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Abstract. In current language modelling, the decoder-only Transformer architecture with 
causal masking has become a cornerstone, demonstrating exceptional performance across 
various tasks. However, we have identified two significant limitations: First, causal 
masking presents a substantial obstacle to further optimizing overall model efficiency, 
particularly in handling long contexts. Second, traditional optimization of causal masking 
struggles with uneven attention distribution and the inability to encode absolute positional 
information, limiting their effectiveness in position-sensitive tasks. In this work, we 
propose the Stable Random Sampling (SRS) algorithm, a novel method to address both 
limitations by refining the causal masking process. SRS introduces a pseudo-attention 
mask to balance attention distributions for performance refinement and incorporates 
random sampling and Locality-Sensitive Hashing (LSH) in causal masking part for 
efficient processing, reducing time complexity of this part to 𝑂(𝑛). The effectiveness of 
SRS is validated both theoretically and empirically. Our pre-training ablation experiments 
demonstrate that SRS module virtually enhances the performance of causal masking while 
each functional part of it relatively improves efficiency and effectiveness towards different 
sizes of tasks, on average showing a 30% reduction in training time and a 50% decrease in 
loss rate compared to traditional methods. Then, we further show in empirical experiments 
that SRS makes the time 2x faster on a single attention layer than FlashAttention and 
exhibits 33% lower perplexity compared to HyperAttention on average in which requires 
highly positional sensitive scenarios. Moreover, SRS naturally supports efficient 
processing of long sequences and can be easily integrated with existing attention 
optimization techniques.  

Keywords: Decoder-only Transformer, Causal Masking, Random Sampling, Positional 
Information. 

1 Introduction 

Today, large language models (LLMs) [1-6] have rapidly developed and achieved impressive 
success in many areas, especially in the field of NLP [7-10]. The underlying architecture of 
LLMs is the decoder-only Transformer, with causal masking [11, 12] being an essential 
component. This structure enables LLMs to perform well in generative tasks[3,5], such as text 
generation and dialogue systems. Consequently, models like GPT-3 and GPT-4 have been the 
most rapid and prosperous. Optimization efforts for decoder-only Transformers have never 
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ceased. A novel self-attention layer called 'HyperAttention'[13] has been proposed, which 
reduces the time complexity of self-attention layer calculations in previous decoder-only 
Transformers from 𝑂(𝑛!) to 𝑂(𝑛𝑙𝑜𝑔𝑛). Additionally, Stable Mask adjusts causal masking 
through its unique pseudo-attention score matrix, leading to more balanced attention allocation 
within the context and addressing the shortcomings of relative positional encoding. Despite this 
impressive success, we identify two significant issues that need to be solved within that 
improvement 

The first issue is the algorithm efficiency problem of causal masking. Causal masking [11, 12] 
is the essential component of a decoder-only transformer. It enables Transformer models to 
better handle tasks that require consideration of temporal order, generating more natural, 
coherent, and reasonable text.[14] However, causal masking poses a significant obstacle to the 
optimization of self-attention algorithms [15]. For instance, HyperAttention [13] achieves near-
linear complexity for context when the sequence length n=131k through a series of algorithmic 
optimizations, resulting in more than a 50-fold increase in both forward and backward 
propagation speed. However, the recursive algorithmic aspect of causal masking still has a 
significant resistance to optimizing the overall model efficiency: when causal masking is used, 
the optimization speed of the algorithm plummets from the original 50x to 5x [13]. To be more 
specific, the causal masking part increased time expenses and reduced the performance of the 
original algorithm. Therefore, through our research on this point, we wanted to find a method 
for optimizing the time complexity during the process of causal-masking.  

The second restriction is that we found that many other traditional causal masking optimization 
attempts cannot solve the following two problems while maintaining calculation efficiency [16]: 
(1) Uneven attention distribution: This is a drawback of the softmax function [17,18], as the 
output of the softmax function sums to 1. These characteristic forces some attention to be 
allocated to unimportant content, such as punctuation [19], leading to decreased efficiency and 
accuracy when the model processes long contexts. As a result, the model has certain limitations. 
(2) Inability to encode absolute positional information [20, 21]: Relative positional encoding 
does not support the application of the model in position-sensitive tasks. For example, Stable 
Mask [16], which can address these two issues to help improve accuracy performance in a long 
context, still faces the dilemma when trying to alleviate accuracy performance while reducing 
computational demand. Consequently, we aim to solve the accuracy problem while addressing 
efficiency issues 

In order to meet these challenges, through careful study of the optimization theory of Hyper 
attention algorithm, and the core ideas of the stable mask algorithm [16], we propose an 
algorithm named Stable Random Sampling Algorithm (SRS) to replace the recursive algorithm 
used in the previous causal masking in this paper. Our algorithm aims to optimize the time 
complexity and to improve the allocation mechanism of the attention mechanism, and finally 
achieve an algorithm with 𝑂(𝑛) time complexity and can well improve the uneven allocation 
of attention and the inability to recognize the absolute positional encoding. Finally, we realize 
an algorithm with 𝑂(𝑛) time complexity that can improve the uneven allocation of attention 
and the inability to recognize absolute positional encoding. The goal is to make HyperAttention 
significantly more efficient and productive in dealing with long contexts. The algorithm consists 
of three parts: (1) firstly, the Pseudo Attention mask matrix [16] is introduced to participate in 
the computation of the attention matrix, (2) on the causal masking processed matrix, LSH is 
applied to each row to recognize the heavy entries and the Scale Sampling algorithm for the 



 

 

overall estimation of the remaining light entries. (3) Finally, the remaining pseudo attention 
score is added to the overall computation of the 𝐷 matrix. 

The effectiveness of SRS has been confirmed by us through ablation experiment and empirical 
experiments on LLM, indicating it can be conveniently and explicably integrated into all kinds 
of decoder-only transformers in replacement of traditional causal masking.  

Our core contributions can be summarized as follows: 

1. We identified two issues in the optimization of the causal masking part in decoder-only 
transformers: the efficiency in optimizing transformers with causal masking and the inability to 
reduce the calculational demand while accurately capturing positional information. 

2. We propose SRS, an effective and integrable solution to settle both issues by delicately 
modifying the causal mask in an efficient way. 

3. We validate the effectiveness of SRS with pre-training ablation experiments and empirical 
experiments across various tasks and sizes of datasets. 

4. We modify SRS with a hardware-efficient method for further practical application. 

2 Methodology 

To optimize the causal masking process in HyperAttention models, we propose the Stable 
Random Sampling (SRS) method. As shown in Fig.1, the algorithm first applies StableMask to 
the attention matrix 𝐴  to ensure accurate causal masking, then leverages Kernel Locality-
Sensitive Hashing (Kernel-LSH) and selective sampling techniques to obtain the diagonal 
matrix 𝐷" . Specifically, the random sampling method replaces recursive call in the original 
HyperAttention algorithm, which reduces the time complexity of from 𝑂(𝑛𝑙𝑔𝑛) to 𝑂(𝑛). 

 
Fig. 1. (a) The StableMasking process, where attention matrix 𝐴 is first element-wise multiplied by 
traditional causal mask 𝑀! , then added with pseudo attention mask P to get 𝑀"# . (b) The Random 
Sampling process, where 𝑀"# is first processed by Kernel LSH to get 𝑀$%&'())(*, then for each row 𝑞+ 
in 𝑀$%&'())(*, the sum is calculated by adding all the heavy entries, s samples of light entries, and all the 
pseudo entries. 



 

 

2.1 StableMasking 

Algorithm 1: StableMask, StableMasking Process 

1: input: Matrices 𝑄,𝐾 ∈ ℝ#×%, Pseudo Attention Matrix 𝑃, StableMask 𝑀" 

2: Initialize Attention Matrix: 𝐴 = 𝑒𝑥𝑝(𝑄𝐾&) 

3: Apply StableMask: 𝑀'( = 𝐴⊙𝑀" + 𝑃 

4: return 𝑀'(, 𝑨𝑺𝑴 = 𝑴𝑨𝑷⊙𝑀" 

 
From the StableMask method presented by Yin et al. [16], a lower binary triangular matrix 𝑀" 
is generated to serve as the causal mask and an upper triangular P is then generated as the pseudo 
attention matrix, where each element 𝑝-. is computed as 

𝑝-. = −𝛾(𝑗 − 𝑖) (1) 

Here, 𝛾  is a constant scaling factor that helps maintain stability in the attention scores by 
introducing a temporal bias. 

The two masks are represented below. 

𝑀" 	= 	>

1 0 ⋯ 0
1 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

C , 𝑃	 = 	

⎝

⎜
⎛
0 𝑝// 𝑝/! ⋯ 𝑝/#
0 0 𝑝!! ⋯ 𝑝!#
0 0 0 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ 𝑝##
0 0 0 ⋯ 0 ⎠

⎟
⎞

 

The intermediate masked matrix 𝑀'( is obtained by applying the two masks. 

𝑀'( = (𝐴⊙𝑀") + 𝑃 (2) 

Another layer of causal mask is applied to obtain the masked attention matrix 𝐴01: 

𝐴01 = (𝐴⊙𝑀" + 𝑃)⊙𝑀" (3) 

Effectiveness. From Eq. (3), the final output of the masked attention matrix 𝐴01 is still valid in 
causal decoding, as it is element-wise multiplied by the causal mask again. 

According to Theorem 4.1 in [16], pseudo attention also allows for unique positional encoding 
for identical sequences, which refines the attention distribution of the original model. 

2.2 Random Sampling 

Algorithm 2: RandS, Random Sampling Process 

1: input: Intermediate Matrix 𝑀'(, Kernel-LSH Mask Matrix 𝑀2, Pseudo Attention 
Matrix 𝑃, sampling size S, threshold s 

2: Initialize: generate upper triangular matrix 𝑃 with 𝑝-.,.4- = −𝛾(𝑗 − 𝑖) 

3: Apply Kernel-LSH to 𝑀'(: 𝑀56789::9% = 𝑀2 ⊙𝑀'( 



 

 

4: for row 𝑞- in 𝑀57689::9% do 

5:  Sampling 𝑆 columns of light entries when 𝑗 ≤ 𝑖 

6:  if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑙𝑢𝑚𝑛) ≥ 𝑠 then 

7:   Sample 𝑆 columns 

8:  else 

9:   Sample all columns 

10:  end if 

11:  Compute the sum 𝑑- of heavy entries, sampled light entries, and 𝑝-.,.4- 

12: end for 

13: return 𝐷0 = 𝒅𝒊𝒂𝒈({𝒅𝒊}𝒊<𝟏𝒏 ) 

 
We apply the same sampling method with Algorithm 2 in [13]. According to its proof to Lemma 
2, we can guarantee the effectiveness of this approximation 𝐷0 of the diagonal matrix 𝐷. 

Together, we propose the entire algorithm. 

Algorithm 3: SRS, Stable Random Sampling 

1: input: Matrices 𝑄,𝐾, 𝑉 ∈ ℝ#×% , Pseudo Attention Matrix 𝑃 , StableMask 𝑀" , 
Kernel-LSH Mask Matrix 𝑀2, sampling size S, threshold s 

2: Run Algorithm 1 and let {𝑀'(, 𝐴01} = 𝑆𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑠𝑘(𝑄, 𝐾, 𝑃,𝑀")	 

3: Run Algorithm 2 and let 𝐷0 = 𝑅𝑎𝑛𝑑𝑆(𝑀'(, 𝑀2 , 𝑃, 𝑆, 𝑠) 

4: return 𝑨𝒕𝒕 = 𝐷0?/𝐴01𝑉 

2.3 Time Complexity Analysis 

In this section, we focus on our substitution for recursion in the original hyperattention model, 
the Random Sampling process, which involves the following two main operations: 

Sampling Operation. During the sampling process, each element in the set S is considered 
exactly once. The time complexity for processing each element is 𝑂(1), which results in 𝑂(𝑛) 
time for the entire process. 

Aggregation Operation. Aggregating the results involves a linear pass through the data, 
contributing 𝑂(𝑛) time. 
In all, the total time complexity of the random sampling method is: 𝑂(𝑛) 



 

 

3 3. Experiment 

3.1 Pre-training 

In this session, we provide a comprehensive overview of the Ablation Experiments we have 
conducted for SRS. As shown in the Fig.2 and Fig.3, we begin by outlining the experimental 
methodology. Through the ablation experiments, we want to determine two points: first, if there 
is an improvement in the efficiency of DS over the recursive algorithm in HyperAttention, and 
second, if there is an improvement in the accuracy of the StableMask for the transformer's 
performance in long contexts. 

Our Pre-training environment is Google Colab with an NVIDIA A100 GPU and 40 GB of 
memory, and the datasets are LongBench [22] from HuggingFace [23]. 

 
Fig. 2. Ablation experiment schema, where DS stands for random (direct) sampling, SM stands for 
StableMask, and AL stands for angular LSH. 

 
Fig. 3. (1) A constant accuracy requirement is applied to all models, and the training is stopped once the 
accuracy is reached or exceeded. (2) All algorithms have the same training epochs. 



 

 

Constant Accuracy. According to the results shown in the experimental images, it can be 
concluded that compared to the original HyperAttention, which uses a recursive algorithm to 
deal with causal masking, both our proposed algorithms DS and DS+SM have a larger reduction 
in training time. The result indicates that direct sampling has a larger efficiency improvement 
for dealing with causal masking. Focusing on DS and DS+SM, it can be seen that StableMask 
has some reduction in the loss of the model during training. This indicates that SRS not only 
improves the efficiency of the transformer but also reduces its loss during training. 
From Fig.4, we can find out that the loss of SRS decrease about 30% in large and small datasets. 
From Fig.5, we observed that the training time of SRS is about 33% lower than the original 
algorithm.  

 

 
Fig. 4. Loss and accuracy results of the constant accuracy experiment in small and large datasets. 



 

 

 
Fig. 5. Training time results of the constant accuracy experiment. 

Constant Training Epoch. Since the number of training epochs is the same, there is not much 
difference in their training time, so we can better focus on improving the model performance. 

 
Fig. 6. Loss results of the constant training epoch experiment. 



 

 

3.2 Empirical Experiments 

We use the experimental setup of [13] as a foundation and conduct a series of experiments to 
validate the performance of SRS. Our experimental environment is Google Colab with an 
NVIDIA A100 GPU and 40 GB of memory, and the datasets are still LongBench[22]. We 
selected FlashAttention as the control group to evaluate the performance of SRS. 

Single Self-Attention Layer Replacement. In this experiment, the performance of SRS across 
different sequence lengths is tested. We replace the original self-attention layer in the decoder-
only Transformer with SRS and conduct experiments with sequence lengths ranging from 4,096 
to 131,072. We then calculate and compare the wall-clock times for both forward and 
forward+backward operations when accelerated by SRS, and when computed by FlashAttention 
and HyperAttention. We only measure time with causal masking. All input matrices Q, K, V 
have the same length with dimension 𝑑=64, and the head size for all types of attention is 24. 
Additionally, SRS includes an extra gamma parameter used to generate the pseudo-attention 
score matrix. All other parameters for SRS and RS remain consistent with FlashAttention and 
HyperAttention. 
From Fig.7(a), it can be observed that both SRS and RS exhibit are two to three times faster 
than FlashAttention, regardless of the sequence length. As the sequence length increases, the 
processing speeds of SRS and RS continue to rise relative to FlashAttention before eventually 
plateauing. We observe SRS run to up 2×faster than FlashAttention. Fig.7(b) shows that SRS is 
faster than HyperAttention when the sequence length is within 10,000 and exhibits an upward 
trend. Specifically, SRS run to up 1.5×faster than HyperAttention. However, as the sequence 
length exceeds 10,000, the advantage of HyperAttention gradually becomes more pronounced, 
which calls for closer scrutinization. 

 
(a)With FlashAttention 

 
(b)With HyperAttention 

Fig. 7. (a) Comparison of precise computation times at different sequence lengths using SRS, RS, and 
FlashAttention. (b) Comparison of precise computation times at different sequence lengths using RS, SRS, 
and HyperAttention. 



 

 

Monkey Patching Self-attention. To test our SRS performance in long context situations, we 
choose chatglm2-6b-32k [24], which is widely used in practical applications. In these LLMs, 
we use the SRS to replace the original final attention layers, which can vary from 0 to the number 
of all attention layers in each LLM. Then we experiment in LongBench dataset to evaluate the 
performance of monkey patched models in respect to perplexity and speed up. 
The overall performance of perplexity and speed in chatglm2-6b-32k (ChatGLM2) with SRS 
is shown in Fig.8. With the number of replaced layers increasing, the perplexity and speed 
increase as well, making the inference time of ChatGLM2 30% faster on 32k context length 
while perplexity increases from 5.1 to 6.5. The result is under our theoretical expectation. 

 
Fig. 8. The variations of perplexity and speed up of chatglm2-6b-32k monkey patched with SRS. The 
number of replaced layers vary from 0 to 28. 

For a clearer comparison, we use two separate charts to highlight the differences between SRS 
and HyperAttention. In Fig.9(a), the speed of SRS is slightly slower than HyperAttention. 
However, Fig.8(b) shows that SRS generally has lower perplexity in different numbers of 
replaced layers. Specifically, the average SRS perplexity was 33% lower compared to 
HyperAttention. 

From a comprehensive point of view, we hold the firm belief that SRS is fully effective in 
improving the LLMs’ stability in long context settings even though it has a little loss of speed, 
which is acceptable. 

 
(a) Speed up 



 

 

 
(b) Perplexity 

Fig. 9. (a)Comparison of speed up between SRS and HyperAttention in chatglm2-6k-32k (b) Comparison 
of perplexity between SRS and HyperAttention in chatglm2-6k-32k. 

4 Conclusion 

This paper presents the Stable Random Sampling Algorithm, which enhances the performance 
of large language models by tackling challenges in causal masking and attention distribution in 
decoder-only Transformers. Our method reduces the time complexity to 𝑂(𝑛), significantly 
improving efficiency over traditional recursive algorithms. By using a pseudo attention mask 
and Locality-Sensitive Hashing, our approach optimizes attention mechanisms, especially for 
handling long texts. 

Overall, our algorithm performed well. We confirmed that SRS significantly outperforms 
FlashAttention in terms of speed performance, with SRS running at twice the speed of 
FlashAttention at any sequence length. The monkey patch experiment demonstrated that LLMs 
with SRS replaced exhibit lower perplexity compared to those with HyperAttention, indicating 
that SRS provides greater stability in improving LLM performance on long texts. Nonetheless, 
SRS still maintains significant potential in speed performance, especially when compared to 
HyperAttention for long sequences, which we need to address in future work. Conclusively, our 
work has presented a method for more effective and efficient causal masking optimization for 
decoder-only transformers in comparison to currently prevalent ones and will be further 
improved in the future.   

Acknowledgement 

Shuhao Zhang, Jiarui Li, and Jiayi Yu contributed equally to this work and should be considered 
co-first authors.  



 

 

References 

[1] Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao Efficient long-range 
transformers: You need to attend more, but not necessarily at every layer (EMNLP)2023 

[2] Lester, B., Al-Rfou, R., and Constant, N. The power of scale for parameter-efficient prompt tuning. 
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 
pp. 3045–3059, 2021. 

[3] Yuhong Mo; Hao Qin; Yushan Dong; Ziyi Zhu; Zhenglin Li Large Language Model (LLM) AI text 
generation detection based on transformer deep learning algorithm arXiv preprint arXiv: 
2405.06652v1 

[4] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, François Fleuret Transformers are RNNs: 
Fast Autoregressive Transformers with Linear Attention arXiv preprint arXiv:2012.12556 

[5] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan 
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, 
and Xing Xie. 2024. A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. 
Technol. 15, 3, Article 39 (June 2024) 

[6] Naveed, H., Khan, A.U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., & Mian, A.S. 
(2023). A Comprehensive Overview of Large Language Models. ArXiv, abs/2307.06435. 

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, 
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are 
few-shot learners. Neural Information Processing Systems (NeurIPS), 2020 

[8] Anthony Gillioz; Jacky Casas; Elena Mugellini; Omar Abou Khaled Overview of the Transformer-
based Models for NLP Tasks IEEE 2020 

[9] Narendra Patwardhan; Narendra Patwardhan; Carlo Sansone Transformers in the Real World: A 
Survey on NLP Applications MDPL 2023 

[10] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, 
An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, Dacheng Tao A Survey on Visual 
Transformer arXiv preprint arXiv:2012.12556 

[11] Ziyang Luo, Yadong Xi, Jing Ma, Zhiwei Yang, Xiaoxi Mao, Changjie Fan, and Rongsheng Zhang. 
2022. DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks. 
In Findings of the Association for Computational Linguistics: NAACL 2022, pages 1185–1197, 
Seattle, United States. Association for Computational Linguistics. 

[12] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer. In 
International Conference on Learning Representations (ICLR), 2020. 

[13] Han, Insu, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh. 
"Hyperattention: Long-context attention in near-linear time." arXiv preprint arXiv:2310.05869 
(2023). 

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 
Lukasz Kaiser, Illia Polosukhin Attention is All you Need (NIPS)2017 

[15] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, 
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, 
Lucy Colwell, Adrian Weller Rethinking Attention with Performers  arXiv preprint 
arXiv:2009.14794v4 

[16] Yin, Qingyu, Xuzheng He, Xiang Zhuang, Yu Zhao, Jianhua Yao, Xiaoyu Shen, and Qiang Zhang. 
"StableMask: Refining Causal Masking in Decoder-only Transformer." arXiv preprint 
arXiv:2402.04779 (2024). 



 

 

[17] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers 
via kernel density estimation. In International Conference on Machine Learning (ICML),2023. 

[18] Pang, T., Xu, K., Dong, Y., Du, C., Chen, N., and Zhu, J. Rethinking softmax cross-entropy loss 
for adversarial robustness. In International Conference on Learning Representations, 2019 

[19] Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Efficient streaming language models with 
attention sinks. arXiv preprint arXiv:2309.17453, 2023 

[20] Luo, S., Li, S., Zheng, S., Liu, T.-Y., Wang, L., and He, D. Your transformer may not be as 
powerful as you expect. Advances in Neural Information Processing Systems, 35: 4301–4315, 
2022 

[21] Philipp Dufter, Martin Schmitt, Hinrich Schütze; Position Information in Transformers: An 
Overview. Computational Linguistics 2022 

[22] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, 
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A Bilingual, 
Multitask Benchmark for Long Context Understanding, 2023 

[23] Wolf, Thomas et al. “HuggingFace's Transformers: State-of-the-art Natural Language Processing.” 
ArXiv abs/1910.03771 (2019): n. pag. 

[24] Du, Zhengxiao, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang and Jie Tang. “GLM: 
General Language Model Pretraining with Autoregressive Blank Infilling.” Annual Meeting of the 
Association for Computational Linguistics (2021). 


