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Abstract. This paper studies the demagnetization fault diagnosis method of Permanent 
Magnet Linear Synchronous Motor based on SqueezeNet neural network. A new 
demagnetization fault signal acquisition method is proposed to adapt to the spatial 
topological structure constraints of the double-stator coreless motor, and to obtain effective 
demagnetization fault signals without invasive measurement, so as to improve the accuracy 
of the fault signal source. At the same time, a simple linear motor demagnetization fault 
diagnosis device is designed. The one-dimensional demagnetization fault signal is 
converted into a two-dimensional image through the Recurrence Plot, and fault feature 
information is effectively extracted. In addition, this paper innovatively uses the 
lightweight SqueezeNet model for training. After continuous adjustment of the 
SqueezeNet network model, it can efficiently complete the classification of permanent 
magnet linear synchronous motor demagnetization faults. 
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1 Introduction 

The field of fault diagnosis for permanent magnet synchronous linear motors (PMSLM) has 
undergone significant development over the past several decades, forming a systematic and 
comprehensive knowledge framework. Since the 1960s, researchers have been exploring 
various on-site testing methods to address the inevitable fault challenges in industrial 
applications [1]. By the 1980s, online fault diagnosis technology for PMSLM began to 
demonstrate its unique advantages, marking an important milestone in the field. Particularly 
since the 1990s, with the rapid advancement of modern signal processing and testing 
technologies, fault diagnosis has experienced unprecedented growth, attracting significant 
attention from researchers worldwide. Through continuous innovation, fault diagnosis 
technology has evolved, gradually moving towards intelligent and automated systems. 

In recent years, the vigorous development of artificial intelligence algorithms has injected new 
vitality into traditional fault diagnosis methods. These emerging algorithms have not only 
broken the limitations of past expert systems but have also increasingly applied intelligent 
techniques such as artificial neural networks, genetic algorithms, and fuzzy logic to the fault 
diagnosis of PMSLM. These methods are now recognized as cutting-edge technologies with 
immense potential in the industry [2]. 
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However, when traditional fault detection methods are applied to complex electronic and 
mechanical systems, the complexity of the diagnostic objects often necessitates the use of 
multiple detection techniques. While this approach can improve the accuracy of fault 
identification, it also increases the computational burden and prolongs the time required for 
diagnosis, thereby affecting the feasibility of real-time fault detection [3]. Additionally, the 
introduction of expert systems into fault diagnosis has made subsequent software adjustments 
and optimizations challenging. Moreover, the lack of effective utilization of expert knowledge 
and experience in relevant fields has further limited the practical application of these traditional 
methods, making it difficult to meet the increasingly high reliability and real-time requirements 
of modern industry [4]. 

In the study of demagnetization faults in PMSLM, signal acquisition is considered a 
fundamental task, as its effectiveness directly determines the quality of fault information and 
the complexity of subsequent signal processing algorithms. The signals commonly used for fault 
diagnosis are mainly divided into three categories: electrical signals generated by the motor coil 
winding (e.g., current, voltage, and back electromotive force), vibration and sound signals, and 
magnetic field signals in the air gap of the motor. Researchers have conducted extensive studies 
in this area. For example, Zhang Dan's team [5] used a Gaussian meter to accurately measure 
the air gap magnetic flux signal of an iron-free PMSLM, successfully identifying and classifying 
demagnetization faults. Similarly, Wang Xudong's team [6] focused on the study of local 
demagnetization fault characteristics in high-thrust PMSLM for vertical lifting applications, 
demonstrating that the harmonic content of the motor's no-load back electromotive force and air 
gap flux can serve as a theoretical basis for diagnosis. Other researchers, such as Kim H.K. [7] 
and Song Juncai [8], have also made significant contributions to understanding the impact of 
demagnetization on motor performance and the development of fault detection models. 

Despite these advancements, several challenges remain in the field of PMSLM fault diagnosis: 

1. The unique topological structure of single-stator ironless PMSLM results in a symmetrical 
distribution of permanent magnets in the stator, with the winding coils positioned at the 
center of the air gap magnetic field. This structure means that electrical signal changes 
caused by demagnetization faults can only indicate anomalies at specific positions in the 
rotor winding, making it difficult to confirm which section of the permanent magnet has 
malfunctioned or to perform accurate quantitative calculations. Additionally, electrical 
signals in the rotor winding are highly susceptible to interference from inverter faults, which 
can lead to misjudgment of demagnetization faults and reduce the accuracy of fault detection. 

2. Vibration signals generated by PMSLM, such as sound and torque, are highly sensitive to 
mechanical unbalance faults (e.g., bearings, balls, and guides) but are relatively weak in 
detecting demagnetization faults. When the degree of demagnetization is mild, the vibration 
signals are often too weak to be effectively detected, limiting the accuracy of fault diagnosis. 

3. Obtaining the magnetic field strength of the air gap in PMSLM typically requires the use of 
a Gaussian meter (Hall sensor), which often involves invasive disassembly of the motor, 
potentially causing secondary damage to the equipment. Moreover, the signals obtained 
from such measurements are often difficult to transmit in real-time to the controller, making 
real-time monitoring of demagnetization faults challenging. 

In summary, there is an urgent need in the industry to develop a new demagnetization fault 
signal acquisition method that overcomes the limitations imposed by the unique spatial topology 



 

 

of dual-stator coreless motors. Ideally, this method should enable the effective acquisition of 
demagnetization fault signals without invasive measurements, while also improving the 
accuracy of fault source detection by combining these signals with existing rotor winding signals. 
To address this need, we have designed a simple and efficient linear motor demagnetization 
fault diagnosis device, which utilizes advanced fault feature extraction techniques to achieve 
rapid and accurate identification of motor demagnetization faults. 

Additionally, based on the actual operating scenarios of high-precision machine tools, we have 
developed a state-adaptive demagnetization fault signal processing algorithm. This algorithm 
adjusts key parameters in the feature extraction process in real-time according to the 
demagnetization fault signals under different working conditions, ensuring optimal performance 
and accurate extraction of multi-dimensional fault features. This innovation not only enhances 
the adaptability of demagnetization fault diagnosis for PMSLM but also strengthens the overall 
compatibility of the system. Furthermore, a comprehensive method of dimensionality reduction 
and enhancement based on multi-dimensional fault feature indicators is proposed, aiming to 
achieve efficient fusion of information between feature layers and decision layers. This 
approach leverages complementary information from multiple evidence sources for joint 
decision-making, further improving the reliability of demagnetization fault diagnosis in 
PMSLM. These efforts lay a solid theoretical foundation and provide feasible solutions for 
future advancements in fault diagnosis technology, helping the industrial sector achieve greater 
breakthroughs and success. 

2 Methodology 

We designed a method to analyze and collect the electromotive force signals of permanent 
magnet linear motors, extract features using a recurrence plot algorithm, and develop a deep 
learning model based on SqueezeNet [9] to achieve efficient real-time monitoring and accurate 
fault diagnosis of demagnetization in permanent magnet synchronous linear motors. 

2.1 Data Collection 

We divide the motor into 13 period arrays and number each period array. As shown in Figure 1, 
each period corresponds to 4 permanent magnets, including 2 N-pole permanent magnets and 2 
S-pole permanent magnets. The 4 permanent magnets are numbered 1, 2, 3, and 4, so there are 
15 types of permanent magnet demagnetization combinations as shown in TABLE Ⅰ. 

 
Fig. 1. permanent magnet synchronous linear motor cycle topology. 



 

 

Table 1. Demagnetization Type Examples 

Demagnetization type Demagnetization quantity Demagnetization permanent 
magnet combination 

1 1 1 
2 1 2 
3 1 3 
4 1 4 
5 2 1-2 
6 2 1-3 
7 2 1-4 
8 2 2-3 
9 2 2-4 
10 2 3-4 
11 3 1-2-3 
12 3 1-2-4 
13 3 1-3-4 
14 3 2-3-4 
15 4 1-2-3-4 

 
After determining the demagnetization type of the permanent magnet synchronous linear motor, 
we use the detection coil to collect the existing demagnetization signal data of the permanent 
magnet synchronous linear motor. The data is one-dimensional electromotive force signal data. 
After a series of preprocessing, we label and classify the data according to the demagnetization 
type. 

2.2 Feature Extraction 

After we collect and classify the data set, we derive the characteristics of the electromotive force 
signal data set through Recurrence Plot algorithm [10]and convert the one-dimensional data into 
a two-dimensional image. 

Recurrence Plot are a method for analyzing and visualizing time series data. They show the 
dynamic behavior of data by studying the recurrence of states in a time series. Specifically, a 
recursion plot is a two-dimensional plane in which the points represent the encounter or 
recurrence of states of a time series at different time points. This type of plot can reveal 
periodicity, mutation points, and nonlinear dynamic characteristics in the data. Recurrence Plot 
are widely used in chaotic system analysis [11], classification detection and monitoring, and 
financial market analysis. In this study, recursion plots can well extract the timing feature 
information in the electromotive force demagnetization signal, thereby facilitating subsequent 
analysis and processing. 

2.3 Model Selection 

Convolutional Neural Network [12] can be simply understood as a network with a deep structure 
that contains convolution operations. It is a process of extracting features from data and making 
predictions through weight sharing and local connections. In practical applications, a multi-layer 
network structure is often used, so it is also called a deep convolutional neural network. 



 

 

The fundamental structure of a convolutional neural network includes the following components: 
Input Layer, Convolution Layer, Pooling Layer, and Fully Connected Layer, as illustrated in 
Figure 2. 

 
Fig. 2. Convolutional Neural Network Structure 

1) Convolution Layer: The primary role of the Convolution Layer is to extract features from 
the input data using a convolutional kernel. This involves applying the convolutional kernel 
to the input image, adding a bias term, and passing the result through an activation function 
to generate the output of each neuron following the convolution process. 

2) Pooling Layer: The Pooling Layer is designed to downsample the image, reducing its size 
and the computational complexity, thereby speeding up the training process of the 
convolutional neural network while maintaining key image features. It is primarily 
categorized into two types: Max Pooling and Average Pooling. 

3) Full-connection Layer: The Fully Connected Layer combines the local features extracted 
by the convolutional and pooling layers using a weight matrix, ultimately producing a one-
dimensional vector that is used for classification. 

The SqueezeNet network employed in this experiment is a type of convolutional neural network. 
Introduced by UC Berkeley in 2016, it is a streamlined, lightweight version of traditional 
convolutional networks. The model is derived from the AlexNet [13] architecture but includes 
several modifications. Structurally, the SqueezeNet network begins with a convolutional layer, 
followed by 8 Fire modules, and concludes with another convolutional layer, using the Softmax 
activation function for classification output. In the Fire module, the number of convolution 
kernels in each layer gradually increases. The Fire modules consist of two components: the 
Squeeze layer and the Expand layer. The ReLU function is used as the activation function at the 
output of both the Squeeze and Expand layers. A Dropout layer with a rate of 50% is applied 
after the Fire9 module. This structure is illustrated in Figure 3. 



 

 

 
Fig. 3. SqueezeNet Neural Network Structure 

Compared with the traditional convolutional neural network, our design strategy of SqueezeNet 
network is mainly about:  

1) The convolution kernel of the neural network is reduced, which can reduce the number 
of network parameters. 

2) The pooling operation is delayed to retain a larger feature map, making the transmitted 
information more accurate, while ensuring the accuracy of the network model while 
being lightweight. 

2.4 Model Training 

This experiment first imports the processed Permanent Magnet Synchronous Linear Motor 
demagnetization Recurrence Plot dataset, then builds the network, uses the convolution layer to 
extract image features, then performs downsampling through the Maxpooling layer[14], uses 
the Fire module for further dimensionality reduction, and then uses the contact method for 



 

 

feature fusion. Finally, an average pooling layer is added to integrate global spatial information, 
and the Softmax classifier[15] is used to output the classification. AS Shown in figure 4. 

 
Fig. 4. Implementation Flowchart 

3 Results 

In a recent study, we successfully developed a deep learning-based fault diagnosis method for 
monitoring and assessing the performance of Permanent Magnet Synchronous Linear Motors 
(PMSLM). The core of this method lies in utilizing advanced data processing techniques to 
analyze the motor's loss function and classification accuracy in real-time. The experimental 
results show that the method achieved a classification accuracy of up to 97.9% on the training 
set, while the classification accuracy on the validation set reached up to 96.2%, demonstrating 
the model's strong generalization ability. 

The figure below illustrates the loss function curve and the accuracy curve from the experiment. 
It is evident that the curves stabilize around the 200th iteration. This indicates that the model 
has learned the characteristics of the training data well and has shown high accuracy on the 
validation set after a sufficient number of iterations. This stability is crucial for ensuring the 
reliability of motor fault diagnosis. 



 

 

 
Fig. 5. Loss Function Curve 

 
Fig. 6. Accuracy Curve 



 

 

At the same time, we also compared the accuracy of the SqueezeNet model with other 
convolutional neural networks on the validation set as shown in the following table. 

Table 2. Comparison table of accuracy of each neural network validation set 

Model Accuracy 
SqueezeNet 96.2% 

AlexNet 91.4% 
ResNet50 92.6% 

GoogLeNet 93.3% 
 

From this table, it can be concluded that while SqueezeNet reduces the number of model 
parameters, the accuracy of the network is much higher than other models, and it can efficiently 
complete the classification task. 

4 Conclusion 

Following a comprehensive series of studies in this experiment, several important conclusions 
can be drawn regarding the advancements made in the field of demagnetization fault diagnosis 
for Permanent Magnet Linear Synchronous Motors (PMLSMs). The experimental research 
detailed in this document has yielded significant results, particularly in the optimization of the 
SqueezeNet neural network model. This innovative approach has achieved an impressive 
classification accuracy of up to 97.9% on the training set and 96.2% on the validation set. These 
results indicate that the SqueezeNet model, despite its lower parameter count compared to 
traditional convolutional neural networks, is highly effective in accurately classifying 
demagnetization faults in PMLSMs. 

The success of this research can be attributed to the novel integration of a refined 
demagnetization fault signal acquisition method with the advanced capabilities of the 
SqueezeNet neural network. This new acquisition technique has been specifically designed to 
operate within the spatial constraints posed by dual-stator coreless motors. By enabling the 
collection of effective demagnetization fault signals without the need for invasive measurements, 
this method not only enhances the accuracy of fault signal sourcing but also paves the way for 
more efficient and non-destructive diagnostic approaches. 

Moreover, the application of the Recurrence Plot algorithm to transform one-dimensional 
electromotive force signals into two-dimensional images for feature extraction has proven to be 
a highly valuable technique. This transformation facilitates a more comprehensive analysis of 
the data, allowing for the identification of patterns and characteristics that might remain hidden 
in the raw, one-dimensional signal format. The integration of these enriched features into the 
SqueezeNet model has significantly bolstered the overall diagnostic accuracy of the system. 

Nevertheless, the research acknowledges certain limitations within the current dataset. The 
inherent complexities associated with collecting demagnetization data from PMLSMs have 
resulted in a relatively limited dataset, which constrains the potential for further enhancement 
of the diagnostic system's capabilities. To address this challenge, future research will prioritize 



 

 

the expansion of the dataset and the refinement of data collection methodologies. One promising 
approach under consideration is the introduction of detection coils specifically designed to 
gather demagnetization signals, which could lead to the creation of a more robust dataset. This 
enhancement would enable the model to learn from a broader spectrum of fault scenarios, 
thereby potentially increasing its diagnostic accuracy. 

Additionally, the research seeks to broaden the applicability of this diagnostic framework to 
encompass other types of linear motors. This endeavor would involve adapting the model to 
recognize and classify demagnetization faults across various motor configurations and 
operational environments. Such an expansion would significantly enhance the utility of the 
diagnostic system, transforming it into a versatile tool for the maintenance and monitoring of 
diverse linear motor systems. 

In summary, this research has made a substantial contribution to the field of motor fault 
diagnostics by developing a highly accurate and efficient method for identifying 
demagnetization faults in PMLSMs. The innovative use of the SqueezeNet model, combined 
with advanced data processing techniques, has demonstrated great promise. With further 
development and refinement, this approach has the potential to establish itself as a standard in 
the industry for motor health monitoring and maintenance, ultimately contributing to enhanced 
operational reliability and efficiency. 
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