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Abstract. Inertial navigation system is widely used in the field of UAV localization, which 
is an autonomous navigation system that does not rely on external information, but in the 
environment of GNSS denial, the measurement errors accumulated by inertial devices over 
time are not corrected, which will lead to a rapid deterioration of the localization accuracy. 
The development of multi-UAV cooperative networking technology and network relative 
navigation has promoted the research of multi-UAV cooperative navigation methods. 
Cooperative navigation can improve the multiplicity of navigation data by introducing the 
distance measurement data between UAVs, and the positioning accuracy can be greatly 
improved by inter-machine information interaction and navigation data fusion. In this 
paper, the extended Kalman filter algorithm is adopted to correct the INS error using the 
distance measurement information between UAVs. The results show that this cooperative 
navigation scheme can significantly improve the navigation accuracy compared with 
inertial navigation. 
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1 Introduction 

In multi-UAV systems, problems such as task allocation and path planning, as well as UAV 
inter-copter communication and cooperative control, further increase the requirement for 
accurate localization information. Single UAVs can utilize a combination of GNSS and INS 
navigation that are complementary in characteristics to improve positioning accuracy. However, 
in complex environments such as cities and valleys, it is difficult for GNSS to obtain accurate 
positioning information. In the environment where GNSS refuses to stop, although INS is not 
affected by external electromagnetic interference, the positioning error grows with time and 
there is a fixed drift rate. Such a navigation system is obviously unable to meet the positioning 
requirements of multi-UAV cooperative operations. 

Compared with a single UAV, the biggest advantage of multi-UAS is that the UAVs can interact 
with each other to improve the positioning accuracy through cooperative navigation. 
Cooperative navigation utilizes information from neighboring UAVs to assist its own navigation, 
which can improve the accuracy and availability of positioning, and can continuously provide 
positioning information even in complex environments. Cooperative navigation system 
introduces mutual observation between UAVs and establishes a link between the sensor 
information of UAVs through information interaction, which can effectively reduce the 
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uncertainty of UAV positioning data; through data fusion algorithms, the use of multiple sets of 
sensor data can greatly improve the overall positioning accuracy. 

To address these issues, in this paper, we consider the design of a cooperative navigation 
algorithm for INS and inter-aircraft ranging fusion in a GNSS-denied environment, using an 
extended Kalman filtering algorithm, which is able to efficiently correct the IMU error. The 
main contributions of this paper include: 

• The error state model of inertial navigation and positioning of UAVs and the distance 
measurement model between UAVs are established, the data fusion method of extended 
Kalman filtering is deduced, and the error state of UAVs and inter-aircraft distance 
measurement are mathematically described.  

• Based on the positioning data of inertial navigation and introducing the inter-aircraft distance 
measurement data of network relative positioning, a cooperative navigation scheme based 
on the fusion of inertial navigation and network relative positioning is designed and verified 
by using the extended Kalman filter algorithm, and the structure of the estimation time slice 
and navigation time slot is designed. 

• The effectiveness of the cooperative navigation algorithm is verified by simulated flights of 
small dual UAV formations and multi-UAV formations, and the main factors affecting the 
cooperative navigation accuracy of UAVs are analyzed, including the inertial guidance 
positioning accuracy as well as the inter-aircraft ranging accuracy of network relative 
positioning. 

2 Related work 

It is a common practice to fuse inertial navigation with other sensors to improve positioning 
accuracy, and the main sensors used today include GNSS and optical devices. Fusion of INS 
and GNSS through adaptive robust Kalman filtering algorithms can improve the positioning 
accuracy and robustness of navigation systems [1]. Different approaches also use monocular 
cameras and visual inertial odometers [2, 3]. The latest research enables collaborative navigation 
through distance measurements via datalinks between UAVs. There is a wireless sensor network 
based navigation scheme that uses EKF to estimate the position and velocity errors of inertial 
navigation, which can reduce the errors by more than 90%. Network relative positioning is 
achieved by creating a wireless self-organising network between UAVs, which can be used for 
communication as well as navigation. For multi-UAV formations, the use of network relative 
positioning techniques is a cheaper and more efficient option compared to cameras. 

The measurements of a network relative positioning system are generally distance values. Both 
camera-based and radio-based ranging methods are available. Camera solutions are mainly used 
in areas such as automotive pedestrian detection. There is a programme based on the 
triangulation principle of ranging using a binocular camera, and the results show that the error 
is less than 2.5% in the measurement range of 40cm to 200m [4]. The use of radio ranging is a 
more affordable option. A team added UWB devices to the inertial navigation system, and used 
bilateral bidirectional ranging method to measure the ranging data of each node, with a 
measurement error of less than 1%, which effectively improved the positioning accuracy of the 
UAV. Another team used Zigbee for ranging, which solves the propagation distance by 



 

 

measuring the strength of the transceiver signal, allowing Zigbee to provide redundancy for 
UWB ranging while communicating. 

Cooperative navigation technology requires the fusion of global data from UAVs, and the fusion 
algorithms are mainly divided into three categories. The first is the collaborative algorithm 
based on optimisation theory, including maximum likelihood estimation and least squares 
method [5, 6]. The second is the collaborative algorithm based on graph theory, including factor 
graph method and joint tree method [7, 8]. The last is the collaborative algorithm based on 
Bayesian filtering, including Kalman filtering, particle filtering method and so on. 

Cooperative navigation algorithms based on Bayesian filtering are one of the most commonly 
used methods. The programme [9] verified the performance of underwater vehicle positioning 
using Kalman filter and particle filter, and the extended Kalman filter is more efficient than 
particle filter in terms of computational efficiency, and better compared to the least squares 
method. Another scheme is based on the extended Kalman filter method to achieve UAV cluster 
Cooperative navigation in GNSS denial environment. The scheme establishes a state model and 
a measurement model for multi-UAV system, and the state estimation of positioning error is 
performed by high-dimensional extended Kalman filtering. 

3 Method 

In this paper, we propose a cooperative navigation scheme based on INS and network relative 
positioning for the GNSS denial environment. As shown in figure 1, a UAS is divided into a 
main aircraft and a wingman, and the main aircraft and the wingman are connected to each other 
through a self-organising network. Considering the cost factor, a small number of UAVs 
carrying high-precision INS as the long-haul aircraft have good positioning performance; the 
rest of the UAVs carrying low-accuracy INS as the wingmen have poor positioning performance. 

 
Fig. 1. Multi-UAV cooperative navigation. 

3.1 Estimated time-slice and time-slot arrangements 

The drones are connected to each other through a data link. During flight, the UAVs can pass 
information to each other and to neighbouring UAVs through the data chain for fusion and 
optimisation of navigation information. Some time slots in the data chain are used as navigation 
time slots to transmit navigation information and identification information. The message 
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structure is shown in figure 2, including its own inertial guidance positioning information and 
the ranging information of neighbouring UAVs. The UAV can identify the sync head, extract 
navigation information from it, and then use this information to optimally estimate its own 
position. 

 
Fig. 2. Navigational information architecture. 

The architecture of the algorithm is distributed, with each UAV running its own cooperative 
navigation algorithm. The algorithm execution time is assumed to be a time slice, and the 
positioning error of the INS is assumed to be constant in each time interval. As shown in figure 
3, each time slice includes multiple navigation time slots, and the UAVs interact with the 
navigation information on the corresponding time slots. 

 
Fig. 3. Estimated time slice. 

As an example, a four-unmanned aircraft system is shown in figure 4. An estimated time slice 
is 500ms and the data fusion algorithm is executed once per time slice. Each of these time slices 
has four navigation time slots, and the four UAVs performing cooperative navigation propagate 
their position information in the navigation time slots in turn. The propagation delay can be 
calculated from the message timestamps. 

 
Fig. 4. Navigation time slots. 
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3.2 Relative positioning of networks 

Distance measurements can be made via inter-aircraft data links when UAVs are networked 
with each other. Commonly used wireless sensor network ranging methods are Received Signal 
Strength Indication (RSSI) ranging method and Time of Arrival (TOA) ranging method. The 
RSSI ranging method solves the distance between two nodes by measuring the signal strength 
received by a node, calculating the loss in the propagation process based on the signal strength 
of the sending node, and substituting into the propagation loss model. Although the RSSI 
method has the characteristics of low cost and low power consumption, its results are very 
susceptible to environmental effects, the error is usually close to 50%, and is not applicable to 
scenarios with high accuracy requirements. TOA ranging method relies on the measurement of 
the signal propagation time, multiplied by the speed of light to get the distance between nodes. 

We use the Single Side - Two Way Ranging method for ranging. This method does not require 
clock synchronisation and reduces the error generated by the measurement. It is known that 
node A sends a message to node B at the moment of 𝑇!", node B receives the message at the 
moment of 𝑇#$, and after a time delay of  𝑇%, sends a message to node A at the moment of 𝑇!$, 
and node A receives it at the moment of 𝑇#", the following equation can be established: 

  (1) 

The one-way signal propagation time can be calculated: 

  (2) 

  (3) 

3.3 System modelling 

Inter-UAV distances were measured through network relative positioning and navigation 
information was interacted. The INS positioning error of each UAV is the state quantity, and 
the difference between the inter-aircraft distance value measured by INS and the distance value 
measured by relative positioning through the network is used as the measurement value in order 
to estimate the positioning error of each UAV. The system block diagram of the fusion algorithm 
is shown in figure 5. 
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Fig. 5. Data fusion process.  

In order to simulate the real UAV trajectory, the UAV motion model is firstly established, and 
the random acceleration perturbation is added to simulate the environmental disturbances 
encountered during the actual UAV flight. It is assumed that the state quantity of the UAV 
motion system is 𝑅(𝑘) = '𝑥(𝑘), 𝑣&(𝑘), 𝑦(𝑘), 𝑣'(𝑘), 𝑧(𝑘), 𝑣((𝑘)-

)
 , including the position and 

velocity in the 𝑥𝑦𝑧 direction. Assuming that the UAV is subjected to a random perturbation 
during the motion process, the motion system can be expressed as: 

  (4) 

Updated equations for the state of motion of a UAV: 

  (5) 
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 ,  (6) 

The extended Kalman filter is used to estimate the inertial guidance position error in real time 
and the state variable 𝑋(𝑘) is the inertial navigation output error: 

  (7) 

The equation includes the position error /𝛥𝑥(𝑘), 𝛥𝑦(𝑘), 𝛥𝑧(𝑘)1  and velocity error 
2𝛥𝑣&(𝑘), 𝛥𝑣'(𝑘), 𝛥𝑣((𝑘)3 in the 𝑥𝑦𝑧 direction. ℎ(∗) is a function of the measurement equation 
that represents the relationship between the measured value and the state value. 𝛷 is the UAV 
state transfer matrix. The state model and measurement model of any ith UAV in a multi-UAV 
cooperative system is: 

 ,  (8) 

  (9) 

𝜛(𝑘) represents the error caused by the angular rate and ratio measurement errors on the 
position update during each INS data update, which belongs to the process noise and leads to 
the accumulation of the UAV's positioning error over time. The position drift error of the inertial 
guidance obeys a normal distribution, 𝜛(𝑘)~𝑁(0, 𝑄) , 𝑄 = 𝑑𝑖𝑎𝑔/𝜎&*, 𝜎'*, 𝜎(*1 . 𝜀(𝑘) represents 
the error value of the input measurement data. The error due to the clock accuracy of the UAV 
ranging process is set to follow a normal distribution, 𝜀(𝑘)~𝑁(0, 𝑅)  . 𝜛(𝑘)  and 𝜀(𝑘)  are 
independent of each other. 

3.4 Fusion algorithm 

Let the INS measurements of any two UAVs 𝑖  and 𝑗  at the moment of 𝑘  be 𝑅+,-_+(𝑘) =
(𝑥+(𝑘), 𝑦+(𝑘), 𝑧+(𝑘))  and 𝑅+,-_/(𝑘) = /𝑥/(𝑘), 𝑦/(𝑘), 𝑧/(𝑘)1  , and based on the two data the 
calculated distance value 𝐷+0/#12 between UAVs 𝑖 and 𝑗 can be calculated: 
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  (10) 

The two UAVs get the distance value 𝐷+0/)!"  by TOA measurement . For UAV 𝑖  , the 
measurements are 𝑍(𝑘) = 𝐷+0/#12 −𝐷+0/)!" : 

  (11) 

In a filtering cycle, the initial value of the filtered state 𝑋(0) and the error covariance matrix 𝑃% 
represent the level of confidence in the initial value of the filter, assuming that it is not possible 
to determine the state of the system at the start of the filtering, 𝑋(0) is an arbitrary constant, and 
𝑃% is a unit matrix. A one-step prediction 𝑋(𝑘 − 1) based on the state 𝑋(𝑘|𝑘 − 1) is obtained 
through the state transfer equation: 

  (12) 

The prediction 𝑃(𝑘|𝑘 − 1) of the covariance matrix 𝑃(𝑘 − 1) is obtained from the variance 𝑄 
of the INS localisation error 𝜛(𝑘) and the state transfer matrix 𝛷, which represents the quality 
of the state prediction: 

  (13) 

From the relationship ℎ(∗) between state and measure, the measure predictor 𝑍(𝑘|𝑘 − 1) can 
be obtained from the state predictor: 

  (14) 

The observation equations were linearised using the linearisation method, which expands the 
non-linear measurement equation 𝑍(𝑘) into a Taylor series and retains only the first order to 
obtain the Jacobi matrix: 

  (15) 

Based on the Jacobi matrix 𝐻(𝑘), the variance of the measurement error generated by the TOA 
ranging 𝑅 , and the prediction covariance matrix 𝑃(𝑘|𝑘 − 1) , one can obtain the extended 
Kalman gain 𝐾. 
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  (16) 

The positioning error 𝑄 and the measurement error 𝑅 affect the weights of the predicted and 
measured values 𝑋(𝑘|𝑘 − 1) and 𝑍(𝑘) by affecting the extended Kalman gain 𝐾: 

  (17) 

The result of this filtering can be obtained through (17), which uses 𝑋(𝑘) to correct the inertial 
guidance positioning error of the UAV to obtain the filtered positioning value 𝑅345_+(𝑘): 

  (18) 

Finally the covariance matrix is updated in preparation for the next filtering iteration: 

  (19) 

4 Experiments and results 

Simulation experiments are conducted in two scenarios. The first scenario is for a two-aircraft 
formation consisting of a leader and a wingman, which is used to verify the effectiveness of the 
algorithm and the influence of the ranging information on the navigation accuracy; the second 
scenario is for a simplified multi-UAV formation model to study the cooperative navigation of 
multiple UAVs. The height difference between UAVs is ignored in the simulation and converted 
into a planar positioning problem. Both scenarios are simulated for 100s. 

A leader carrying a high-precision INS and a wingman carrying a low-accuracy INS form a two-
aircraft formation in a uniform motion. The simulation results are shown in figure 6 and 7. It 
can be seen that the INS positioning data gradually diverges with time, the INS trajectory drifts 
compared with the real trajectory, and the navigation accuracy gradually decreases. After the 
introduction of network relative positioning, It can be seen that the estimated trajectory 
converges to the real trajectory, which greatly improves the navigation accuracy. Comparing 
with figure 7, it can be seen that the positioning error gradually disperses when only relying on 
INS for navigation, and the offset error reaches 6 m after 100 s. After the error correction by 
cooperative navigation, the dispersion of inertial error is suppressed, and the positioning error 
of cooperative navigation is less than 0.5 m, and the navigation effect is improved by more than 
90%. 
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Fig. 6. Simulation trajectory. 

 
Fig. 7. Positioning error comparison. 

As shown in figure 8, two hosts carrying high-precision inertial guidance equipment and three 
wingmen carrying low-precision inertial guidance equipment form a five-UAV one-word 
formation, and the communication range of each UAV. 

 
Fig. 8. UAV formation structure. 

Wingman 3 can co- navigate with the other four UAVs at the same time, wingman 4 can co- 
navigate with host 2, wingmen 3 and 5, and wingman 5 can co- navigate with wingman 3 and 
wingman 4. All five UAVs move in a uniform linear motion in a due east direction.  

The five UAVs form a formation flying in an eastward direction at a uniform speed, and the 
simulation results are shown in figures 9 and 10. From figure 9, we can see that all three 
wingmen's cooperative navigation trajectories have achieved convergence, and wingman 5 has 

!

!

"

"
"

# $ % &

'(

)(

*+
,-

!"#$%&"D(F
D*F+,"-.&

L$01$#
2"(-30(



 

 

relatively slow convergence; from figure 10, we can see that wingmen 3 and 4, which have 
cooperative navigation with the leader, do not have much positioning error, and wingman 5, 
which does not have cooperative navigation, has a relatively large error. 

 
Fig. 9. Comparison of navigation tracks. 

 
Fig. 10. Positioning error comparison. 

According to the results of simulation experiments, cooperative navigation based on the fusion 
of inertial navigation and network relative positioning can improve navigation accuracy through 
information interaction between multiple UAVs. 

Table 1. Comparison of wingman positioning errors. 

 Number of connected leaders/wingmans Cooperative navigation  
average positioning error 

Wingman3 2/2 0.213m 
Wingman4 1/2 0.195m 
Wingman5 0/2 0.450m 

5 Conclusions 

This paper firstly investigates the current research status of cooperative navigation, and 
summarises the research background and significance. The collaborative navigation scheme for 
fusion of inertial guidance and network relative positioning is studied and designed, including 
error estimation time slice and time slot arrangement. The network relative positioning scheme 
adopts SS-TWR ranging method for inter-computer distance measurement, and the fusion of 
inertial guidance and network relative positioning is carried out by extended Kalman filtering. 



 

 

Next, the fusion algorithm is designed to estimate the inertial guidance drift error from the inter-
computer distance measurements of network relative positioning. Then the effectiveness of the 
cooperative navigation algorithm is verified through simulation experiments, and the influence 
factors of cooperative navigation accuracy are analysed. Cooperative navigation can correct the 
drift error of inertial navigation and improve the navigation accuracy, which is mainly affected 
by the inertial guidance positioning error and the network relative positioning range 
measurement error. 
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