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ABSTRACT
Wheezing is one of the most prominent symptoms for pulmonary 
attack. Hence, wheezing detection has attracted a lot of attention in 
recent years. However, there is a dearth of a reliable method that can 
automatically detect wheezing events during each respiration phase 
in presence of several concurrent sounds such as cough, throat 
clearing, and nasal breathing. In this paper, we develop a model 
called WheezeD which, to the best of our knowledge, represents the 
first step towards developing a computational model for respiration 
phased based wheeze detection. WheezeD has two components, 
first, we develop an algorithm to detect respiration phase from 
audio data. We, then transform the audio into 2-D spectro-temporal 
image and develop a convolutional neural network (CNN) based 
wheeze detection model. We evaluate the model performance and 
compare them to conventional approaches. Experiments on a public 
dataset show that our model can identify wheezing event with an 
accuracy of 96.99%, specificity of 97.96%, and sensitivity of 96.08%, 
which is over 10% improvement in performance compared to the 
best accuracy reported in the literature by using traditional machine 
learning models on the same dataset. Moreover, we discuss how 
WheezeD may be used towards assessment and computation of 
patient severity.
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1 INTRODUCTION
Chronic respiratory diseases are described as the chronic diseases 
of the airways and other structures of the lungs according to the
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Centers for Disease Control and Prevention (CDC). Some of the com-
mon are asthma, chronic obstructive pulmonary disease (COPD),
occupational lung disease, chronic bronchitis. An estimated 40 mil-
lion people in USA have one of the chronic respiratory diseases,
more than 50% of them suffer from exacerbations or attacks due
to these diseases every year [1, 2]. Respiratory airway obstruction
causes change in velocity of air flow during breathing from normal
airway into narrowing airway, abnormal breathing sounds are pro-
duced, which include wheeze, rhonchus, crackles. Moreover, during
an asthma attack or COPD exacerbation, the adventitious sounds
may be accompanied by coughing, throat clearing, rapid breathing.

Wheezing is defined as an adventitious, continuous sound which
has musical characteristics. It is generated due to rapid breathing
through constricted or narrow respiratory airway during COPD or
asthma exacerbation. An important aspect of wheezing, as these
research works depict, is its impact on patient severity [10, 18, 19].
Severity is the extent of exacerbation of the patient condition under
attack which may inform the subsequent intensity of treatment
required [21]. Detecting severity and its variation may not only be
useful in determining the subsequent level of treatment, but also in
identifying the potential causes of variations [7]. Wheeze mostly
occurs during an expiratory phase of a respiratory cycle. However,
it may also occur during inspiratory phase, or in both of the phases.
Severe obstruction of the intra-thoracic airway can be associated
with inspiratory wheezes, which are shown to be more severe.

Several works have been done to detect wheeze [15]. However,
to the best of our knowledge, this work is the first to present a reli-
able model for respiratory phase based wheezing detection and its
application towards assessment of severity of the pulmonary con-
dition. In this work, we show that it is feasible to detect respiratory
phase from acoustic data and subsequently use the phase dura-
tion to reliably detect wheezing using a CNN based deep-learning
model. By experimenting on a public dataset, named R.A.L.E. [9],
we show that the detection model performs better than previous
works [12, 17, 20] which use hand-crafted acoustic feature based
machine learning model, applied on the same dataset (R.A.L.E. [9].

Related Works: The state-of-the-art method for detecting ab-
normal or adventitious lung sounds such as wheezing is based on
auscultation approach by experienced physicians, using an instru-
ment called stethoscope. This method is non-invasive and simple,
however it is heavily dependent on the physical presence of a physi-
cian, the experience of the physician, sensitivity and variability of
human auditory system [14], presence of noise in the internal or ex-
ternal environment, technical specifications and response efficiency
of stethoscopes [4]. The following survey paper summarizes some
interesting previous works done on wheezing detection[15]. Few of
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Figure 1: Wheeze detection model architecture

Figure 2: Distribution of respiratory phase duration.

them attempted at wheezing detection against other adventitious
sounds. However, we attempt at distinguishing wheezing sounds
against non-wheezing sounds which include cough, throat-clearing,
regular breathing sounds. Prior works show sufficient evidence
about how irregular respiratory pattern in association with the
presence of wheezing sound may contribute to the severity. This
work shows that high intensity wheezing during both inspiratory
and expiratory phase, the duration of wheezing during each phase
lead to lower peak expiratory flow rate [19]. High severity may be
caused by severe obstruction of the intrathoracic lower airway or
upper airways obstruction, which can be manifested by wheezing
during the inspiratory phase [18].

2 DATASET DESCRIPTION
We obtain thewheezing sound data from R.A.L.E repository [9]. The
data set consist of 26 lung sound recordings containing wheezing
sound from participants with age ranging from newborn to 76 years
old. All of these sounds were recorded at 10.240KHz. R.A.L.E dataset
is used as positive class examples for wheezing model. For the
negative class examples (cough, throat clearing), we use carefully
labeled audio data collected from 21 subjects using Samsung Gear
S3 smartwatch (16KHz) described in [13, 16]. Moreover, we use
an internet repository [3] to obtain throat clearing and additional
cough sounds (44.1KHz). We use those raw audio samples as input
to the model architecture mentioned in Figure 1. It is important
to note that we handle the audio samples captured from several
sources with varying sampling rate.

3 RESPIRATION PHASE DETECTION
Respiratory phase contains valuable information that can poten-
tially improve the detection accuracy of wheeze events and pre-
diction of the severity. For example,Wheezing during inspiratory

phase indicates higher level of severity compared to when it hap-
pens in expiratory phase [18]. Moreover, severity further worsens
when it happens in both phases which is known as biphasic wheeze.
In the R.A.L.E dataset [9], we observe that 40% of the patients were
having wheeze during exhalation, 14% were having wheeze during
inhalation, and 46% of them were having wheeze in both phases. It
indicates that dataset used in this modeling covers wheezes in all
spectrum of respiratory phases. Moreover, most of the patients were
under pulmonary attack, which makes the datasetmore valuable and
useful for deeper analysis, such as, the analysis of the respiratory
phases in which wheezes are occurring. We utilize this opportunity
for the first time to analyze and incorporate the respiratory phase
information in modeling wheeze events.

We identify respiratory phases by applying appropriate signal
processing steps on acoustic data. We observe that respiratory
phases (i.e., inhalation and exhalation) can be identified by the
envelope of the audio signal in time-domain. Therefore, we apply
an envelope detection algorithm to automatically detect the start
and end of each respiratory phase. The algorithm, first, detects the
peaks and applies cubic spline curve fitting model on the peaks.
Since the audio sampling frequency and the variation of the audio
signal in time domain is usually very high, we again apply the same
envelop detection algorithm on the peaks detected in the first step.
We, then, apply third order low-pass Butterworth filter with cut-off
frequency of 1.66Hz to further smooth the envelop signal. Finally,
we apply respiratory phase detection algorithm described in [16]
to identify each inhalation and exhalation phase of a respiratory
cycle. Several of the identified respiratory phases are verified by
listening the audio to ensure that the phases are correctly detected.
Figure 2 shows the distribution of the respiratory phase durations.
We observe that the most dominant phase duration is 0.5s which
informs the window size of the deep-learning model described
later in this paper. This is how our approach incorporates domain
information of a pulmonary attack into the wheeze detection model.

3.1 Processing Acoustic Data
The primary inputs to the model are the images of the sound data
in the form of spectrogram which graphically express the sound
frequency components and the corresponding time location of their
occurrence. Spectrograms from different sources of sound recording
may have completely different characteristics, for example, sam-
pling rate may differ across sound sources, producing spectrograms
of different spectral resolution. A major challenge prior developing
a model is to ensure that the input spectrograms comprise of the
same characteristics in the spectro-temporal domain. In order to
address this, we adopt the sample rate normalization algorithm
from this work [17]. If the sampling rate of the input signal is more
than 9KHz, then the input signal is down-sampled to 9KHz, in this
way we ensure the uniformity of the input signal characteristics.

3.2 Acoustic Data Segmentation
We segment the input spectrogram images (computed using Short-
Time Fourier Transformation (STFT) [5]) based on the respiration
phase distribution that we obtain from the wheeze dataset (section
3.1). We consider the following candidate window sizes, minimum
(0.25s), median (0.5s), 75th percentile (0.85s) and 80th percentile
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Figure 3: On the left, Time domain 1-D wheezing audio sig-
nal. On the right, Spectrogram (2-D image) of the wheezing
audio data.

(1s) of the window size distribution. We do not consider window
sizes of more than 1s in order to avoid overfitting. We describe
the number of sample sizes for each segmentation window later in
section 5.2 and table 1. We classify each segment as “wheeze” and
“non-wheeze” events.

4 UNDERSTANDING SPECTROGRAM
SIGNATURES OF PULMONARY SOUNDS

In this section, we visualize some of the salient features of the pul-
monary sounds from their corresponding spectrograms. Wheezing
sound, are of musical and continuous nature, their presence demon-
strate a typical signature in the spectrogram, with a continuous
near-horizontal lines representing the time interval of the main
frequency and the presence of other lines above represents the
frequency spectra that compose the harmonic frequency of the
main frequency. This unique signature can be observed in figure
3b, where wheeze event occur during inhalation phase. Cough and
throat-clearing being a discontinuous sound, characterized by short
explosive bursts, having relatively higher amplitude, when com-
pressed in a short-term interval usually generates vertical lines in
a spectrogram. The unique spectral characteristics of different pul-
monary sounds are captured in their corresponding spectrograms.

5 EXPERIMENTAL METHODS
5.1 Network Architecture
We use Convolutional Neural Network to classify audio data. Our
architecture refers to the design of well known network designs
like VGG16 [8], LeNet-5 [11]. After several experimentation (refer
to section 5.2), our final network consists of 2 convolutional layers,
1 fully connected layer and a sigmoid classification layer. First layer
has 16 rectified linear units (ReLU) with filter size of 3 x 3, 2 x 2
max-pooling layer, with stride 1. Second layer has 16 rectified linear
units with filter size 5 x 5, 2 x 2 max-pooling layer, with stride 1.
The convolutional layers are followed by 1 fully connected layer
with 128 neurons. This layer employs dropout regularization of
0.25 in order to reduce overfitting. The sigmoid classification layer
which classifies as either a “wheeze” event or “non-wheeze” event.

We develop the model using the Python programming language,
Keras 2.0 deep learning library. The training and testing experi-
ments are performed on 8 TeslaM40 24GB GPUs with CUDA toolkit
9.1.

5.2 Experimental Results
We conduct several experiments with the aim of finding the follow-
ing important hyper-parameters of the model, the optimal window

Figure 4: On the left, interestingly, 0.5s classificationwindow
size produces the highest model accuracy. One the right, we
see that the model loss is the least with 0.5s classification
window size

width=0.5center

Window Size Sample Size
Training Validation Test Total

0.25s 655 280 233 1168
0.5s 504 216 180 900
0.85s 305 132 109 546
1s 275 119 98 492

Table 1

Figure 5: Shows the model accuracy and loss plots for dif-
ferent window of classification. Segmentation window wi =
0.5s performs the best. The loss plot shows that the model
experiences significant overfitting whenwi = 1s

size for classification, number of convolutional layers, filter size.
We evaluate the performance on the validation set, in order to
demonstrate the effectiveness.

Obtaining the Optimal window: In order to find the optimal
window W, we experiment with a few candidate windows wi =
[0.25s , 0.5s , 0.85s , 1s] defined by the inhalation and exhalation
duration in section 3.4. In each case, the input data is segmented
with the given window size wi and then the network is trained
and validated. We note that the number of training, validation and
test samples obtained from the data, depends upon the window
size used for segmentation (refer Table 1). We also note that the
number of samples are good enough to train a relatively smaller
deep-learning network (as in [6]).

W = 0.5s attains an accuracy of 96.999% (figure 4). This can be
explained by the fact that as we observe from the dataset, most of
the wheezing occur during inhalation or exhalation with a duration
of around 0.5s . If we reduce the window of classification to 0.25s ,
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Figure 6: A CNN of 2 layers, 16 filters each performs the best
in terms of accuracy

accuracy drops (to 88.588%), we assume that if the window length
is too short, then input will not have the discriminative informa-
tion needed for classification. With further increase in the window
length to 0.85s (81.249%) and 1s (77.885%), which suggest that the
model is prone to the risk of heavy overfitting figure shown in
figure 5. According to these results, we determine the value of W
to be 0.5s.

Number of Convolution layers and filters: We consider 1,
2, and 3 as candidates for the number of layers and 2, 4, 8, 16, 32
for the number of filters. We note from figure 6, that a CNN of
2 layers, each having 16 filters performs the best with accuracy
96.999%. The dropout regularization works well to reduce model
overfitting when the model has 2 layers, however introduction of
a third layer leads to significant overfitting into the model. From
these experimental results, we make an informed decision to limit
our model to two layers.

5.3 Model Performance
The performance of the model is a significant improvement over
previous detection algorithms developed using the same dataset,
which we use as basis of comparison. When evaluated on the test
data (completely unseen during model training and validation), we
report an overall model accuracy of 96.99%, which is better than
that reported in [20] (82.1%), [17] (84.82%).The model obtains a
specificity or true negative rate of 97.96%, and sensitivity or true
positive rate of 96.08%, better than that reported in [20] (81.5 ± 10%
sensitivity and 82.6 ± 7% specificity), [17] (86.1% sensitivity and an
82.5% specificity).

6 LIMITATION, FUTUREWORK AND
CONCLUSION

Following are the few limitations which may lead to interesting
research opportunities. First, we use limited dataset of wheezing
sounds in this work, which in turn restricts the model to two con-
volutional layers. In future, large amount of data can be collected
in order to build deeper and more robust networks. Moreover, we
did not explore LSTM based model, which we believe may improve
the detection taking into consideration the temporal signature of
wheeze in the acoustic data. Second, the detection method will
help us collect long term longitudinal wheeze data from patients,
which may be useful in assessing triggers of asthma or COPD ex-
acerbation in the wild. Our hope is that, respiratory phase based

wheezing detection, like WheezeD can be utilized towards assess-
ment of severity. For instance, severity may be associated with the
wheezing duration, rate and diurnal pattern (for e.g., wheezing
at night time) [22]. Moreover, severity can be determined by the
greater level of obstruction of upper airways, and wheezing during
inspiration is a defined surrogate for that [18]. Hence wheezing
during inspiration phase may be assessed to be more severe than
during expiration. Interestingly, we note thatWheezeD presents the
fundamental attributes required (respiration phase detection and
wheezing detection with much better performance than existing
works) to assess wheezing severity.
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