
Document Image Enhancement with Perspective
Transformation using Python

Indra Bayu Muktyas1, Nerru Pranuta Murnaka2, Samsul Arifin3, Wikky Fawwaz Al Maki4

{indrabayu.muktyas@stkipsurya.ac.id1, nerru.pranuta@stkipsurya.ac.id2,
samsul.arifin@binus.edu3, wikkyfawwaz@telkomuniversity.ac.id4}

1,2STKIP Surya, Tangerang, Indonesia, 3Binus University, Jakarta, Indonesia,

4Telkom University, Bandung, Indonesia

Abstract. Many people need soft files of their important documents. One of the
technological sophistications that are currently developing is to use a smartphone camera
to photograph a document. However, the results from the photo are not like the results with
a precision-shaped scanner. Based on this, we developed a program that can improve the
quality of a distorted (imprecise) document image to become a scanned-like rectangle
image. In addition, the purpose of this study is to find out some of the mathematical
theories behind it. The method we use is a literature study on line gradients, perspective
transformations, and central tendency. Then we apply it to the python program. The results
of this study are gradients can be used to determine the boundaries of the rectangular area
of the document image. The perspective transformation can be used to change a shape from
an arbitrary quadrangle to a rectangle. Central tendency (mean, median, and mode) can be
used to fill in the gaps in the perspective transformed image.

Keywords: scanline, gradient line, perspective transformation, measure of central
tendency, python

1 Introduction

Image of the obtained document from the camera no like the picture scan results. Picture not
truly seen from the top. Documents in the form of rectangles are long often seen, as side four
anything that doesn't have precision. Repairing picture documents to form rectangles long can
be done from a transformation perspective. Pictures that can be transformed by transformation
perspective must be in the form of a flat image. Some research about repair distortion images
with a transformation perspective was conducted by [1], [2]. In research, the transformation
perspective is still written in general, with less detail on how the process the math.

Transformation perspective is also used in other things, one of them is on data augmentation
for object detection [3]. With a transformation perspective, some pictures could be put together
and become a panoramic image. This has been done in [4].

In this paper, improved picture documents will be written with angle look draft mathematics
basics, including line gradient transform perspective, and measures of central tendency. The
gradient is used to find out the dot, dot, dot corner from the picture document. Next will be used
in the scanline method to detect special only areas rectangular from the document. Every point
in the area then changed Becomes shaped rectangle long with a transformation perspective.

ICEHHA 2022, October 21-22, Ruteng, Indonesia
Copyright © 2023 EAI
DOI 10.4108/eai.21-10-2022.2329633

mailto:wikkyfawwaz@telkomuniversity.ac.id4

There are some holes in the picture results of the transformation. It is filled by utilizing theory
measures of central tendency, namely mean, median, and mode.

2 Method and Materials

In this section, we will study about scanline, perspective transform, find and fill the blank
pixels, and their implementation in python.

2.1 Scanline method

Document image can be seen as quadrangle. We know the coordinate of points A, B, C, and
D. We can see in the Figure 1.

Fig. 1. Region of picture document

To determine the location from pixels only in area of quadrangle, we can use the scanline

[5]. We start scanning from the y value at the top pixel (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), to the y value at the bottom pixel
(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚). Because the shape of the quadrangle is arbitrary, then we first order the vertices of A,
B, C, and D based on their y value. Create a dividing line, that is dotted line, the point next to
left from the topmost point and the point next to right or equal to the topmost point. The amount
of possibility from the arrangement of the dots below top point is 23 = 8. Several possibilities
from quadrangle could see in Figure 2.

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = y(A) A

B
C

D

Left margin
point

Right margin
point

scanline 𝑦𝑦 = 𝑐𝑐𝑚𝑚

y(D)

y(B)

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = y(C)

Right, right, right Right, right, left Right, left, right Right, left, left

Left, right, right Left, right, left Left, left, right Left, left, left

Fig. 2. Possibility arrangement of the points below the top point.

After that, each set our defined gradient of the line through the topmost point (i.e. A) with each
point other. The gradient of the line through two points A and B are [6]

𝑚𝑚 =

𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴)
𝑥𝑥(𝐵𝐵) − 𝑥𝑥(𝐴𝐴) (1)

Together with the topmost point, the points next to the left will produce a gradient marked
negative, while the dots next to right will produce a positive gradient. The gradient value from
each set is then sorted by decreased (big to small). After the point is sorted by descending order
based on gradient, combine the second set to set left more first, then set right. An illustration
could be seen in Figure 3.

r

r
r

r

r

l

l

r

r

l

l

r

l
r

r

l

l

r

l

l

r

l

l

l

D C

B

A
D

C
B

A

D

C

B

A

D

C

B

A

[𝑚𝑚1 > 𝑚𝑚2 > 𝑚𝑚3] +
[]

[B, C, D] + [] = [B,
C, D]

[𝑚𝑚1] + [𝑚𝑚2 > 𝑚𝑚3]
[B] + [C, D] = [B, C, D]

[𝑚𝑚1 > 𝑚𝑚2] + [𝑚𝑚3]
[B, C] + [D] = [B, C, D]

[] + [𝑚𝑚1 > 𝑚𝑚2 > 𝑚𝑚3]
[] + [B, C, D] = [B, C, D]

Fig. 3. Formation combined set order

The points corresponding to the sides left are determined by taking the points in the set
combined from the adjacent left, while the points corresponding to the sides right are determined
by taking the points in the set combined from the adjacent right. Next these points will become
limit left and limit right on the scanline. For example, if the set combined is [B, C, D] then the
side left starts from the far left point, i.e. B, while the side right started from the rightmost point,
which is D. We draw a line 𝑦𝑦 = 𝑐𝑐𝑚𝑚for 𝑦𝑦(𝐴𝐴) ≤ 𝑐𝑐𝑚𝑚 ≤ 𝑦𝑦(𝐶𝐶). Next, we determine the left and right
boundaries right. The left border is score x from point cut Among side left, i.e. the line through
points A and B and the line 𝑦𝑦 = 𝑐𝑐𝑚𝑚 . The line that passes through points A and B can be found
by

𝑦𝑦 − 𝑦𝑦(𝐴𝐴)

𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴) =
𝑥𝑥 − 𝑥𝑥(𝐴𝐴)

𝑥𝑥(𝐵𝐵) − 𝑥𝑥(𝐴𝐴) (2)

We substitute 𝑦𝑦 = 𝑐𝑐𝑚𝑚 into the equation, and we get

𝑐𝑐𝑚𝑚 − 𝑦𝑦(𝐴𝐴)

𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴) =
𝑥𝑥𝑘𝑘𝑚𝑚𝑘𝑘𝑚𝑚 − 𝑥𝑥(𝐴𝐴)
𝑥𝑥(𝐵𝐵) − 𝑥𝑥(𝐴𝐴) (3)

 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
�𝑐𝑐𝑚𝑚 − 𝑦𝑦(𝐴𝐴)� ⋅ �𝑥𝑥(𝐵𝐵) − 𝑥𝑥(𝐴𝐴)�

𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴) + 𝑥𝑥(𝐴𝐴) (4)

In the same way, the limit right is

 𝑥𝑥𝑘𝑘𝑚𝑚𝑟𝑟ℎ𝑙𝑙 =
�𝑐𝑐𝑚𝑚 − 𝑦𝑦(𝐷𝐷)� ⋅ �𝑥𝑥(𝐶𝐶) − 𝑥𝑥(𝐷𝐷)�

𝑦𝑦(𝐶𝐶) − 𝑦𝑦(𝐷𝐷) + 𝑥𝑥(𝐷𝐷) (5)

More goes on, actually limit left is determined by the intersection side left and line 𝑦𝑦 = 𝑐𝑐𝑚𝑚.

When 𝑐𝑐𝑚𝑚 ≤ 𝑦𝑦(𝐵𝐵), the line segment used is AB, while for 𝑐𝑐𝑚𝑚 > 𝑦𝑦(𝐵𝐵), the line segment is used in
BC. Likewise for the right border. At this time 𝑐𝑐𝑚𝑚 ≤ 𝑦𝑦(𝐷𝐷), the line segment used is AD, while
𝑐𝑐𝑚𝑚 > 𝑦𝑦(𝐷𝐷) the line segment used is DC. After the limit left and limit right are known, next stay
our map the pixels from (𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑐𝑐𝑚𝑚) until (𝑥𝑥𝑘𝑘𝑚𝑚𝑟𝑟ℎ𝑙𝑙 , 𝑐𝑐𝑚𝑚). And that is done from 𝑦𝑦 = 𝑦𝑦(𝐴𝐴) until 𝑦𝑦 =

D C

B

A
m1

m2
m3

D

C

B

A

m1
m2

m3

D

C

B

A
m1

m2

m3

D

C

B

A
m1

m2

m3

𝑦𝑦(𝐶𝐶). Because the scanline method sort the corner point based on y, then no matter the order of
4 corner points, the area of quadrangle will by appropriate detected.

2.2. Perspective transformation

It deals with homogeneous coordinates. At homogeneous coordinates, the point is
symbolized by a tuple of 3 numbers, namely (xh, yh, wh). Every point in coordinates cartesian
could be changed to homogeneous coordinates in the way (xc, yc) = (xh/wh, yh/wh). As for
changing the point in coordinates cartesian to in homogeneous coordinates in the way (xh, yh,
wh) = (xc, yc, 1).

The mapping process is done using a matrix transformation-shaped perspective

 𝑀𝑀 = �
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 1

� (6)

Need to be noticed that entry 𝑀𝑀33 = 1. The points in the Cartesian coordinates (x, y) are

converted into homogeneous coordinates (x, y, 1). By matrix multiplication, we get

 �
𝑥𝑥′𝑡𝑡
𝑦𝑦′𝑡𝑡
𝑡𝑡
� = �

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 1

� ⋅ �
𝑥𝑥
𝑦𝑦
1
� (7)

clear that

 𝑥𝑥′ =
𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐
𝑔𝑔𝑥𝑥 + ℎ𝑦𝑦 + 1

, 𝑦𝑦′ =
𝑑𝑑𝑥𝑥 + 𝑒𝑒𝑦𝑦 + 𝑓𝑓
𝑔𝑔𝑥𝑥 + ℎ𝑦𝑦 + 1

 (8)

With a little calculation algebra obtained

 𝑥𝑥′ = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 − 𝑔𝑔𝑥𝑥𝑥𝑥′ − ℎ𝑦𝑦𝑥𝑥′
𝑦𝑦′ = 𝑑𝑑𝑥𝑥 + 𝑒𝑒𝑦𝑦 + 𝑓𝑓 − 𝑔𝑔𝑥𝑥𝑦𝑦′ − ℎ𝑦𝑦𝑦𝑦′ (9)

To search score 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓,𝑔𝑔, and ℎ, it takes four pairs of origins (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) and maps (𝑥𝑥𝑚𝑚′, 𝑦𝑦𝑚𝑚′)
where 𝑖𝑖 = 1,2,3,4. We get the matrix equation

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1′
𝑥𝑥2′
𝑥𝑥3′
𝑥𝑥4′
𝑦𝑦1′
𝑦𝑦2′
𝑦𝑦3′
𝑦𝑦4′ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1 𝑦𝑦1 1 0 0 0 −𝑥𝑥1𝑥𝑥1′ −𝑦𝑦1𝑥𝑥1′
𝑥𝑥2 𝑦𝑦2 1 0 0 0 −𝑥𝑥2𝑥𝑥2′ −𝑦𝑦2𝑥𝑥2′
𝑥𝑥3 𝑦𝑦3 1 0 0 0 −𝑥𝑥3𝑥𝑥3′ −𝑦𝑦3𝑥𝑥3′
𝑥𝑥4 𝑦𝑦4 1 0 0 0 −𝑥𝑥4𝑥𝑥4′ −𝑦𝑦4𝑥𝑥4′
0 0 0 𝑥𝑥1 𝑦𝑦1 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥2 𝑦𝑦2 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥3 𝑦𝑦3 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥4 𝑦𝑦4 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑒𝑒
𝑓𝑓
𝑔𝑔
ℎ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (10)

So, we know the value of a, ..., h by

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1 𝑦𝑦1 1 0 0 0 −𝑥𝑥1𝑥𝑥1′ −𝑦𝑦1𝑥𝑥1′
𝑥𝑥2 𝑦𝑦2 1 0 0 0 −𝑥𝑥2𝑥𝑥2′ −𝑦𝑦2𝑥𝑥2′
𝑥𝑥3 𝑦𝑦3 1 0 0 0 −𝑥𝑥3𝑥𝑥3′ −𝑦𝑦3𝑥𝑥3′
𝑥𝑥4 𝑦𝑦4 1 0 0 0 −𝑥𝑥4𝑥𝑥4′ −𝑦𝑦4𝑥𝑥4′
0 0 0 𝑥𝑥1 𝑦𝑦1 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥2 𝑦𝑦2 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥3 𝑦𝑦3 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′
0 0 0 𝑥𝑥4 𝑦𝑦4 1 −𝑥𝑥1𝑦𝑦1′ −𝑦𝑦1𝑦𝑦1′ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
−1

⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1′
𝑥𝑥2′
𝑥𝑥3′
𝑥𝑥4′
𝑦𝑦1′
𝑦𝑦2′
𝑦𝑦3′
𝑦𝑦4′ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑒𝑒
𝑓𝑓
𝑔𝑔
ℎ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (11)

In detail, the determination matrix perspective could be seen in Algorithm 1.

Algorithm 1. Determination matrix perspective

1 input: 4 dots source, 4 dots destination
2
3

A = []
b = []

4 for i in {0.. len(source)}:
5 xs , ys = source [i]
6 xt , yt = destination [i]
7 A.append ([xs , ys , 1, 0, 0, 0, - xt * xs , - xt * ys])
8 A.append ([0, 0, 0, xs , ys , 1, - yt * xs , - yt * ys])
9 b += [xt , yt]

10 h = solve(A, b)
11 h.append ([1])
12 Output : M = h.reshape((3x3))

2.3 Algorithm push one by one

How to map a dot, a dot, a dot is to multiply matrix transformation perspective with position
point that. If done one by one, then the time required will be longer. This is caused by mapping
conducted pixel by pixel, from the point with the highest y, to the point with the lowest y. Then
in each line, done from the point with x on the boundary left to x at the limit right. Suppose, the
number of pixels in quadrangle area is n, then multiplication matrix 𝑀𝑀 ⋅ �𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑗𝑗 , 1�𝑇𝑇done n times.
Matrix 𝑚𝑚𝑎𝑎𝑚𝑚 is a matrix of 3 × 1, that is 𝑚𝑚𝑎𝑎𝑚𝑚 = [𝑥𝑥′𝑡𝑡,𝑦𝑦′𝑡𝑡, 𝑡𝑡]𝑇𝑇. From here, we can get the x' and
y' coordinates by 𝑥𝑥′ = 𝑚𝑚′𝑙𝑙

𝑙𝑙
= 𝑚𝑚𝑚𝑚𝑚𝑚[1]

𝑚𝑚𝑚𝑚𝑚𝑚[3]
 and 𝑦𝑦 = 𝑦𝑦′𝑙𝑙

𝑙𝑙
= 𝑚𝑚𝑚𝑚𝑚𝑚[2]

𝑚𝑚𝑚𝑚𝑚𝑚[3]
 where 𝑚𝑚𝑎𝑎𝑚𝑚[𝑖𝑖] is the i-th line from

matrix map with i = 1, 2, 3. Overall, push algorithm could be seen in Algorithm 2.

Algorithm 2. Algorithm push 1 (map pixels one by one)

1 Input: g = matrix of document photo
sources = 4 points quadrangle in g

2 h = max(distance(sources[0], sources[1]),
distance(sources[2], sources[3]))

3 w = max(distance(sources[0], sources[3]),
distance(sources[1], sources[2]))

4
5

find the orientation of the paper (portrait or landscape)
if h > w: # portrait

6 w = h / sqrt(2)
7 else: # landscape

8 w = h * sqrt(2)
9 dest = [[0,0], [0,h], [w,h], [w,0]]

10

11
12

m_transformed = [0]* (size=(h, w, number_of_layer (g)))

to detect the "hole"
m_transformed [:,:, 0] = [-1]

13 M = perspective_ matrix (sources, dest) # use Algorithm 1

14
15

sources_sort_by_y = sort sources by y value, ascending order
A = top point of sources_sort_by_y

16
17

left_gradient = [gradient(A,P)], P={points in the left of A}
right_gradient = [gradient (A,Q)], Q={points in the right
of A}

18 sort points in P and Q based on left_gradient and
right_gradient descending order

19 ordered_points = [left_points] U [right_points]

20
21
22

id_left = 0; id_right = 2
point1_left = A; point1_right = A
point2_left = ordered_points [id_left]; point2_right =
ordered_points [id_right]

23 for y in (ymin_sources , ymax_sources):
24 if y > y(ordered_points [id_left])
25
26
27

 id_left += 1
 point1_left = point2_left
 point2_left = ordered_points [id_left]

28 if y > y(ordered_points [id_right])
29
30
31

 id_right -= 1
 point1_right = point2_right
 point2_right = ordered_points [id_right]

32
33

use equations (4) and (5)
 x_left = intersect of y and line(point1_left, point2_left)

34 x_right = intersect of y and line(point1_right,
point2_right)

35
36

transform every pixel value of quadrangle in g
 for x in (x_left , x_right):

37
38
39
40

 [x't , y't , t] T = M x [x, y, 1] T
 x' = x't /t
 y' = y't /t
 if x' and y' in the destination paper dimension
 m_ transformed [y', x'] = g[y, x]

41 Outputs: m_transformed

2.4 Algorithm push index (all at once)

We can form a matrix index id with size of 3 × 𝑛𝑛, which contains the index or location of
the pixels in the quadrangle area, arranged in a row to the right. Suppose(𝑥𝑥1,𝑦𝑦1) is the position
of first pixels and (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑠𝑠)is the position of the last pixel in the area of the rectangle, then

𝑖𝑖𝑑𝑑 = �
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 ⋯ 𝑥𝑥𝑘𝑘
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 ⋯ 𝑦𝑦𝑠𝑠
1 1 1 ⋯ 1

�

Then, the matrix multiplication of 𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑀𝑀 ⋅ 𝑖𝑖𝑑𝑑 only done 1 time. It should be noted that the
map is a matrix with size 3 × 𝑛𝑛, that is

𝑚𝑚𝑎𝑎𝑚𝑚 = �
𝑥𝑥1′𝑡𝑡1 𝑥𝑥2′ 𝑡𝑡2 𝑥𝑥3′ 𝑡𝑡3 ⋯ 𝑥𝑥𝑘𝑘′ 𝑡𝑡𝑚𝑚
𝑦𝑦1′ 𝑡𝑡1 𝑦𝑦2′ 𝑡𝑡2 𝑦𝑦3′ 𝑡𝑡3 ⋯ 𝑦𝑦𝑠𝑠′𝑡𝑡𝑚𝑚
𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 ⋯ 𝑡𝑡𝑚𝑚

�

x' and y' are obtained with 𝑥𝑥𝑚𝑚′ =
𝑚𝑚𝑖𝑖
′𝑙𝑙𝑗𝑗
𝑙𝑙𝑗𝑗

= 𝑚𝑚𝑚𝑚𝑚𝑚[1]
𝑚𝑚𝑚𝑚𝑚𝑚[3]

and 𝑦𝑦𝑚𝑚′ =
𝑦𝑦𝑖𝑖
′𝑙𝑙𝑗𝑗
𝑙𝑙𝑗𝑗

= 𝑚𝑚𝑚𝑚𝑚𝑚[2]
𝑚𝑚𝑚𝑚𝑚𝑚[3]

. The practice (in python) is

to collect 𝑖𝑖𝑑𝑑_𝑥𝑥’, i.e. the first row of matrix map, collect 𝑖𝑖𝑑𝑑_𝑦𝑦’, i.e. the second row of the map
matrix, then reindex pictures based on 𝑖𝑖𝑑𝑑_𝑥𝑥’ and 𝑖𝑖𝑑𝑑_𝑦𝑦’. The array 𝑚𝑚𝑎𝑎𝑚𝑚[𝑖𝑖𝑑𝑑_𝑥𝑥’, 𝑖𝑖𝑑𝑑_𝑦𝑦’] will produce
the desired sequence. This will save a lot of time in the transformation process. For more details,
it is presented in detail in Algorithm 3.

Algorithm 3. Algorithm push 2 (use index on matrix multiplication)

1 Input: g = matrix of document photo
sources = 4 points quadrangle in g

2 h = max(distance(sources[0], sources[1]),
distance(sources[2], sources[3]))

3 w = max(distance(sources[0], sources[3]),
distance(sources[1], sources[2]))

4
5

find the orientation of the paper (portrait or landscape)
if h > w: # portrait

6 w = h / sqrt(2)
7 else: # landscape
8 w = h * sqrt(2)
9 dest = [[0,0], [0,h], [w,h], [w,0]]

10

11

m_transformed = [0]* (size=(h,w,number_of_layer_of (g)))

to detect the "hole"
m_transformed [:,:, 0] = [-1]

12 M = perspective_ matrix (sources, dest) # use Algorithm 1

13
14

sources_sort_by_y = sort sources by y value, ascending order
A = top point of sources_sort_by_y

15
16

left_gradient = [gradient(A,P)], P={points in the left of A}
right_gradient = [gradient (A,Q)], Q={points in the right
of A}

17 sort points in P and Q based on left_gradient and
right_gradient descending order

18 ordered_points = [left_points] U [right_points]

19
20
21
22

id_left = 0; id_right = 2
point1_left = A; point1_right = A
point2_left = ordered_points [id_left]; point2_right =
ordered_points [id_right]
index = [0]* (size=(3,0))

23 for y in (ymin_sources , ymax_sources):

24 if y > y(ordered_points [id_left])
25
26
27

 id_left += 1
point1_left = point2_left
point2_left = ordered_points [id_left]

28 if y > y(ordered_points [id_right])
29
30
31

 id_right -= 1
point1_right = point2_right
point2_right = ordered_points [id_right]

32
33

use equations (4) and (5)
 x_left = intersect of y and line(point1_left, point2_left)

34 x_right = intersect of y and line(point1_right,
point2_right)

35 index.append ([x_left , y, 1] T .. [x_right , y, 1] T)
36
37
38
39
40
41

map = M x index
id_x ' = map[0]/ map[2]
id_y ' = map[1]/ map[2]
id_x = first row of index
id_y = second row of index
m_ transformed [id_y ', id_x '] = g[id_y , id_x]

42 Outputs: m_transformed

2.5 Another way detect area instead of scanline method

Make a rectangular boundary of quadrangle from the picture, that is, by determining value
of (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚). Map each point on the rectangle. If the map result is outside
of the desired area, then we not used it, if the result is in the desired area, map that pixel.

Fig. 4. Rectangular boundary of quadrangle

2.6 Holes detection from picture results by perspective transformation

One way to detect the position of the blank pixels is to set value -1 in one of the matrix layers
transformations early. In that way, after every point is mapped, the points that are still blank on
matrix transformation will value -1 on one of the layers. Next to determine any points with
holes, we only searching for value -1 on the layer that we have specified earlier. This happens

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)

because the normal value of pixels only in the integer value from 0 to 255. Figure 5 ilustrate
this.

Fig. 5. An example detection hole is to put -1 on one of the matrix layers' transformations beginning

2.7 Interpolation score hollow pixels

After hollow pixels are detected, next we conducted filling in the holes. The holes will be
fill in according to the value surrounding pixels. It can be done using measure of central
tendency. In mathematics, there are three ways, namely the mean, median, and mode [7]. Entry
value around the holes (empty entries) can be seen in Figure 6.

𝑀𝑀(𝑦𝑦 − 1, 𝑥𝑥 − 1) 𝑀𝑀(𝑦𝑦 − 1, 𝑥𝑥) 𝑀𝑀(𝑦𝑦 − 1, 𝑥𝑥 + 1)

𝑀𝑀(𝑦𝑦, 𝑥𝑥 − 1) −𝟏𝟏 𝑀𝑀(𝑦𝑦, 𝑥𝑥 + 1)

𝑀𝑀(𝑦𝑦 + 1, 𝑥𝑥 − 1) 𝑀𝑀(𝑦𝑦 + 1, 𝑥𝑥) 𝑀𝑀(𝑦𝑦 + 1, 𝑥𝑥 + 1)

Fig. 6. Illustration from a coordinate neighbor from “hole” pixels

Take note that the hole is not always in the middle. If the position is vacant on the edge, then
our defined score pixels = mean, median, or mode of score pixels not empty all around the
course. In practice, if 𝑥𝑥 − 1 < 0 then 𝑥𝑥 = 0. If 𝑥𝑥 + 1 > width then 𝑥𝑥 = width. If 𝑦𝑦 − 1 < 0
then 𝑦𝑦 = 0. If 𝑦𝑦 + 1 > height then 𝑦𝑦 = height. We only use the active pixels, that is not “hole”
pixel. Table 1 illustrates some of the conditions of a “hole” pixel.

0 0
0 0

0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
0 0

0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1

R

G

B
0 190

0 34

202 0

179 185 233 0 130 40 21

0 0 0 0 0 0 0

0 74

0 120

145 0

234 41 179 0 11 244 75

0 0 0 0 0 175 0

112 107 102 87 109 -1 147

99 198 -1 245 37 -1 155

211 -1 5 171 160 68 -1

153 149 215 -1 111 176 0

-1 -1 -1 -1 -1 130 -1

R

G

B

Table 1 . Example determination value of “hole” pixels by viewing value surrounding pixels that are not
“hole”. The gray color is the hole that will fill the value, -1 means position the is the hole

hole
position

-1 123

20 0

𝑚𝑚𝑥𝑥𝑚𝑚𝑎𝑎𝑙𝑙𝑚𝑚𝑎𝑎𝑙𝑙 = {0, 20, 123}

123 -1 -1

8 123 -1

𝑚𝑚𝑥𝑥𝑚𝑚𝑎𝑎𝑙𝑙𝑚𝑚𝑎𝑎𝑙𝑙 = {8, 123, 123}

6 -1

205 -1

𝑚𝑚𝑥𝑥𝑚𝑚𝑎𝑎𝑙𝑙𝑚𝑚𝑎𝑎𝑙𝑙 = {6,205}

average 𝑚𝑚𝑥𝑥 =
0 + 20 + 123

3 ≈ 48 𝑚𝑚𝑥𝑥 =
123 + 8 + 123

3 ≈ 85 𝑚𝑚𝑥𝑥 =
6 + 205

2 ≈ 106

median 𝑚𝑚𝑥𝑥 = 20 𝑚𝑚𝑥𝑥 = 123 𝑚𝑚𝑥𝑥 =
6 + 205

2 ≈ 106

mode 𝑚𝑚𝑥𝑥 = 0 𝑚𝑚𝑥𝑥 = 123 𝑚𝑚𝑥𝑥 = 6

3 Results and Discussion

In this session, we will discuss the results we get from this research. We will start with an
example of each process.

3.1 Scanline

Figure 7 illustrates the order fourth point corner and the result. On the picture adjacent top,
the order starts at the point adjacent left up, then turn opposite direction clockwise, while picture
adjacent bottom, the order point corner starting next door left down, then unidirectional
clockwork. Second picture the by appropriate detected by the scanline method. This can be seen
from the resulting image on the side right of each image.

4 1

3 2

Fig. 7. The scanline method worked access only in the area bounded by 4 points corner side four
however order from the point to the corner

3.2 Mapping the quadrangle to rectangle using perspective transformation

After mapping all the points in the area side four to a rectangle, it will be the "hollow" points
in the rectangle, blank pixels. These pixels are filled by doing interpolation from surrounding
points. We can see the detail in the Figure 8.

(a) (b)

FIGURE 8. (a) picture results transformation perspective from Figure 7. (b) enlarged image (a). Seen
many "holes" in the picture

3.3 Fill in the blank pixel using mean, median, and mode

Difference results in charging holes with mean, median, and mode can be seen in Figure 9.

3 2

1
4

(a)

(b)

(c) Mean

(d) Median

(e) Mode

FIGURE 9. (a) picture of the original document from the camera, (b) pictures document after conducted
transformation perspective however still perforated, (c, d, e) picture document after filling the hole

using the mean, median, and mode method.

4 Conclusion

Distorted document images could be fixed by using a transformation perspective. In the
process, the application forms materials simple math used here, like gradient, equation of line,
multiplication matrix, solution system linear equations, and statistical data centering (mean,
median, mode).

Acknowledgments. We would like to acknowledge the support of Ristekdikti for the grant.

References
[1] N. Basu and S. K. Bandyopadhyay, “Automatic perspective rectification of documents

photographed with a camera,” IJAR, vol. 2, no. 3, pp. 705–710, 2016.
[2] A. Geetha Kiran and S. Murali, “Automatic rectification of perspective distortion from

a single image using plane homography,” J. Comput. Sci. Appl, vol. 3, no. 5, pp. 47–58,
2013.

[3] K. Wang, B. Fang, J. Qian, S. Yang, X. Zhou, and J. Zhou, “Perspective transformation

data augmentation for object detection,” IEEE Access, vol. 8, pp. 4935–4943, 2019.
[4] Z. Zhang and L.-W. He, “Whiteboard scanning and image enhancement,” Digit. Signal

Process., vol. 17, no. 2, pp. 414–432, 2007.
[5] K. Kallio, “Scanline edge-flag algorithm for antialiasing,” 2007.
[6] D. E. Varberg, E. J. Purcell, and S. E. Rigdon, Calculus. Pearson Educación, 2007.
[7] A. S. Pratikno, A. A. Prastiwi, and S. Ramahwati, “Ukuran Pemusatan Rata-rata,” 2022.

