table 2. Performance Comparison 

Model Accuracy 
Averaging 68.82 

Multiplicative 70.35 
Multiplication 70.56 
Concat + FC 71.04 

MCBP 71.32 
MMTM 73.12 
MSAF 74.86 

ERANNS 74.8 
CFN-SR 75.76 

CFNSR- MSAFNet (Ours) 78.3 

4 Discussion 

4.1 Analysis of Model Strengths and Weaknesses 

The CFNSR-MSAFNet model proposed in this study achieves better result on the emotion 
recognition tasks and has following advantages. The use of Multi-Head Attention (MHA) to 
efficiently capture and align features across both audio and video modalities is one of the notable 
strengths in this model, which been justified by the 78.3% of accuracy in the real-world data. 
MHA can observe and learn from different aspects for input data, thus helps the model identifies 
crucial features for emotion recognition such as tones and facial expressions from both 
modalities. This significantly enhances the cross-modal fusion process, leading to more 
effective representation of emotional states. 

Another strength of the model is the usage of Modality Dropout, which improve the stability by 
help the model handling the less informative or unreliable modality. This technique will force 
the model learn from both modalities, thus vanishing over-relying on a certain modality and 
improving the generalization performance. Additionally, the use of residual connections and 
layer normalization plays a vital role in stabilizing the training process and preventing vanishing 
gradients, particularly in deep architectures, which allows for efficient gradient flow through 
the network layers. 

The CFNSR-MSAFNet model designed in this paper also has some shortcomings that need to 
be further improved. As the Figure 6 shows, overfitting occur during the later epochs. The 
increasing test loss while the training loss remains relatively low, as well as fluctuating pattern 
shows in both test accuracy and test loss also supported this opinion. Overfitting can result from 
the model being too complex, learning noise or minor details from the training set that do not 
generalize well to the validation or test sets. 

Another weakness is model struggles with distinguishing between certain emotions, particularly 
between neutral and sad emotions. This indicates that while the model performs well in general, 



 

there are specific emotional classes where feature overlap or ambiguity persists, making it 
harder for the model to make accurate predictions. 

4.2 Suggestions For the Future Work 

Incorporating Additional Modalities. Currently, only audio and video data are the currently 
considered in this model. Expanding the model to include additional modalities such as 
physiological signals (e.g., heart rate or skin conductance) might improve emotion classification 
accuracy since it will provide richer contextual data to the model. This would address the 
model’s potential insensitivity to subtle details that are not easily captured by visual and auditory 
cues, thus decrease the frequency of occurrence for the emotion misclassification. 

Improvement of Modality Interaction. While Multi-Head Attention (MHA) improves the 
interaction between the audio and video modalities. Relationship between different modalities 
could be further improved by incorporating co-Attention networks, graph-based interaction 
models or other advanced cross-modal fusion mechanism [16]. These fusion mechanisms could 
help model address cases where the model struggles with subtle emotional cues that require 
more nuanced multimodal processing from different ways. For Instance, Co-attention 
mechanisms can allow modalities to attend to each other during feature extraction to fuse 
relevant information and Graph-based models’ framework can help models capture complex 
and indirect relationships between modalities. 

Addressing Overfitting and Generalization. Despite the introduction of Modality Dropout 
during training, overfitting is still an essential problem in current model. Future work may 
involve integrating more advanced regularization techniques such as variational dropout or label 
smoothing [17]. These techniques can help models generalize better on different emotion data 
sets by reduce models’ confidence towards their predictions or treating dropout as a learnable 
parameter rather than a fixed one, thus mitigating overfitting especially when encountering new 
or unseen emotional expressions. 

5 Conclusion 

In conclusion, the CFNSR-MSAFNet model proposed in this study showcase a great 
performance in multimodal emotion recognition by leveraging Multi-Head Attention (MHA) 
and Modality Dropout. These techniques eventually lead to a more accurate and steady emotion 
recognition system by enabling the model to effectively fuse features from both audio and video 
modalities, which is justified by the 78.33% of accuracy in real world dataset. The residual 
connections further enhance the model's performance by facilitating gradient flow during 
training and contributing to the stability and efficiency of deep model optimization.  

However, there are still areas for further improvement. The fluctuating pattern throughout the 
training test and loss indicates that overfitting occurred during the process of training. 
Misclassifications between neutral and sad state that model often confused nuanced emotional 
expressions. These limitations suggest CFNSR-MSAFNet can be improved by focusing on 
enhancing the model’s generalization capabilities through advanced regularization techniques 
like label smoothing. Future research could base on this work by exploring more sophisticated 
fusion mechanisms and different datasets to capture different kinds of emotions. The promising 



 

results of this study lay a solid foundation for further development in the domain of multimodal 
emotion recognition. 
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