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Abstract. With the popularity of mobile devices and surveillance cameras, image 
enhancement under low-light conditions has become an crucial research direction in 
computer vision. Although existing low-light enhancement techniques have made some 
progress, they still have limitations in processing complex scenes and maintaining image 
details. To handle these challenges, this paper introduces an approach on account of an 
improved Retinex-Net and attention mechanism. Our approach combines the retinex 
theory with Squeeze-and-Excitation Networks (SENet) and the total variance (tvloss) loss 
function to enhance the quality of low-light images. Comparative experiments were 
conducted on the LOL dataset, and the results of the experiments confirm that our proposed 
improved model provides significant improvements in peak signal-to-noise ratio (PSNR), 
structural similarity index (SSIM), and subjective visual performance compared to the 
original Retinex-Net model. Ablation experiments were executed to analyze the role of 
each module in the proposed method individually.  The empirical evidence supports the 
functionality of each module within the algorithm and the advancement of the overall 
method.  
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1 Introduction 

Vision is an important sense for human beings to explore and understand the external world, 
and images, as the main carrier of visual information, contain rich environmental details. 
However, in the real world, owing to variables including visual presentation strategies or 
insufficient background light, the images we acquire are often dark, which not only reduces the 
aesthetics of the images, but also affects the execution of the subsequent computer vision tasks, 
including object tracking, image categorization, and semantic segmentation, etc [1]. In order to 
reveal illegible details under low-light conditions and advance the operation of computer vision 
systems, it is significant to propose a solution for improving the overall quality of images in 
low-light scenarios. 

The approaches in this area can primarily be divided into conventional techniques and those 
utilizing deep learning and neural networks. Among the traditional methods, low-light image 
enhancement techniques chiefly encompass histogram equalization based methods [2] and 
gamma correction based methods [3].M. Abdullah-Al-Wadud et al. proposed an intelligent 
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contrast enhancement technique based on the traditional histogram equalization algorithm [4] 
in 2007.This technique is known as Dynamic Histogram Equalization, which can enhance image 
contrast without loss of image details by controlling the traditional histogram equalization, it 
can enhance the contrast of an image without loss of image details.Jeon Jong Ju et al. proposed 
a model for low-light image enhancement using gamma correction in a mixed color space [5], 
and also proposed a pixel-adaptive gamma determination algorithm to prevent under-
enhancement or over-enhancement. The advantage of this method is that it does not require a 
training or refinement process and therefore is fast. In addition to this, methods based on retinex 
theory [6-8] decompose color images into reflectance and illuminance and use the principle of 
color constancy to recover low-quality pictures. 

The progress in deep learning has established deep learning-oriented methods such as CNN and 
GAN as the new frontier in image enhancement. In 2017, Li Tao, Chuang Zhu et al. proposed 
the LLCNN [9] neural network based on CNN. The architecture design of LLCNN allows 
learning multi-scale feature maps and effectively avoids the problem of gradient vanishing 
during training. The CNN-based Zero-DCE neural network [10], proposed in 2020, is a novel 
reference-free method to improve the quality of low-light images without pairwise training data. 
MBLLEN [11], a deep learning method for low-light image and video enhancement, was 
initially proposed in a paper in 2018, and the method improves image quality by utilizing a 
multi-branch network structure to extract features at different levels. EnlightenGAN [12] is an 
unsupervised generative adversarial network whose network structure mainly consists of a U-
Net generator with a self-attention mechanism and a pair of global-local discriminators. In 
addition, EnlightenGAN employs a self-feature preservation loss to guide the training process, 
allowing it to preserve texture and structure information. These neural network-based, deep 
learning methods can substantially improve the vividness and contrast of images with 
insufficient light by learning the deeper features of an image, and can even produce visually 
realistic images. In this context, Wei et al. from Peking University proposed the novel image 
processing network of Retinex-Net [13-15] in 2018, which, as an innovative framework 
combining retinex theory and deep convolutional neural networks, significantly improves the 
quality of images in low-brightness environments through its unique decomposition and 
augmentation network structure. However, the network is not designed with a unique structure 
in terms of feature extraction, which sometimes results in a less adaptive network that struggles 
to extract features adequately. Looking ahead, continued optimization and research will further 
enhance the performance of Retinex-Net and expand the boundaries of its applications in image 
enhancement. 

To sum up, we put forward a method for enhancing images in dark settings, which leverages 
retinex theory and attention mechanism. By harnessing the interpretability of retinex theory and 
the feature extraction proficiency of attention mechanisms, the model can capture more salient 
features and attain more pronounced image enhancement. 

Traditional low-light image enhancement techniques share the advantage of not requiring 
additional training data, which makes them efficient for real-time applications. However, they 
tend to be less efficient when processing large images due to increased computational demands. 
Models like MBLLEN and LLCNN excel at learning multi-scale features, enabling them to 
capture a rich tapestry of image details. Yet, their effectiveness is contingent upon the quality 
and diversity of the training data. Zero-DCE employs a lightweight DCE-Net architecture that 
is not only parameter-frugal but also computationally efficient, yet it may struggle with images 



 

 

featuring uneven illumination. Retinex-Net stands out as an end-to-end trainable network, 
capable of directly extracting and learning useful features from data. However, it can amplify 
noise in the darker regions of the image post-reflection component extraction, potentially 
degrading image quality. Building upon Retinex-Net, the new model incorporates SENet and 
tvloss to further enhance its capabilities. SENet directs the network's focus towards prominent 
image features while downplaying the insignificant ones, thereby refining the enhancement of 
details and overall image quality. Meanwhile, tvloss promotes spatial smoothness in the output 
images, aiding in the suppression of noise and contributing to cleaner, more polished low-light 
imagery. 

2 Method 

The new model proposed by us takes Retinex-Net as the basic architecture, integrates SENet's 
attention mechanism into the convolutional layer and introduces tvloss during the training 
process. The flowchart is depicted below: 

 
Fig. 1. Framework diagram of the new model 

2.1 Retinex Theory 

Retinex theory is a theory of visual perception originally proposed by American scientist Edwin 
H. Land in 1963. Under the retinex framework, the intensity of each pixel in an image is largely 
governed by the light intensity hitting the object, while the object's own reflective properties 



 

 

define the intrinsic properties of the image. This implies that the image perceived is 
fundamentally the result of light reflected from an object under particular lighting conditions. 
From this perspective, an image can be decomposed into two parts: one part is the reflective 
properties of the object, and the other part is the lighting conditions of the environment. The 
formula for the expression mentioned above is: 

 𝑆(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) × 𝐼(𝑥, 𝑦) (1) 

Where S(x, y) represents the color image at a particular location (x, y), R(x, y) represents the 
reflected component at the same location and I(x, y) represents the illuminated component 
which are combined together by pixel-by-pixel multiplication. 

Reflectance represents a stable property of an object that remains the same regardless of lighting 
variations. Lighting conditions, on the other hand, determine the degree of lightness and 
darkness on various parts of an object's surface. In poorly lit images, objects can often be seen 
to exhibit darker tones and uneven lighting effects. 

For this purpose, the process of enhancing dark light pictures by retinex theory is mainly as 
follows: 

(1) Decompose the input low-light image S Decompose it into a light image I and reflection 
image R 

(2) The reflection image R After processing such as denoising and detail enhancement, the light 
image I is corrected to improve the visual clarity and quality of the image to obtain the adjusted 
reflection image 𝑅!  and the illumination image 𝐼!  The adjusted reflection image and 
illumination image are obtained: 

 𝑅! = 𝑁𝑒𝑡(𝑅), 𝐼! = 𝑁𝑒𝑡(𝐼) (2) 

Where Net stands for the corresponding network process of luminance adjustment and denoising. 

(3) The final enhanced image is obtained by fusing the adjusted light image with the recovered 
reflection image 𝑆! : 

 𝑆! = 𝑚𝑒𝑟𝑔𝑒(𝐼!, 𝑅!) (3) 

2.2 Attention mechanisms 

One of the most significant concepts in deep learning is the attention mechanism, which is based 
on the human biological system. Attention mechanisms can help us filter out irrelevant or 
useless information and focus on important stimuli, tasks or goals. The attention mechanism 
used in this paper is Squeeze-and-Excitation Networks abbreviated as SENet [16], which is a 
new network structure proposed by Momenta and Jie Hu et al. The working principle of SENet 
is to automatically obtain the importance of each feature channel by learning, and in light of this 
importance to foster the significant features and oppress the insignificant ones for the current 
task. SENet network structure has two key operations: Squeeze and Excitation. 

(1) Squeeze: this step compresses the feature map into a single channel descriptor by Global 
Average Pooling, which compresses the spatial dimensions of each channel of the feature map 
U to obtain a global feature vector z of length C. The formula is as follows:  
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where uc is the cth channel in the feature map U, W and H are the width and height of the feature 
map, respectively, and zc is the cth element in the global feature vector. 

With the above operation, the information from each channel is aggregated to form a real 
number that can characterize the global feature response. This descriptor encompasses the 
information from the network's expansive receptive field, making the global receptive field 
available even to layers close to the input layer. 

(2) Excitation: the excitation operation is implemented through two fully connected (FC) layers 
with the aim of learning the importance weights of each channel. First, z is reduced from C-
dimension to C/r-dimension (where r is the scaling parameter) through the first FC layer, then 
the function is activated through ReLU, and then the dimension is upgraded from C/r back to 
C-dimension through the second FC layer, and finally the weight s is obtained through the 
sigmoid function. the formula is as follows: 

 𝑠" = 𝜎(𝑊+𝛿(𝑊(𝑧)) (5) 

where W1 and W2 are the weights of the fully connected layer, δ is the ReLU activation function, 
σ is the sigmoid activation function, and sc is the cth element of the output weight vector. Finally, 
each channel of the original feature map is multiplied by its corresponding weight sc to obtain 
the feature map after SE block processing. The formula is as follows: 

 𝑥@" = 𝐹#",-.(𝑢" , 𝑠") = 𝑠" ∙ 𝑢" (6) 

where xc is the cth channel of the output feature map after SE block processing and uc is the cth 
channel of the input feature map. With the Excitation module, SENet is able to explicitly model 
the interrelationships between the feature channels instead of implicitly capturing these 
relationships through a convolutional neural network, as in the case of traditional convolutional 
neural networks. filter to capture these relationships. 

3 Experiment 

3.1 Experimental environment 

The tests were processed on a laptop containing an NVIDIA GeForce RTX 3060 Laptop GPU, 
and all experiments were programmed in a Python 3.9.19 environment, using the Pytorch 
architecture 1.12.0 for the deep learning tasks, and Pycharm Community Edition 2020.1.3 x64 
developed as an integrated development environment. 

3.2 Dataset and training details 

The training set for this experiment consists of 485 pairs of real scene image pairs from the LOL 
dataset [13] and 1000 pairs of synthesized images, and the test set consists of the remaining 15 
pairs of images from the LOL dataset. 



 

 

 
Fig. 2. Two pairs of datasets in the LOL dataset 

 
Fig. 3. Two pairs of datasets in synthesize low-light images 

In the training process, the network is trained using stochastic gradient descent (SGD) with an 
initial learning rate set to 0.001, adjusting the learning rate to one-tenth of the initial learning 
rate from the 21st epoch onwards, with the batch_size size set to 16 and the patch_size size set 
to 96 × 96. 



 

 

3.3 Evaluation indicators 

The evaluation metrics used in this experiment are PSNR and SSIM.The formulae for PSNR 
and SSIM are as follows: 

 𝑃𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔(/(
𝑀𝐴𝑋(
√𝑀𝑆𝐸

)  (7) 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇0𝜇1 + 𝑐()(2𝜎01 + 𝑐+)

(𝜇0+ + 𝜇1+ + 𝑐1)(𝜎0+ + 𝜎1+ + 𝑐+)
 (8) 

where MAXI is the image's top pixel value. μx and μy are the mean of the image x and y, 
respectively, σx and σy are the standard deviation of the image x and y, respectively, and σxy 
is the covariance of the image x and y, respectively. C1, C2 and C3 are constants used to 
maintain stability. Among them, PSNR (Peak Signal-to-Noise Ratio) is a pixel-based image 
quality assessment index, which measures the image quality by comparing the mean square 
error (MSE) between the original image and the distorted image, and the higher the value of 
PSNR, the better the quality of the image, and the smaller the distortion.SSIM (Structural 
Similarity Index (SSIM) is a kind of image quality assessment index that is more in line with 
the visual characteristics of the human eye, which evaluates image similarity by assessing the 
luminance, contrast, and structural details of two images, with scores ranging from 0 to 1, where 
a score closer to 1 indicates greater image similarity. 

3.4 Comparative experiments 

Qualitative analysis. The difference in image enhancement between the improved method and 
the original Retinex-Net method is first demonstrated through visual comparison. Figure 3.3 
shows a set of enhanced image comparisons. 

 
Fig. 4. Comparison of the enhanced images of the two methods, with the original method on the left and 
our method on the right 

As shown in the figure, our improved method is notably better at enhancing image details and 
contrast, and is more capable of restoring the image's natural color and detail level. 



 

 

Quantitative analysis. Table 3.1 demonstrates the comparison of our method with the original 
Retinex-Net method on both PSNR and SSIM metrics. 

Table 1. Comparison of PSNR and SSIM values 

Method PSNR(dB) SSIM 
Retinex-Net 17.5577091000428 0.644808102405132 
Our method 18.3186832929728 0.678646289901253 

 

The table's details confirm that the improved algorithm outperforms the original Retinex-Net 
method in both PSNR and SSIM metrics, which indicates a significant improvement in the 
quality of image enhancement. 

3.5 Ablation experiments 

The experimental results were evaluated under three conditions: using the original Retinex-Net 
model, incorporating SENet, and incorporating both SENet and tvloss. The evaluation measures 
are reported in Table 3.2 herein: 

Table 2. Comparison of PSNR and SSIM values for three experiments 

Method PSNR(dB) SSIM 
Retinex-Net 17.5577091000428 0.644808102405132 
Retinex-Net+SENet 18.0428951203385 0.689933900276609 
Retinex-Net+SENet+tvloss 18.3186832929728 0.678646289901253 
 

The data in the table clearly indicates a significant improvement in PSNR and SSIM values after 
incorporating SENet, with the scores rising to 18.043and 0.690, respectively. However, upon 
the addition of tvloss, although the PSNR value further increased to 18.319, the SSIM value 
experienced a slight decrease, dropping to 0.679. From the comparison images, it can be seen 
that the new model enhances the overall image quality and improves the details, and effectively 
suppresses the noise. 

4 Conclusion 

We present an innovative enhancement of the Retinex-Net model that integrates Squeeze-and-
Excitation Networks (SENet) and total variance (tvloss) loss function for the image 
enhancement problem under low-light conditions. Our approach uses the Retinex-Net network 
as the basic network architecture, inserts the SENet module on top of it to increase the model 
sensing field and fully extract features, and introduces the tvLoss loss function as well to 
optimize the model's training. Experimental results on the LOL dataset show that our method 
outperforms existing low-light image enhancement techniques in terms of objective metrics 
such as PSNR SSIM and subjective visual quality. These results demonstrate the ability of 
SENet to enhance feature representation and the important role of tvloss in reducing artifacts 



 

 

and noise. Subsequent work should focus on studying more complex network structures to 
improve the effectiveness and generality of the model. 
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