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ABSTRACT

Good sleep is a key component of good health, and as such, how
to obtain quality sleep is of concern to many people. Circadian
rhythms vary between individuals and play an important role in
regulating sleep, however, they are currently not monitored by
commercially available wearables. Previous work has shown that
circadian rhythm is reflected in changes of wrist temperature. In
this work, we present a prototype wristband that measures motion
and temperature at the wrist. We developed an algorithm to detect
wrist temperature increase onset, which is an indicator of the body
preparing for sleep. Our results demonstrate that our algorithm
is able to detect wrist temperature increase onset, which appears
to occur at the same time for the same person. We also show that
temperature increase onset varies between people as does over-
all temperature patterns between people. The detection of wrist
temperature patterns gives us a deeper understanding of the mech-
anisms underlying sleep and could be a valuable component of a
personalized sleep monitoring algorithm.
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1 INTRODUCTION

While most people know they have an internal biological clock,
few are aware of the endogenous circadian rhythm within our
body. Circadian rhythm is like a clock that regulates many biolog-
ical processes including sleep/wake patterns over 24-hour cycles.
For example, the secretion of melatonin, a hormone that regulates
wakefulness and sleepiness, is controlled by circadian processes.
While we can use willpower to stay awake all night, our circadian
rhythms still cause us to feel sleepy. It has been shown that fol-
lowing a sleep/wake cycle that aligns with our circadian rhythm
can result in better sleep [17]. Many people believe in the proverb
"Early to bed and early to rise, makes a man healthy, wealthy, and
wise". However, according to chronobiology [12], not everyone is
genetically suited to the "early to bed and early to rise" lifestyle. In
fact, the definition of "early” varies between person to person due to
different circadian rhythms. Therefore, it follows that a better sense
of our own circadian rhythms could help us manage our sleep/wake
times accordingly to get better sleep.

Recently, wrist temperature has been shown to be an effective
alternative to measuring Core Body Temperature (CBT), which is
the current circadian rhythm phase marker gold standard. Wrist
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temperature has been shown to increase at night before people
fall asleep and drop drastically when people wake up [14]. Wrist
temperature increase onset (i.e., where the body starts preparing
for sleep) has also been shown to be highly correlative to Dim Light
Melatonin Onset (DLMO), another circadian phase marker gold
standard [11]. Compared to CBT and DLMO, which are done with
rectal measurements and saliva analysis respectively, measuring
wrist temperature is unobtrusive, convenient, and can be done
continuously.

With the rapid development of mobile technology, many com-
mercial smart wristbands or smart watches have developed some
form of sleep monitoring. Fitbit and Apple Watch estimate users’
sleep quality based on body movement and heart rate. While these
biometrics are useful in evaluating sleep duration, they are an "ex-
ternal observation” of sleep; they can only tell you about how you
slept. In other words, current wearables can tell you that you had
a bad sleep but as they cannot monitor circadian rhythms, there-
fore cannot help align your sleep/wake times to match your body’s
ideal times with respect to biological processes. In addition, as most
sleep detection is based on accelerometer sensors and supervised
learning algorithms, existing works [6] suggest that sleep/wake
status can be better detected with a personalized algorithm that
aligns with our own sleep habits and needs.

This paper presents the development of a wearable wristband
that consists of a temperature sensor and a 3-axis accelerometer to
investigate the integration of circadian rhythms into sleep evalua-
tion. Specifically, we focus on extracting circadian rhythms from
wrist temperature patterns and compared the extracted circadian
markers among all participants. This information helps to evaluate
and improve our understanding of personalized sleep. We present
our work in following stages:

e Development of a novel algorithm to estimate robust wrist
temperature increase onset.

e Comparison of wrist temperature patterns of different peo-
ple, including an analysis of how wrist temperature trends
behave if an early sleeper and a late sleeper sleep at the same
time.

2 RELATED WORK

The use of 3-axis accelerometers or actigraphy has already been
shown to accurately detect sleep onset and offset [13]; most com-
mercial smartwatches or smart wristbands measure and evaluate
sleep quality based on accemetry data. Some wearables (e.g., Fitbit
and Apple Watch) also integrate heart rate into their sleep analy-
sis, which tends to make their algorithm more accurate. Recently,
researchers built their own sleep monitoring systems based on pro-
grammable commercial Android Wear wristbands [5, 15]by using
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sensors such as microphones and light sensors to fuse data together
and determine light/deep sleep stages. However, there is still little
research (e.g., [2, 8]) that have tried to use an integrated single wear-
able to measure circadian phase indicators and no commercially
available wearables exist.

Ortiz et. al. (2014) proposed a method that integrates tempera-
ture and accelerometer sensor data together to determine circadian
phase. They calculated several phase markers by combining acceme-
try data and wrist temperature data using non-parametric methods.
Specifically, by comparing the phase calculated from wrist temper-
ature and the phase of DLMO, they found that wrist temperature
can effectively predict circadian phase. However, they estimated
the temperature increase onset based on wrist temperature pat-
terns averaged over 10 days for 13 participants and did not consider
the day/night temperature difference among different participants;
their approach looked for changes in temperature as a percentage of
an aggregated average temperature. In [10], wrist temperature and
accemetry data was compared with polysomnography and found
to be effective in sleep status estimation. Compared to their work,
which focused more on validation of correlation between wrist
temperature and circadian rhythms, our study aims to develop an
integrated wristband that uses machine learning to evaluate sleep
based on each individual’s circadian rhythms.

3 METHOD
3.1 Wristband Design and Data Collection

As there are no available open-data wristbands with a temperature
sensor that can measure the temperature of radial artery location,
we built our own wristband by modifying a off-the-shelf accelerom-
eter data logger Axivity AX3 sensor (Axivity, York, UK; 100Hz,
+8¢, weight: 9g) to include an iButton DS1922L temperature sensor
(Maxim, Dallas, US), as can be seen in Figure 1. We 3D printed
a holder for the iButton and attached the sensor to the inside of
the Axivity wristband. The DS1922L samples data every 5 minutes
with resolution of 0.0625°Cand sensitivity of 0.5°C. When the par-
ticipant is wearing the wristband, the temperature sensor stays on
the underside of the participant’s wrist and therefore measures the
temperature near the radial artery of the wrist.

Data was collected from 10 participants. After obtaining in-
formed consent, participants were asked to fill out the Pittsburgh
Sleep Quality Index (PSQI), which is a commonly used question-
naire to collect subjective sleep quality [3]. During the experiment,
all participants wore the wristband 24-hours a day for 14 days (ex-
cept showering) and kept a sleep journal noting when they slept
and woke up every day and their subjective evaluation of their sleep
quality, which was adopted from [9]. All the data collected by the
wristband were stored in the built-in memory of each sensor during
the experiment. At the end of 14 days, data were downloaded for
offline processing.

The sleep/wake time from the sleep journal was used as ground
truth; however, when participants reported that they forgot to
record their sleep/wake time or experienced insomnia, sleep/wake
times were extracted from accelerometer data. Based on observa-
tions of people’s sleep data (see Figure 2), we calculated the av-
erage wrist temperature at daytime and nighttime and estimated
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Figure 1: Custom-built temperature and accelerometry
wristband
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Figure 2: Wrist temperature patterns for (top) early sleeper
and (bottom) late sleeper. For both, temperature plots are
shown for an early-sleep day and a late-sleep day. The
red dots denote the first wrist temperature increase onset
time.The horizontal lines above the graphs denote when the
person was asleep. The black arrows denote the beginning
of elevated wrist temperature period while the boxes show
a 3-hour period.

the increase onset for each participant. The methods we used are
described below.

3.2 Wrist Temperature Analysis

3.2.1 Average Daytime/Nighttime Temperature Calculation. Using
the sleep/wake time provided by sleep journal, we categorized wrist
temperature to be daytime and nighttime temperatures by finding
the timestamp of sleep onset and offset. Then we calculated the
average daytime/nighttime temperature for each day as well as
calculating the average temperature over 14 days. This was done
to observe the temperature difference among the participants and



Table 1: Participant Demographics.

Avg. SP | Avg. WK | Avg. Diff
ID Age | Gender | PSQI () (C) (C)
001 23 M 4 35.072 33.001 2.071
002 25 M 5 35.091 32.342 2.749
003 23 F 7 34.049 31.705 2.344
004 22 F 5 35.487 31.707 3.780
005 21 M 4 35.157 33.124 2.034
006 26 F 4 34.873 32.859 2.014
007 25 F 11 35.611 32.342 3.269
008 26 M 6 35.043 30.247 4.796
009 26 F 3 35.951 32.587 3.364
010 21 F 3 35.278 32.616 2.662
Avg. SD - - - 0.247 0.610 0.595

to help us determine how to better normalize wrist temperature in
algorithm development.

3.2.2  Algorithm for Identifying the Onset of Wrist Temperature In-
crease. While wrist temperature trends are influenced by circadian
rhythms, the wrist region is also exposed to many external fac-
tors. For example, the ambient temperature will influence the skin
temperature; entering from outside to inside can cause substantial
changes in wrist temperature. Factors such as these can "mask”
circadian-driven trends of the wrist temperature. Therefore, we
needed to create an algorithm that can use a person’s past data
to estimate the time of onset of rising wrist temperature, as this
mitigates changes from extraneous factors.

To achieve this, we averaged wrist temperature for 24-hours
(from 3PM to 3PM) for every three days based on timestamps pro-
vided by the sensor. Then, we extracted the elevated temperature
period (i.e., the person’s sleep period) using the algorithm described
in [16] and identified the dip point from the beginning of that period.
As shown in our previous work [16], when people delay their sleep,
a second and sometimes third dip appears in the rising temperature
before sleep onset. In order to identify the first dip point (i.e., the
initial rising wrist temperature indicating the body preparing for
sleep), we searched for the dip point at one hour, two hours and
three hours prior to the onset of sleep, which was taken as the
beginning of the stable high-temperature that indicates when a
person is asleep. We used findpeaks() in Matlab 2015a to find the
dip that had the lowest temperature within each time range. This
enabled us to find up to three different dips within one to three
hours for the averaged temperature pattern for every three days.
For each participant we found the dips for the 14 days of data, after
which we calculated the average dip time for the first dip. This
average time was considered to be the wrist temperature increase
onset for each individual; namely, the start of temperature increase
caused by circadian rhythm that indicates the body preparing for
sleep.

4 RESULTS

The demographics of the 10 study participants are presented in
Table 1, as well as their average sleep/wake temperature. It can be
noticed that participants’ average temperature differences range
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Figure 3: Estimated sleep onset from the first dip in wrist

temperature prior to increasing temperature plotted against

average time of sleep onset from sleep journals. Bars on the

graph denote the variance of all the estimated temperature

increase onsets for each participant.

from 2°C to 4.8°C. This finding is in accordance with [14] and demon-
strates that average changes in wrist temperature varies a good
deal between participants.

Regarding sleep quality, people who might be experiencing sleep
disturbance score 8 or higher on the PSQI [4]. A visual comparison
of participants’ temperature differences and PSQI scores suggests
that there is no correlation between sleep/awake temperature dif-
ference and sleep quality. For example, participant 007 showed a
possible sleep problem by having a score of 11; her temperature
difference is 3.269°C. On the other hand, participant 006 has the
lowest wrist temperature difference and has a PSQI score of 4. This
aligns with results in[7].

In Figure 2, the wrist temperature patterns of two participants on
two different days are shown. In the top figure, the orange dashed
line represents the day when the participant started sleeping at
almost 11:00 PM, while the solid yellow line shows the trend on
one day when sleep onset was delayed to 1:30 AM. In the bottom of
the figure, the grey dashed line represents an early sleep onset at
10:20 PM and the blue solid line shows a late sleep onset at around
12:15 AM. It can be observed that sleep occurred when temperature
was elevated and temperature remains relatively stable throughout
sleep. The wrist temperature started to rise at different time for the
late and early participants. For the late sleeper, onset was around
10:10 PM, while the onset for the early sleep occurred at around
8:10 PM. In addition, both participants’ wrist temperature patterns
show a less-smooth temperature increase when they went to sleep
late.

The increase onset detection algorithms described above were
used to find the temperature increase onset (red dots) and beginning
of the elevated temperature denoting sleep (black arrows) in Figure
2. Using these algorithms enabled us to find up to three different
dips within one to three hours before the elevated temperature
period. We check the accuracy of the algorithm based on a visual
analysis was done with 60% of the total data to validate the algo-
rithm’s accuracy, the estimated onsets were all the same as manual
observations. In addition,the variance of all the detected onsets
was calculated - a smaller variance means good estimation as the



wrist temperature increases at almost the same time everyday. By
applying the wrist temperature increase onset searching algorithm,
we extracted 7 X 3 potential onsets for each participant. Figure 3
shows the estimated dip of wrist temperature plotted against the
average sleep onset time from the participant’s sleep journal. The
error bars which represent the variance of estimated onsets for
each participant is also shown.

5 DISCUSSION

Similar to [1, 10], we integrated temperature and accelerometer sen-
sors into a wearable. Our approach differs from the aforementioned
studies as their wearable was worn on the participant’s arm and
has very low sampling rate (1 sample/30 seconds). The low sam-
pling rate might filter out a minor body movement such as rolling
over. Moreover, their sleep detection algorithm was not calculated
for each participant, rather it was based on a manually optimized
threshold across all participants.

As Figure 2 shows, wrist temperature patterns show personalized
trends for different people. However, there are some trends that
occur for everyone, such as a less-smooth rise in temperature and
multiple dip points with delayed sleep. These results speak to some
aspects that can be leveraged in developing personalized sleep
algorithms. It can be seen in Figure 3 that the estimated onsets
have low variance and occur within the same time range for most
participants. This supports that people’s circadian rhythm causes
changes in wrist temperature at the same time everyday. It also
indicates that the algorithm is accurately detecting the first dip
time that indicates wrist temperature increase onset. Compared to
the method used in [16], the algorithm presented here is also able
to detect multiple dip times, which is an indicator that a person is
delaying sleep. In addition, Figure 3 shows that the later the wrist
temperature increase onset, the later the average sleep onset, which
supports the detection of people’s individual circadian rhythm
pattern.

Our approach looks to build a personalized sleep monitoring
system by assessing people’s individual sleep patterns. In the future
work, we will investigate sleep patterns and circadian rhythms
of other two groups: (1) healthy older adults (> 65 years old), (2)
older adults living with dementia (> 65 years old). We will focus on
combining wrist temperature and 3-axis accelerometer features to
build a an unsupervised sleep detection algorithm. Features (e.g.,
root mean squares, standard deviation and angles along each axis)
from accelerometer data together with wrist temperature data (e.g.,
slopes of temperature trends, dip time) will be explored using unsu-
pervised clustering algorithms, such as K-Means, to cluster the data
into sleep/wake status. Furthermore, we will investigate whether
delaying sleep onset could influence a person’s activity the next
day by calculating physical activity level based on the accemetry
data. Correlations between the estimated wrist temperature in-
crease onsets, wrist temperature trends, variations during sleep,
and accemetry data will also be explored.

6 CONCLUSION

In this work, we focused on investigating how we might use wrist
temperature patterns and its implied circadian information to sup-
port better individualized sleep analysis. To the authors’ knowledge,
this work is the first to outline a personalized sleep monitoring

wristband with the circadian phase sensing. We believe that using
a wrist-worn temperature sensor can help to better understand
circadian rhythms and sleep patterns. This can then be used to give
a better sense of quality of sleep as well as help to plan for better
sleep. Future work includes evaluating how detection of one’s cir-
cadian rhythm can be used to promote better alignment between
sleep time and internal rhythms.
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