# On The Composite Ideal 

Denik Agustito, Puguh Wahyu Prasetyo, Esti Harini, Istiqomah, Tri Astuti Arigiyati, Irham Taufiq<br>\{rafaelagustito@gmail.com ${ }^{1}$, puguh@pmat.uad.ac.id ${ }^{2}$, estiharini@ustjogja.ac.id ${ }^{3}$ \}<br>Universitas Sarajanawiyata Tamansiswa, Yogyakarta, Indonesia ${ }^{1,3,4,5,6}$, Universitas Ahmad Dahlan Yogyakarta, Indonesia ${ }^{2}$


#### Abstract

This paperwork in the commutative ring and general results of my research are: ideal $I$ is called composite if and only if $R / I$ is a commutative ring with zero-divisor. And then we have $I$ and $J$ are the composite ideals of $R$ such that $I$ and $J$ is coprime then $I \cap J$ is a composite ideal of R . If we have $I \subseteq J$ are two ideas of R and J is a composite ideal of $R$ then $J / I$ is a composite ideal of $R / I$.


Keywords: Composite, Coprimely, Ideal

## 1 Introduction

Let $R$ be a commutative ring and a is a non-zero element of $R$ is called not zero-divisor if there exist non-zero element b of R such that $a b \neq 0$. The commutative ring R is called ring without zero-divisor if for any $a, b \in R$ such that $a, b \neq 0$ then $a b \neq 0$. This is equivalent to saying that the commutative ring R is called without zero-divisor if-then $a=0$ or $b=0$. From this idea, we have a property from trivial ideal $\{0\}$ is if $a b \in\{0\}$ then $a \in\{0\}$ or $b \in\{0\}$. In a study of Commutative Algebra, the property of trivial ideal $\{0\}$ is generalized into non-trivial ideal as follow: if $a b \in I$ then $a \in I$ or $b \in I$, and then the ideal I is called a prime ideal [1].

Some properties from prime ideal in the study of Commutative Algebra is as follows: Let $R$ be a commutative ring with the unit then $P$ is a prime ideal of $R$ if and only if $R / P$ is a domain integral (Hungerford : 1974). And then we introduce a prime element p of R is a nonzero and non-unit element and $p \| a b$ then $p \| a$ or $p \mid b$ [2]. If $p$ is a prime element in commutative ring R then the principal ideal $(p)=\{p r \mid r \in R\}$ is a prime ideal of R. And then if we have $P_{1}$ and $P_{2}$ is called prime ideals, then $P_{1} \cap P_{2}$ is so.

In a commutative ring $R$, the non-zero element is denoted by a is called zero-divisor if there exist non-zero element b such that $a b=0$ [3]. The commutative ring R is called ring with zero-divisor if there exist two elements $a, b \in R$ where $a, b \neq 0$ but $a b=0$. From this idea we have a property from trivial ideal $\{0\}$ is $a, b \notin\{0\}$ but $a b \in\{0\}$. From the property of this trivial ideal, we can generalize into non-trivial ideal is as follow: If there exist $a, b \in R$ with $a, b \notin I$ but $a b \in I$ then I is called the composite ideal. The purpose of this paper is to find out the characters that must be possessed by a composite ideal in a commutative ring. Referring to the composite ideal

Idea in a commutative ring, we get an idea of the ideal properties of a composite that is analogous to a composite number. Some things related to the development of composite numbers can be found in the following paper [4] and [5].

## 2 Main Results

In a study of Commutative Algebra, the ideal $P$ is called prime ideal of a commutative ring if-then $a \in P$ or $b \in P$. Then we introduce a new ideal with property anti-prime is as follow:

### 2.1. Definition

Let R be a commutative ring dan I is a proper ideal of R . Ideal I si called composite ideal of R if there exist $a, b \in R, a, b \notin I$ but $a b \in I$.

### 2.2. Example

In the commutative ring $\mathbb{Z}^{\mathbb{Z}}$, the ideal ${ }^{6 \mathbb{Z}}$ is a composite ideal, because we have $4,9 \notin 6 \mathbb{Z}$ but $36=4.9 \in 6 \mathbb{Z}$.

### 2.3. Example

In the commutative ring $\mathbb{Z}_{20}$, the ideal $l=\{\overline{0}, \overline{10}\}$ is a composite ideal, because we have $\overline{2}, \overline{5} \oplus J=\{\overline{0}, \overline{10}\}$ but $\overline{10}=\overline{2} . \overline{5} \in J=\{\overline{0}, \overline{10}\}$.

### 2.4. Theorem

Let ${ }^{n}$ be a non-zero and non-unit element of the commutative ring of an integer number $\mathbb{Z}$. The number $n$ is called composite number if and only if $n \mathbb{Z}$ is a composite ideal of $\mathbb{Z}$.

Proof.
Since $n$ be a composite number, then $n$ is not a prime number. So we have there existed $a, b \notin \mathbb{Z}$ where $n \mid a b$ but $n \nmid a$ and $n \nmid b$. Since there exist $a, b \notin \mathbb{Z}$ where $n \mid a b$ but ${ }^{n \nmid a}$ and $n \nmid b$, then we have there existed $a, b \notin \mathbb{Z}$ where $a b \in n \mathbb{\mathbb { Z }}$ but $a \notin n \mathbb{\mathbb { Z }}$ and $b \notin n \mathbb{\mathbb { Z }}$. So $n \mathbb{\mathbb { Z }}$ is a composite ideal of $\mathbb{Z}$.

Conversely, we have $n \mathbb{Z}$ is a composite ideal of $\mathbb{Z}$. It si clear that there exist $a, b \notin \mathbb{Z}$ where $a b \in n \mathbb{Z}$ but $a \notin n \mathbb{Z}$ and $b \notin n \mathbb{Z}$. So we have there existed $a, b \notin \mathbb{Z}$ where $n \mid a b$ but $n \nmid a$ and $n \nmid b$. So n is not a prime number, and then n is a composite number.

From the Theorem 1.4, we can generalized a notion about a composite element of the commutative ring as follow:

### 2.5. Definition

Let R be a more commutative ring and $q \in R$. Element q is called a composite element of R if q is non-zero and non-unit and there exist $a, b \in R$ where $q \nmid a$ and $q \nmid b$ but $q \| a b$.

### 2.6. Theorem

Let R be a commutative ring and $q \in R$. Element q is called a composite element of R if and only if the principal ideal $(q)=\{q r \mid r \in R\}$ is a composite ideal of R .

Proof.
Since $q$ be a composite element, then $q$ is not a prime number. So we have there existed $a, b \notin R$ where $q^{l a b}$ but q ${ }^{\nmid a}$ and q ${ }^{\downarrow b}$. Since there exist $a, b \notin R$ where $q \| a b$ but $q \nmid a$ and $q \nmid b$, then we have there existed $a, b \notin R$ where $a b \in(q)$ but $a \notin(q)$ and $b \notin(q)$. So $(q)$ is a composite ideal of $R$.

Conversely, we have $(q)$ is a composite ideal of $R$. It is clear that there exist $a, b \notin R$ where $a b \in(q)$ but $a \notin(q)$ and $b \notin(q)$. So we have there existed $a, b \notin R$ where $n \| a b$ but $n \nmid a$ and $n \nmid b$. So n is not a prime element, and then n is a composite element.

The next fact is about the relationship between composite ideal I of a commutative ring with their factor ring.

### 2.7. Theorem

Let $R$ be a commutative ring and $I$ is an ideal of $R$. Factor ring $R / I$ is a ring with zerodivisor if and only if I is a composite ideal.

Proof.
Since factor ring R/I is a ring with zero-divisor, then there exist $a+I, b+I \in R / I$ where $a+I \neq I$ and $b+I \neq I$ but $a b+I=I$. So we have there existed $a, b \in R$ where $a, b \notin I$ but $a b \in I$. So ideal I is a composite ideal.

Conversely, since ideal I is a composite ideal, then there exist $a, b \in R$ where $a, b \notin I$ but $a b \in I$. So we have there existed $a+I, b+I \in R / I$ where $a+I \neq I$ and $b+I \neq I$ but $a b+I=I$. It is clear that factor ring $\mathrm{R} / \mathrm{I}$ is a ring with zero-divisor.

### 2.8. Corrolary

The natural number n is a composite number if and only if $\mathbb{Z}_{n}$ is not an integral domain.
Proof.
Since n is a composite number, based on Theorem 1.4, it is clear that $n \mathbb{Z}$ is the composite ideal of $\mathbb{Z}^{\mathbb{Z}}$. Based on Theorem 1.7, so we have $\mathbb{Z}_{n} \cong \mathbb{Z} / n \mathbb{Z}$ is not an integral domain.

Conversely, since $\mathbb{Z}_{n}$ is not an integral domain, it is clear $\mathbb{Z}_{n} \cong \mathbb{Z} / n \mathbb{Z}$ is not an integral domain. Since $\mathbb{Z} / n \mathbb{Z}$ is not an integral domain, based on Theorem 1.7, we have $n \mathbb{Z}$ is the composite ideal of $\mathbb{Z}^{\mathbb{Z}}$. Based on Theorem 1.4, we have n is a composite number.

Let R be a commutative ring and $\mathrm{I}, \mathrm{J}$ are ideals of R and $I \subset J$. The ideal I is called composite on J if there exist $a, b \in J$ where $a, b \notin I$ but $a b \in I$. If $l=R$ then I become a composite on R ; in another hand I is a composite ideal of R .

### 2.9. Lemma

Let R be a commutative ring and I , are ideals of R such that $I \subset J$. If I is composite on J then $I$ is composite on $R$.

Proof.
Since I is composite ideal on J , it is clear that there exist $a, b \in J$ where $a, b \notin I$ but $a b \in I$. Since J is an ideal of R, then we have I is the composite ideal of R. So I is composite on R.

### 2.10. Definition

Let R be a commutative ring and I , J are ideals of R . I and J is said coprime if $I+J=R$.

### 2.11.Lemma

Let $R$ be a commutative ring. If $I$ and $J$ are ideals of $R$ then there exist ring isomorphism $I /(I \cap J) \cong(I+J) / J$.

Some results of the relationship between coprime between ideals and ring isomorphism theorem (Lemma 1.11) is used to show that intersection between composite ideals is a composite ideal.

### 2.12. Theorema

Let R be a commutative ring and I , J ideal of R is coprime. If J is composite on R then $I \cap J$ is the composite ideal of R.

Proof.
Since ideal, I and J of R is coprime, then $I+J=R$. By Lemma 1.11, we have $I /(I \cap J) \cong(I+J) / J=R / J$. Since J is composite on R , then $R / J$ is not an integral domain, and consequently $I /(I \cap J)$ is not an integral domain. By Theorem 1.7, we have $I \cap J$ is composite on I. By Lemma 1.9, we have $I \cap J$ is the composite ideal of R.

### 2.13. Corrolary

Let $R$ be a commutative ring and $I$, $J$ are ideals of $R$ is coprime. If $I$ and $J$ are composite ideals then $I \cap J$ is the composite ideal of R.

Proof.
By Theorem 1.12, since I and J are ideals of R is coprime and I and J are composite ideals, then it is clear that $I \cap J$ is the composite ideal of R.

### 2.14.Lemma

Let $R$ be a commutative ring and $I, J, K$ are ideals of $R$. If $I$ and $J$ is coprime, $J$ and $K$ is coprime, and I and K is coprime, then I and $l \cap K$ is coprime.

Proof.
Since J and K is coprime, then $l K=J \cap K$ [6]. Since I and J is coprime and I and K is coprime, then I and $l K=J \cap K$ is coprime [6]. So we have I and $l \cap K$ is coprime.

### 2.15. Theorem

Let $R$ be a commutative ring and $I$, $J, K$ are ideals of $R$. If $I$ and $J$ is coprime, $J$ and $K$ is coprime, and I and K is coprime, then $I \cap J \cap K$ is a composite ideal of R .

Proof.
Since I, J and K are composite ideals of R, I and J is coprime, J and K is coprime, and I and K is coprime, then based on Corrolary 1.13 we have $I \cap J, I \cap K$ and $\eta \cap K$ are composite ideals of R. Based on Lemma 1.14, we have I and $\bar{\cap} \cap{ }_{\text {is coprime. Since I is a composite }}$ ideal of R , based on Corollary 1.13, we have $I \cap J \cap K$ is a composite ideal of R.

### 2.16. Lemma

Let R be a commutative ring and I and J are ideals of R . If $I \subseteq J_{\text {then }}(R / I) /(I / I) \cong R / I$.

### 2.17. Theorem

Let R be a commutative ring and I and J are ideals of R . If $I \subseteq J$ and J is the composite ideal of $R$ then $J / I$ is a composite ideal of factor ring $R / I$.

Proof.
Since $I \subseteq J$ and J is the composite ideal of R, based on Lemma 1.16 and Theorem 1.7 we have $(R / I) /(I / I) \cong R / J$ has a zero-divisor. It is clear that $(R / I) /(I / I)$ has a zero-divisor and based on Theorem 1.7, we have $\mathrm{J} / \mathrm{I}$ is a composite ideal of factor ring R/I.

## 3 Conclusion

Main results in this paper as follow: on the commutative ring R, ideal I of R is called composite ideal if and only if the factor ring $R / I$ is ring with zero-divisor. And then if $I$ and $J$ are ideals of R is coprime then $I \cap J$ is the composite ideal of R. If $I \subseteq J$ and J is the composite ideal of R then $\mathrm{J} / \mathrm{I}$ is the composite ideal of factor ring $\mathrm{R} / \mathrm{I}$.

## References

[1] W. F and K. H, "Foundations of Commutative Rings and Their Modules," in Springer Nature Singapore, 2016.
[2] H. T. W, Algebra. Springer-Verlag New York. Inc, 1974.
[3] A. M. F, Introduction to Commutative Algebra. Addison-Wesley Publishing Company. Inc, 1969.
[4] D. D, "Classification and Properties of Composite Numbers with respect to its wings," Int. J. Sci. Eng. Res., vol. 7, no. 2, 2016.
[5] R. S, Highly Composite Numbers. Kluwer academic, 1997.
[6] S. B, Basic Commutative Algebra. World Scientific Publishing Co. Pte. Ltd, 2011.

