
Fine-Grained Access Control for Smart Healthcare
Systems in the Internet of ThingsH

Shantanu Pal1,∗, Michael Hitchens1, Vijay Varadharajan2, Tahiry Rabehaja1

1Department of Computing, Macquarie University, NSW 2019, Sydney, Australia
2Advanced Cyber Security Engineering Research Centre, University of Newcastle, NSW 2308, Australia

Abstract

There has been tremendous growth in the application of the Internet of Things (IoT) in our daily lives. Yet
with this growth has come numerous security concerns and privacy challenges for both the users and the
systems. Smart devices have many uses in a healthcare system, e.g. collecting and reporting patient data
and controlling the administration of treatment. In this paper, we address the specific security issue of access
control for smart healthcare systems and the protection of smart things from unauthorised access in such large
scale systems. Commonly used access control approaches e.g. Role-Based Access Control (RBAC), Attribute-
Based Access Control (ABAC) and Capability-Based Access Control (CapBAC) do not, in isolation, provide
a complete solution for securing access to IoT-enabled smart healthcare devices. They may, for example,
require an overly-centralised solution or an unmanageably large policy base. We propose a novel access control
architecture which improves policy management by reducing the required number of authentication policies
in a large-scale healthcare system while providing fine-grained access control. The devised access control
model employs attributes, roles and capabilities. We apply attributes for role membership assignment and
in permission evaluation. Membership of roles grants capabilities. The capabilities which are issued may
be parameterised based on attributes of the user and are then used to access specific services provided by
things. We also provide a formal specification of the model and a description of its implementation and
demonstrate its application through different use-case scenarios. The evaluation results of core functionality
of our architecture are provided with the practical testbed experiments.

Received on 22 December 2017; accepted on 28 February 2018; published on 20 March 2018
Keywords: Internet of Things, Healthcare Systems, Access Control, Policy Management, Security

Copyright © 2018 Shantanu Pal et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.20-3-2018.154370

1. Introduction
With the rapid improvement in the Internet of Things
(IoT) [2], healthcare systems are becoming faster,
wearable and more easily accessible as well as remotely
available. Previously healthcare systems were designed
as dedicated environments but now must function
in an open-systems context [3]. Such ubiquitous and
heterogeneous healthcare systems can now include
a range of wearable devices and smart sensors for
automatically collecting, storing and reporting health-
related information and assisting in diagnosis and
treatment [23]. It is predicted that, by 2020, there will

HThis paper includes work previously published by the authors [39].
∗Corresponding author. Email: shantanu.pal@hdr.mq.edu.au

be 50 Billion connected devices in the Internet [5].
This will increase the number of connected devices
per person dramatically. Healthcare is one of the
key sectors where this change will make a significt
impact. With the growing number of smart mobile
devices (e.g. smartphones, tablets, PDAs, etc.) there is
a similarly expanding range of compatible healthcare
apps. for such devices, with nearly 165,000+ currently
available [18]. Demand for the use of IoT-based
solutions in the healthcare context is only likely to grow,
with medical professionals relying on this technology
for efficient and secure access to patient data.

In the IoT context a specialist doctor visiting a patient
in a hospital may bring their own smart device on which
they wish to view the output of the sensors attached to
the patient, while a doctor employed by the hospital or

1

Research Article

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems

EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<shantanu.pal@hdr.mq.edu.au>

ShantanuPal et al.

other staff member may have a hospital issued-device. A
nurse in that same hospital may wish to view the output
of, and control, patient-attached sensors, but will likely
have a different level of access to that of a specialist or
attending doctor (cf. Fig. 1). The healthcare system will
need to include policies and access control mechanisms
which will support the variety of access required. When
the range of staff, patients and data in a modern
healthcare setting is considered the myriad possible
levels of access become clear. In a smart healthcare
system it is important to manage and track who (e.g.
user and device) is connecting to and accessing what
(e.g. system and resource). Thus, there is a need for
robust, scalable and secure healthcare systems [41].
In particular unauthorised access to these wearable
devices (and connected medical equipment) can breach
a patient’s privacy and can generate potential threats
to an organisation’s resources. For example, a patient’s
pacemaker can be used to generate a fatal shock or
a drug infusion pump (e.g. insulin or antibiotics)
can be controlled by an attacker to change the drug
dosage [44].

The demand for IoT-enabled healthcare devices
is increasing day by day [34]. These devices are
connected to a patient’s body, periodically monitoring
their health status using various healthcare apps. (e.g.
Cue [4] and Medtronic [21]) and communicate via
wireless medium (e.g. IEEE 802.15.4 or Bluetooth
Low Energy (BLE) wireless personal area network
technology). Such a convergence of the digital and
physical world promises improved healthcare but
also poses numerous security issues and privacy
challenges [19]. IoT devices may be low-powered,
memory constrained and possess limited processing
power. This means it is impractical to enforce heavy-
weight security mechanisms via these devices. From the
communication point of view, heterogeneous network
environments, wireless mediums, high mobility of
things, dynamic network topology and availability of
infrastructure for communication are major barriers to
deploying secure solutions [40]. Therefore, managing
the vast amount of heterogeneous devices, applications
and their associated services is a challenging task,
especially to different requirements and resources.
Note, in this paper we introduce things as a collection of
services, application and potentially their associations
that are coming from one or more IoT devices and users.

2. Background and Problem Statement
Several proposals have examined the suitability of
applying commonly used access control measures for
the IoT [30] [31], e.g. using Role-Based Access Control
(RBAC) [6], Attribute-Based Access Control (ABAC) [47]
and Capability-Based Access Control (CapBAC) [10].
RBAC uses roles to manage the relationship between

Figure 1. A fine-g ained access control scenario for di˙erent
actors in a healthcare system. Where a doctor/nursewith
an appropriate permission can only view/controla subset of
a patient’s IoT-enabled healthcare ‘things’. For instance, a
specialist Doctor A (e.g. cardiologist) can view a particular
patient’s (e.g. Bob) heart sensor related data.

users and policies. It provides rights to the specific
roles and users are made members of appropriate roles,
rather than granting permissions directly to the users.
RBAC introduces an extra layer (i.e. the role) between
the users and the resources and permissions do not need
to be assigned to each individual, rather permissions
are assigned to the roles. The users associated with
that particular role can then access the resources.
However, to explicitly identify and assign users to roles
is difficult in a dynamic and large-scale system e.g. the
IoT. Moreover, in a smart healthcare system, there may
be vast numbers of users and short-term interactions,
which argue against such heavy-weight access control
mechanisms due to the difficulty in managing and
updating the resulting policy base. Therefore, it maybe
inefficient to implement access control policies simply
using RBAC in such systems.

Unlike RBAC, ABAC makes access control decisions
based on the ‘attributes’ of system entities (e.g. users,
resources, etc). An attribute defines the characteristics
of an entity. For example, for subjects (users or
applications) attributes can include name, organisation,
title, for resources, size, date, performance and for
environments, date, time and physical location [37]. In
ABAC, policies are formulated as attribute expressions
and access is granted if the requirements of a policy is
satisfied. This allows significant flexibility in specifying
fine-grained policies. It is difficult, however, to achieve
this in ABAC without deploying a large policy base.
Without some means of grouping together policies
with the same required attributes, but which provide

2
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

access to different resources, the number of policies
can multiply. In the IoT context, this means, we
may have a difficulty with the scale of the number
of things. ABAC can be used to provide a context-
aware approach for user-role assignment by using
user’s attributes (e.g. location, designation, etc.) to
assess role membership. This allows more flexibility
and conciseness in specifying the access of subjects to
resources by avoiding the need to specify individual
relationships on a per ‘subject-object’ basis. CapBAC
approaches (e.g. [8], [12]) can be used to provide fine-
grained access control and have been suggested for
use in IoT systems due to the low requirements they
place on things. A capability can be defined as a
communicable, unforgeable token of authority [10]. It
is associated with an object and a set of access rights to
that object, allowing the user that holds the capability
to access the resources. While capabilities provide a
fine-grained approach to access control, providing a
capability to each user for every resource they may
access is not scalable without some additional approach
to policy management. Also all these systems (with
the exception of some recent capability-based proposals
e.g. [12]) tend to be heavily centralised, which is not an
ideal model for an IoT-enabled smart healthcare system.

One common problem with the aforementioned
access control approaches is that, individually, they
are not explicitly designed or suitable for managing
scalability, whether it is devices, users or policies, in
practical IoT scenarios. Handling policy management
on an individual basis, with an assumption that
the identities of all users who will need access are
known beforehand and that all policy rules should be
individually recorded in the system on an a priori basis
(e.g. the identities of the specialist doctors responsible
for each patient) is not realistic in the case of IoT. While
ABAC can be employed in dynamic scenarios to handle
user scalability, the complexity of policy management,
especially on a fine-grained level, can be daunting.
RBAC can be used to manage the scale of the number
of users by employing role-relationships, but typically
needs a priori identification of the authorised users and
is infliexble in the face of dynamic user assignment.
Capabilities can be used to generate unique permissions
for each of the users and can reduce the centralisation
of the system but capabilities come with well-known
management issues [16]. Thus, there is a need for
alternative approaches to access control for IoT-enabled
smart healthcare systems.

3. Contributions and Paper Structure
• We propose an access control architecture that

allows authorised users to access services pro-
vided by resource-constrained IoT devices in a
smart healthcare system.

• Our model combines attributes, roles and capa-
bilities to provide a fine-grained and flexi-
ble approach while minimising the number of
required authorisation policies that need to be
created and maintained.

• We apply attributes for role membership assign-
ment and in permission evaluation. Membership
of roles grants capabilities. The capabilities which
are issued may be parameterised based on further
attributes of the user and are then used to access
specific services provided by things.

• We provide a formal specification of the model
and a description of its implementation and
demonstrate its application through different use-
case scenarios.

• We detail the evaluation results of core function-
ality of our architecture.

The rest of the paper is organised as follows. First
we present an outline use-case in section 4. Then,
in section 5, we discuss the solution overview. We
briefly discuss the system challenges and requirements
in section 6. In section 7, we explore our proposed
access control architecture. In section 8, we discuss
the model design with various access scenarios. We
describe a detailed implementation in section 9 and
give some performance evaluation results in section 10.
In section 11, we present related works followed by a
discussion in section 12. Finally, we conclude the paper
and outline the future work in section 13.

4. Use-Case Example
An IoT-enabled smart healthcare system is composed
of smart sensors, wearable devices, intelligent network
infrastructure and the actors who use the system,
all governed by the appropriate policies [34]. There
will be various actors within the system, and these
actors will require various levels of access to the
things. Access will be controlled by policies expressed
and managed within the system. Some actors will be
employees of the organisation controlling the system,
for example doctors and nurses. Other actors will be
outside the organisation but have a formal relationship
to it, e.g. visiting medical specialists, employees of
subcontracting firms (e.g. for building maintenance)
and patients. Finally, there will be actors who have a
much less formal relationship with the organisation,
e.g. visiting friends and relatives of patients.

4.1. A Practical Scenario
Now, consider a healthcare facility where patient
monitoring and treatment delivery is controlled via
smart things. Various devices and sensors will be

3
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

Figure 2. Our use-case scenario. The ‘Policy Management’
moduleholds policies that allow a user (e.g. doctor, nurse or
family) access to the IoT ‘things’ associated with a particular
patient. The ‘Things Management’ modulemanages the access
controlof each IoT‘thing’.

attached to the patients (i.e. wearable) and accessed
by healthcare professionals (and possibly others). In
Fig. 2 we depict our scenario. The devices and sensors
may be allocated to a patient on admission or at any
stage during their stay at the facility. When a device or
sensor is allocated to a patient this will be registered
in the system, including a notation as to which patient
they are assigned. Access to the sensors will depend
upon the policies of the facility and this may include
different users having different levels of access to the
same device. For example, a nurse may have read-only
access to a drug delivery device whereas a doctor may
be able to alter the dosage. The following actors are
involved in our scenario, and the healthcare processes
are based on a medical care regime in the Australia [27].

• Patient: People receiving medical treatment.

• Doctor: Primary care physicians. They may
provide appropriate advice for the first instance
when a patient comes for medical treatment.

• Specialist: Doctors who specialise in a particular
area of medicine e.g. cardiologist, neuro-surgeon,
etc.

• Nurse: Clinical staff who regularly check the
patient’s health and provide medical support
services.

• Family and friends: Individuals who visit the
patient.

4.2. Granting Di˙erentLevel of Access
In our scenario, we want to provide different actors with
different levels of access to the patient’s medical sensors

and the data they provide while protecting the patient’s
privacy. For simplicity, we consider that the things
for different patients may have different associated
access control policies and that these policies are stored
inside a centralised system. However, enforcement is
handled locally. This may either be within the things
themselves or a local management device if the things
have insufficient functionality for the task. This both
takes advantage of the edge-intelligence of such systems
and avoids performance bottlenecks in the central
system. In a real-life hospital environment there may be
hundreds of doctors, nurses and other staff and possibly
thousands of patients with each patient having multiple
sensors attached. No one medical professional would
have access to all sensors on all patients. Conceivably,
no medical professional may be able to access all the
sensors on a single patient and even if they could the
levels of access may vary from medical professional
to medical professional. Consider two examples of the
complexities:

• Medical specialists, e.g. cardiologists, should only
be able to access the relevant information for
patients under their care. If Doctor A is treating
patient Alice and Doctor B is treating patient Bob
then A should only be able to access the readout
from Alice’s heart sensor and B should only be
able to access the readout from Bob’s heart sensor.

• Nurses may be assigned to a particular ward. Each
patient in the ward may have a standard set of
sensors attached, in addition to ones that may be
particular to their condition. Nurses should be
able to access the standard sensors for all patients
in their ward, but not for patients in other wards.

5. Solution Overview
An access control solution is required that can
efficiently provide the required policy management for
situations e.g. those described above. We propose a
solution combining RBAC, ABAC and CapBAC. Role
membership is specified using attributes, not explicit
user to role assignment. This provides a greater level
of flexibility and conciseness in role management as
updates to individual role membership do not have to
be noted. It also allows a consistent and easily managed
approach to which users will be members of which
roles. By employing roles, rather than a direct mapping
between attribute expressions and permissions, we do
not have to needlessly duplicate attribute expressions.
It also allows us to take advantage of the power of
the role-hierarchies of RBAC. Adopting an approach
similar to [10] we use capabilities as credentials to
govern access to things. Capabilities are distributed to
users and presented to the edge devices (i.e. things) for
access. The things can check the validity of capabilities

4
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

without consulting the central systems. This reduces the
centralisation of the system and eliminates a potential
performance bottleneck.

5.1. Policy Management
Within this general system description there remains
a question as to how to formulate and distribute
capabilities while maintaining the minimum number
of access control policies. Consider how policies may
be written, and permissions granted (i.e. capabilities
distributed), in the first example of the previous section.
A number of alternatives exist:

1. A simplistic solution would be to create a
role ‘cardiologist’ which provides its members
with a capability that grants access to all
sensors of type ‘heart monitor’. This would allow
every cardiologist to access every patient’s heart
monitor, violating patient privacy.

2. Each capability could have associated with it a
test, evaluated on access, that ensures the patient
is under the care of the specialist presenting the
capability. This would increase the processing
and bandwidth requirements on the things.
The relevant credential, proving the relationship
between specialist and patient, would have to be
provided to the thing and any signature on it
checked. Signature checking is the most time-
consuming activity involved so any such extra
requirements on the things should be avoided,
especially as the check would need to occur on
every access.

3. Patient-specific roles, e.g. ‘cardiologist of Alice’
and ‘cardiologist of Bob’, could be created, which
would only confer access to the sensor(s) of
the particular patient. This would fulfil the
requirements for specialists to only be granted
access to the sensors of their patients. However,
it would be difficult and time-consuming to
manage and produce a large number of similar
policies. It may also be difficult to assemble
this information a priori (given both the large
number and dynamic nature of doctor-patient
combinations).

None of these alternatives provides us with the
required level of flexibility and fine-grained access
without creating a needlessly high number of policies
to be authored and maintained.

A preferable alternative is to take the first option
above, but provide additional information, e.g. a cre-
dential proving the relationship between specialist and
patient, to the capability issuing system. The capability
generated and returned to the user would then only
grant access to the nominated patient. In effect, the

capabilities are parameterised by the additional infor-
mation provided, in a manner analagous to the role
parameterisation of [20]. While the signature on the
attribute credential may still have to be checked, this is
superior to option two as the signature is only checked
once (on capability issuance, not on every use) and by
the central policy management system, which will have
superior processing power compared to the individual
things. The things would only have to check the signa-
ture on the capability, not on both the capability and the
attribute credential.

The solution also fulfills the requirements of the
second example given, although here the information
provided for parameterisation would be a credential
affirming assignment of a nurse to a particular ward. In
both cases the things would need to be registered with
the central system, along with such attributes as the
patient they are assigned to and that patient’s current
ward.

Note that in effect the capability issuing system stores
capability templates as defined by the relevant policies.
Most CapBAC systems for IoT access control would
effectively store capability templates. For example, the
capabilities of [10] include expiry time and identity
of the user to whom the capability is issued. These
would be placeholder values in capability template
stored by the policy manager and filled in when the
actual capability is instantiated for distribution. We
extend this idea to the identity of the resource to which
the capability allows access. For example, the template
might note that the capability allows to devices of
class ‘heart_sensor’ but that the issued capability can
only give access to the heart sensor of a patient
under the care of the requesting actor. Proof of this
relationship between specialist and patient would be
an attribute credential demonstrating its existence. The
heart sensors would be registered by the system as being
assigned to the patient. From this information and the
capability template an appropriate capability can be
generated and issued.

The effect of this approach is analagous to that
of Schwartmann [36], who was also concerned with
providing fine-grained access within a healthcare
system. However, Schwartmann’s approach involved
predefining activation contents for each patient on a
per-role basis. This does not scale well as the number
of patients increases, as the policy expression for each
patient must be handled independently.

As we demonstrate in section 8, by relying on
attributes attesting to the relationship we can abstract
such policy settings into a minimal number of actual
policies. Further differences between our system and
that of [36] include the reliance of the later on explicit
user assignment to roles and its centralised approach to
permission checking (i.e. the central system is consulted
on every access) rather than employing capabilities.

5
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

5.2. CapabilityManagement
Details on the components of our proposed system and
their functions are discussed in section 7.1. Here we
provide a discussion on capability instantiation.

Policy database

(5) Creates
capability

(3a) Deny access (3) Policy decision

(2) Checking policies

(4) Use capability
templates

Stored capability
templates

(6) Send capability

(1) Request for a capability

Doctor

Capability
Issuer

Figure 3. Issuing of a capability froma capability template.

Fig. 3 presents a simple outline of a capability issuing
process using a capability template. When a request
for a capability reaches the capability issuer (step 1),
it checks the corresponding access policies from the
policy database (step 2) and if satisfied (step 3) it
contacts the capability template database (step 4) to
instantiate a capability from the appropriate capability
template (step 5). Finally, it sends the issued capability
to the user (step 6). If the corresponding policies do not
match, then the request terminates at the first instance
and a response sends back to the user (step 3a). Fig. 4,
illustrates the use attributes in role membership and
capability instantiation.

Attribute policy for
role membership

Role
 (e.g. Cardiologist)

Capability
template

Access request
includes information

for instaniation

Attributes maps to
specific roles

That s instantiated
to a capability

Figure 4. Use of attributes in capability instantiation.

A capability template is composed of fields needed
to generate an actual capability. In section 8.1, we
discuss capability structure and its different fields in
detail. Some fields, e.g. the operations the capability
provides access to (e.g. read, write, etc.) and conditions
to be evaluated on capability use, may be pre-defined.
Others, e.g. capability and user identity, expiry time
and the exact devices the issued capability will allow
access to, will be specified based on policies and
other information stored in the system and attributes
supplied by the requesting user. Capability templates
may differ in how much variance they allow in
instantiation. For example, a capability template may
simply provide users with a capability for all doors of
class ‘Public_Access’. All capabilities instantiated from

such a template will grant access to the same set of
resources. In other cases, a capability will provide more
fine-grained access. For example, referring to Fig. 1, a
doctor with a role ‘cardiologist’ (e.g. Doctor A) wants
to access the heart sensor of a patient (e.g. Bob). In
this case Doctor A sends a request along with attributes
satisfying role membership and attesting to their status
as the cardiologist of Bob. The capability template
will have state that it allows access to devices of class
‘heart_sensor’ but that instantiated capabilities will
only include the identity of heart sensors registered to
patients for whom the requestor has provided attributes
attesting that they are the cardiologist of that patient.
Fig. 5, illustrates the use of a capability in obtaining
access.

Cardiologist Capability Bob s heart sensor

Access request
includes things

identity and
appropriate
attributes

Actual capability
issued from

capability template

This checks patient s
identity and other

conditions

Figure 5. Usinga capability for accessing a ‘thing’.

In the policy database, the policies can be stored
based on standard XACML (eXtensible Access Control
Markup Language [26] structure, which is a XML-based
general purpose access control policy decision language
for managing access to resources. The policy database
can store these policies in the form of serialised XACML
and the associated metadata.

6. Challenges and Requirements
The IoT poses its own particular security needs
beyond the essential requirements for all computing
systems [38] [50]. Several authors have examined
the challenges and requirements for IoT and smart
healthcare systems [35] [13]. Specific challenges
associated with the IoT scale, heterogeneity and the
need for light-weight solutions. Particularly important
security challenges facing healthcare systems include:

• Data confidentiality: for example a nurse may not
be allowed to see all the patient records that a
specialist doctor can view.

• Privacy: healthcare records are a particularly
sensitive example of user records.

• Availability: healthcare records need to be avail-
able to enable prompt patient treatment.

• Authentication: users must be properly identified
to securely manage access to the sensitive data and
resources of healthcare systems.

6
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

Appropriately designed access control for healthcare
systems are required to help meet these challenges.
Access control for the IoT is significant due to
the massive scale of the number of things and
their associated services and applications. Within
this context, the following requirements can be
placed on the design of a secure access control
architecture [29] [46].

• Fine-grained access control: access must be
properly tailored to the range of actors within the
system and the roles that they fulfill.

• Scale: any proposal must scale with the number of
things and users that may appear in IoT-enabled
healthcare systems.

• Heterogeneity: accommodation must be made for
the heterogeneous nature of such systems in terms
of devices, communication technologies, etc.

• Light-weight: the resource-constrained nature
of things must be recognised and light-weight
solutions supported.

• Appropriate decentralisation: given the edge
intelligence present in many IoT systems and
their potentially large scale, security provisioning
should be placed as close as possible to the point
of need, while recognising both the need for data
confidentiality and ease of management.

7. Proposed Access Control Architecture
In an IoT system, communications between things
can involve various device types (e.g. smart phones
and Internet-aware devices), routing protocols (e.g.
Routing Protocol for Low power and Lossy Networks)
and interaction patterns. We assume that the things
broadcast the service that they have within a short
distance to the other devices that are physically present
typically in the form of BLE beacons in real-time e.g.
Google Beacons [9].

7.1. Architectural Components
In Fig. 6 we depict our proposed access control architec-
ture. It is composed of the following components: User
Device (UD), Things (TH), Central Management Sys-
tem (CMS) and Things Registration Repository (TRR).
The CMS consists of Role Manager (RM), Capability
Database (CD) and Policy Management Unit (PMU).
The PMU consists of an Evaluation Engine (EE) and
Policy Database (PD).

TH’s register in the system via the TRR. TH’s will
advertise their services. When a UD first detects a
desired service (from the TH’s API) it contacts the CMS
to obtain the required credentials (i.e. capabilities).

User Device
(UD)

Things
(TH)

Role Manager
(RM) Capability Database

(CD)

Central Management System (CMS)

Evaluation Engine (EE)

Policy Database (PD)

Policy Management Unit (PMU) Things Registration Repository
 (TRR)

Figure 6. The proposedaccess controlarchitecture.

The CMS will check the TH’s registration in the TRR
and supply the required credentials according to the
policies maintained by its components.
• User Device (UD): A smart mobile device

(e.g. smartphone, tablet, PDA, etc.) that belongs to
a particular human user (e.g. doctor, staff, family
member, etc). A UD is capable of interacting with a TH.
The UD stores a user’s attributes (e.g. name, ID, etc.)
and issued capabilities. Attributes that the users hold
are issued by a trusted authority.
• Things (TH): Smart IoT devices, for example,

attached to the patient’s sensors. A TH is capable of
validating a capability. Once the authorisation decision
is made, a response message (i.e. allow or deny) is
sent back to the UD. In our architecture, these devices
are highly resource-constrained in memory, battery and
computational power. To reduce the proliferation of
policy information and to improve user’s privacy, a TH
does not know the roles of the users or the attributes
that they possess.
• Central Management System (CMS): The CMS

is the core component of our architecture. It commu-
nicates with the UD, receiving attributes and issuing
capabilities, which it also signs. The CMS is composed
of the RM, CD and PMU.
1. Role Manager (RM): Stores the roles, role

hierarchy and the mapping from roles to permissions
(capabilities). The RM is a centralised (e.g. cloud-based)
server, as it is infeasible to implement its activities
within a resource-constrained IoT device. Unlike most
RBAC systems an explicit role to user mapping is not
maintained. Instead, attribute rules are associated with
each role and stored in the PD. Users who can satisfy
the rules are granted the permissions associated with
the role.
2. Capability Database (CD): Stores the capability

templates, which are used to create actual capabili-
ties as defined by the parameterisation rules (cf. sec-
tion 8.1). A list of revoked capabilities are also stored
inside the CD.

7
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

3. Policy Management Unit (PMU): Verifies the
associated polices (e.g. role membership/inheritance or
capability parameterisation). It consists of the following
two components:

-Evaluation Engine (EE): Evaluates a user request for
a capability by locating the attribute rules that must be
satisfied for role membership, checking user provided
attributes against those rules and creating the requested
capability.

-Policy Database (PD): Holds the attribute rules
which grant role membership and define capability
parameterisation.
• Things Registration Repository (TRR): Holds the

identities and attributes of each TH in a particular
network domain. The TRR is dynamically updated
when a TH joins or leaves the network.

7.2. CommunicationProtocol
In Fig. 7 we illustrate the protocol for satisfying a user
request. The TH broadcasts the services it provides
to UDs located in proximity using IEEE 804.15.4
Bluetooth Low Energy (BLE) beacon or a similar
protocol (step 1). If the UD possesses an appropriate
capability, then the communication proceeds to step
6. Otherwise, the UD communicates with the CMS,
specifying the TH and service it wishes to access, in
order to obtain an appropriate capability (step 2). The
CMS uses the RM and CD to locate the appropriate
capability template and extracts the necessary rules
from the PD. This is used to inform the UD of the
attributes that must be presented (step 3).

Role
Manager (RM)

Central Management System (CMS)

 (2) Service request

(1) UD receives APIs

User Device (UD) Things (TH)

Resourceful Server Client Resource-Constrained Server

{TH’s ID, Operation ID}

(3) Request attributes

{required attributes}

(4) Attributes for role membership
and capability parameterisation

{user’s attributes}

(5) Requested capability

{Capability, SignatureCMS}

(6) Access request

{Capability, SignatureUD, TH’s ID,
 UD ID, Operation ID}

(7) Access decision

{Allow, Deny}

Figure 7. Protocolfor service access.

These attributes are those required to obtain role
memberships and (if specified) further attributes
required for capability parameterisation. Assuming
that the UD holds, on behalf of the user, attributes
that will satisfy the requirements it sends them,
and the user identity, to the CMS (step 4). The
CMS checks that the supplied attributes satisfy the
requirements for role membership. It then creates
a capability for the requested thing/operation pair,

by filling in the capability template with the user’s
identity, any necessary time stamps (e.g. beginning
and end times for capability lifespan) and any
parameterisation information. The user’s identity is
required to ensure that the capability cannot be
employed by an unauthorised user to gain access. The
capability, and a signature from the CMS, is then sent
to the UD (step 5). The UD may now present the
capability, with a signed request, to the TH (step 6). The
TH will check the capability, as outlined in Algorithm
1, including checks on the CMS’s signature on the
capability and the UD’s signature on the request and
reply to the UD (step 7).

Algorithm 1 takes the capability supplied by the
user, the operation requested, the user’s identity, the
identity of the TH and the signatures on the request
and capability. It checks that the current time is within
the period defined by the issued and expiry fields of
the capability, that the user making the request was the
one to whom the capability was granted, the capability
allows access to the requested TH and operation, that
any condition rules contained within the capability are
satisfied and that the signatures are valid. Signature
checks are left to last as they are the most-consuming
operation. Conditions can involve context e.g. correct
date and time, the location, etc. or properties of the TH
itself, e.g. available storage, remaining battery power
and any other conditions related to the state of the TH
itself. These conditions are listed in a capability and
are evaluated locally within the THs. The algorithm
returns a decision on whether the requested operation
is allowed or denied.

Algorithm 1 Capability authorisation process.
Input: Capability, THID , UserID , OpReq, UDSig (Req),
CMSSig (Capability)
Output: PermissionDecision
P ermissionDecision = “Deny”
if Capability is not NULL then

if Valid(T imeStamp) then
if UserID = Capability(User) then

if THID in Capability(things) then
if OpReq in Capability(ops) then

if ConditionRules = TRUE then
if V alid(UDSig) & V alid(CMSSig)
then
P ermissionDecision =
“Allow”

end
end

end
end

end
end

end

8
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

8. Model Design and Access Scenarios
We first give a formal specification of our design. We
then follow this by outlining various access control
scenarios for our design based on the interactions
between the UD and the TH.

8.1. A FormalSpecificatio
Basic Concepts. Our proposed model has the following
components: R, A, Capt, C, U , T , O, Cla and E (roles,
attributes, capability templates, capabilities, users,
things, operations, classes and environment respec-
tively). We represent a Cla as an extensible programme
that creates objects for designing and building applica-
tions. We require the following mappings:

• RCapt : R × Capt, a many-to-many role to capa-
bility template assignment relation.

• ClaO : Cla ×O, a many-to-many class to opera-
tion assignment relation.

• ClaT : Cla × T , a one-to-many class to things
assignment relation.

• CaptT : Capt × T , a many-to-many capability
template to things assignment relation.

• CaptO : Capt ×O, a many-to-many capability
template to operation assignment relation.

• CaptC : CaptC, a one-to-many capability tem-
plate to capability assignment relation.

• UC : U × C, a one-to-many user to capability
assignment relation.

Note that equivalents to CaptT and CaptO, CT
and CO exist, mapping capabilities to things and
operations. CO inherits directly from CaptO, with
capabilities mapping to the operations defined by
CaptO for the capability template from which they were
derived. The things that a capability maps to via CT
is a subset of the corresponding mapping in CaptT ,
as defined by the paramterisation rules and supplied
attributes.

• UAk(1 ≤ k ≤ K), TAm(1 ≤ m ≤M) and EAn(1 ≤
n ≤ N) are the pre-defined attributes for users,
things and environments, respectively. Where K
is the number of user attributes, M is the number
of things attributes and N is the number of
environment attributes. We follow the approach
of [47].

• The attribute assignment relations (AT TR) for
user u, things t and environment e are AT TR(u),
AT TR(t) and AT TR(e) respectively. Where,

AT TR(u) ⊆ UA1 ×UA2 × · · · ×UAK

AT TR(t) ⊆ TA1 × TA2 × · · · × TAM
AT TR(e) ⊆ EA1 × EA2 × · · · × EAN

• We use four attribute-based P olicy Rules for our
model.

- Role −Membership Rule: A boolean func-
tion of the user and environment attributes
f (AT TR(u), AT T R(e)). This exists for each role
for role − to − user mapping, and specifies what
attributes a user (u) must possess to become a
member of the role in a specific environment (e).
This can be denoted as follows:

P olicy Rule : Role_Membership (u, e)←
f (AT TR(u), AT T R(e))

- Capability − P arameterisation Rule: A rule
which specifies which things can be accessed
using a capability generated from a capability
template (Capt) given provided user attributes.
This can be denoted as follows:

P olicy Rule : Capability_P arametisation (u, Capt)
← f (AT TR(u), Capt)

- Condition Rule: This is a boolean func-
tion of the things and environment attributes
f (AT TR(t), AT T R(e)). It decides whether a user
(u) can access a thing (t) in a specific environment
(e). This can be denoted as follows:

P olicy Rule : Condition (t, e)←
f (AT TR(t), AT T R(e))

- Delegation Rule: A boolean function
of the user and environment attributes
f (AT TR(u), AT T R(e)). This attribute rule
specifies what attributes a user (u) must possess
if that user is to be eligible to employ a delegated
capability. This can be denoted as follows:

P olicy Rule : Delegation (u, e)←
f (AT TR(u), AT T R(e))

Capability Structure. In our model, we use the following
capability structure. A capability template simple
consists of the t, o and CoR fields and associated
parameterisation rule, the other fields being created
when a capability is created. The o and CoR fields
are copied into the new capability, the t field of the
capability may be a subset of that of the template, as
specified by the capability parameterisation rules.
{Capid , Uid , Issid , Isstime, Exptime, t, o, Del, Sig, CoR,DelR}
where:
• Capid : Capability ID is the unique identity of each
capability.
•Uid : User ID is the unique identity of the specific user
to which the capability has been granted.
• Issid : Issuer ID is the unique identity of the entity
issuing the capability.

9
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

• Isstime : The time at which the capability was issued to
the user.
• Exptime : The time at which the issued capability will
expire.
• t : This identifies either a class ID (cl ∈ Cla) or a set of
related things ID, where all the things are instances of
the same class. This is to note that, t ⊆ T and,

t =


clid | clid ∈ Cla
{tid1

, tid2
, tid3

, . . . , tidn } | ∃ clid ∈ Cla→
∀tidi ∈ {tid1

, tid2
, tid3

, . . . , tidn } tidi ∈ ClaT (clid)

• o : This identifies a set of operations that can be
performed on the thing(s) to which the capability
allows access. This is to note that, o ⊆ O and,
o = {oid1

, oid2
, oid3

, . . . , oidn } | ∃ clid ∈ Cla→ o ⊆
ClaO(clid)
Note that the class ID (clid) here is the same class ID
which is discussed for t.
• Del : The delegation right. This is a binary value that
specifies whether or not the capability can be delegated
to others.
• Sig : This is the digital-signature of the issuer of the
capability. This protects the integrity of the capability
from being forged or tampered with.
•CoR : A set ofCondition Rules. It is at the discretion of
the things how to interpret multiple rules (e.g. whether
all must be satisfied or only one). Importantly, the CoR
references local contexts. For example, the TH’s location
e.g. a particular room in a building or the date and time.
• DelR : A set of Delegation Rules. These are
the attribute rules that must be satisfied before the
capability can be delegated.

Compared to the other capability structure e.g. [10],
which follow a heavy-weight XML structure, we use
JSON (JavaScript Object Notation). Below we show a
sample capability:
{

“Capid” : “jXEP y0UFLzC4oa4ROYTCRT S39”,
“Uid” : “SN#12348484”,
“Issid” : “medical#organisationA”,
“Isstime” : “0506171200”,
“Exptime” : “0506181200”,
“t” : “heartsensor#patient1”,
“o” : “read”,
“Sig” : “jJhbGciECEF0OSQVMiLC0eXApS”,
“CoR” : [{

“date” : “06062017”,
“loc” : “e6a360”
}]
}

Capability Revocation. In our model, a capability can
be revoked in two different ways. Firstly, implicitly by
the capability reaching its expiry time and, secondly,
explicitly by maintaining a capability revocation list.
They are as follows:

• Validity Expiration: In this case the issued
capability automatically expires after a certain period
of time that is explicitly stated during the generation
of the capability (i.e. Exptime). In the normal case, a
user could simply replace an expired capability by
requesting a new one from the RM. To prevent, if
revocation is required, steps should be taken to prevent
the user obtaining a replacement capability. This can
be achieved in a number of ways. Firstly, the user’s
attributes could be updated so that they no longer
qualify for membership of the role that provides the
capability. Secondly, the attribute rule of the role could
be updated so that the user again no longer qualifies
for membership. Finally, the capability template could
be removed from the role. Note that implicit revocation
has the advantage that the TH does not have to check
on each use to determine whether a capability has been
revoked. The disadvantage is that capabilities are only
actually revoked once they have expired.
• Maintain Capability Revocation Lists: It is

possible to maintain a list for revoked capabilities in
the CD. On an access request, the TH provides the
capabilities identity to the CD, which then informs
the TH as to whether the capability has been revoked
or not. This approach does not require waiting for
capability expiration, but does require communication
with the CD on each access. In the IoT, this extra
centralisation and processing requirement on the TH
may be undesirable.

Capability Delegation. In our model, capability delega-
tion can be done followed by two possible techniques.
Both rely on the delegated user satisfying the delegation
rules specified in the capability. For example, consider a
situation where Doctor A wishes to delegate a capability
to Doctor B. In the first case, Doctor A provides Doctor
B with the delegated capability, along with a signed
credential stating that they authorise the delegation.
When Doctor B wishes to employ the capability then he
or she must, when they present the capability to the TH
provide additional information. This additional infor-
mation is the signed credential from Doctor A and any
attributes required to satisfy the delegation attribute
rule held in the capability. Assuming all checks are
valid, access is allowed.

For the second case, the same information is provided
by Doctor A to Doctor B, but Doctor B then access the
CMS to obtain a new capability for the TH and resource.
This new capability will contain Doctor B’s identity
in the Uid field. Doctor B can then present this new
capability to the TH and access will proceed as normal.

Note the differences between the two cases, despite
the same information is being given to Doctor B. In
the first case, the CMS is not consulted. This assists in
decentralising the system. However, the CMS is then
unaware of the delegation. Revocation of Doctor A’s

10
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

capability will also result in immediate cancellation of
Doctor B’s access, as it is Doctor A’s capability that is
provided by Doctor B to the TH. If that capability has
been revoked, Doctor B’s access will be denied. This
alternative places more requirements on the TH as it
must carry out the checking of the delegation rule of
the capability.

In the second case, there are not additional
requirements on the TH. It will not be aware that
a delegated capability is being used. As the CMS is
responsible for issuing the delegated capability it may
place additional rules on whether the delegation is
allowed. Revocation of access of Doctors A and B can be
separately enforced. This allows for a more fine-grained
management, but at the cost of additional complexity.
This option also increases the centralisation of the
system, due to the increased involvement of the CMS.

8.2. Di˙erentAccess Scenarios
We return to the use-case example that we discussed in
section 4, and discuss different access scenarios based
on the issued capability, different access operations on
THs and various conditions.

Scenario 1: First access. In this scenario, a user (i.e.
the UD in our architecture) receives APIs from a TH.
The UD communicates with the CMS requesting a
specific service from a specific TH. The UD needs a
capability to perform an operation and we assume that
the UD does not have an appropriate capability. The
UD sends the appropriate attributes to the CMS to
satisfy role membership and, if required, capability
parameterisation. If satisfied, the CMS issues the
capability. The UD requests access to the operation from
the TH and presents the capability. The TH checks
that the capability authorises the requested access, via
Algorithm 1. If the algorithm returns ‘Allow’ the UD is
granted access. For example, nurse C can access Bob’s
clinical sensors with a valid capability.

Scenario 2: Subsequent accesses, same ‘thing’, same operation.
In this scenario, a UD wishes to repeat an operation
on a TH for which the user has already obtained
an appropriate capability. As the UD already has an
appropriate capability it makes the access request
directly to the TH, presenting the capability. The
TH again checks that the capability authorises the
requested access, via Algorithm 1. If the algorithm
returns ‘Allow’ the UD is granted access. Note that CMS
is not involved in this scenario and that the UD did not
need to obtain a new capability. For example, doctor
A can access Bob’s cardiac sensors several times after
obtaining a capability without consulting the CMS after
the first access.

Scenario 3: Subsequent accesses, same ‘thing’, different
operation. Capabilities may allow access to multiple

operations, and such capabilities can be used to access
operations other than that for which the capability was
initially requested. If a capability that the UD holds
allows the access, refer to scenario 2.

Scenario 4: Access to multiple ‘things’ with a single capability.
Capabilities may allow access to multiple THs. With the
first access, the capability is obtained as in scenario 1.
For subsequent accesses the UD contacts the new TH,
identifies that it already holds an appropriate capability
by searching the database of capabilities stored on it.
It then presents the capability along with the access
request as in scenario 2. For example, nurse C is allowed
to access the body temperature and blood pressure
sensors of multiple patients (e.g. Bob and John) using
a single capability. Note that if the capability allows
access to multiple THs and multiple operations on
those THs, then access to a different TH may involve
a different operation to the initial access.

Scenario 5: Invalid issuer of the capability and/or signature on
request. A UD has a capability and wants to perform
a desired operation. However the capability has not
been provided by an issuer (i.e. a CMS) that the TH
recognises. The UD presents the capability to the TH
along with the access request. When the TH checks the
signatures on the capability and the request it will reject
the request (Algorithm 1 returns ‘Deny’) and the access
will not be allowed.

Scenario 6: Capability has expired. A UD has a capability
that allows the access but the capability has expired (its
end time is exceeded). If the UD detects this, then refer
to scenario 1. If the UD presents it to the TH anyway
then TH checks the capability and discovers that the
time of expiration of the capability has been reached.
Algorithm 1 returns ‘Deny’. If the UD wishes to obtain
access they need to request a new capability for the
particular access required, which may be obtained as
per scenario 1.

Scenario 7: Validating local conditions. A capability may
contain condition rules which must be validated by the
TH before access is granted. Conditions can involve
context e.g. correct date and time, location, etc. or
properties of the TH itself, e.g. available storage,
remaining battery power and any other conditions
related to the state of the TH itself. Thus, when
the UD sends a capability to the TH, along with all
the checks mentioned above (see scenario 1) the TH
checks the condition rules in the capability. If the
condition rules are successfully validated, the access is
allowed (Algorithm 1 returns ‘Allow’) otherwise access
is denied.

9. Implementation
We have constructed a preliminary implementation of
our design. As the smart THs, and communication

11
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

with them, represent the most resource-constrained
aspects of the system we have concentrated on the
communication between the UD and the TH and the
checking of capabilities within the smart THs. We
use an Android smart phone (HTC Desire 626G+)
as the UD (i.e. the client). We use the ESP8266-
12E microcontroller for the implementation of a TH
(i.e. the resource-constrained device) because these
devices are highly optimised to guarantee a high level
of performance with low power and low memory
consumption. The ESP8266-12E has a ready to use WiFi
connection and fully supports the TCP/IP stack. It has
a 32-bit RISC CPU with scalable speed, 60-160MHz,
42KB of RAM and 4MB of flash memory. The CMS is
currently being implemented on a HP laptop with the
following features: 2.5GHz Intel Core i7-6500U (dual-
core, 4MB cache, up to 3.1GHz with Turbo Boost), Intel
HD Graphics 520, 8GB LPDDR3 SDRAM (1,866MHz)
and a WiFi access module. It is running Ubuntu Server
12.04.5 LTS-32 bits. However, the other parts of the
architecture (e.g. the RM, PMU and TRR) could easily
be built using resourceful server side application, for
instance, Firebase [7] cloud hosting can be used. The
implementation includes a physical testbed to measure
the access control performance between the UD and the
TH.

The code running in the TH has been developed using
nodeMCU [25], a ‘Lua’-based firmware SDK. Lua is
a high level language which greatly facilitates design
and implementation but the code it produces will not
be optimised, so the results obtained are conservative.
We have implemented the policies for capability
checking inside the EPS8266-12E (cf. Algorithm 1). Our
main target is to achieve a decentralised authorisation
mechanism that is able to take decisions based on
the capability inside the resource-constrained THs.
We used the AES algorithm (with 128 bit key size)
for secure communication, we use the RSA algorithm
for validating the signature of the issuer (i.e. CMS)
and the requester (i.e. UD) of the capability. We used
MD5 message digest for authentication purposes. We
chose JSON as the format for the capability token as
stated above. The UD and CMS are implemented using
RESTful (Representational State Transfer) client server
technology.

10. Performance Evaluation
In this section we present the results of our performance
evaluation of the core of our system - the communica-
tion between the UD and smart TH - and the evaluation
of a capability by a TH. As the THs are the most
resource-constrained elements of the system it is impor-
tant to ensure that the requirements of our architecture
do not pose an unmanageable load upon them. We
examine a number of scenarios, from those described in

0.
53

6
0.

53
8

0.
54

0
0.

54
2

0.
54

4
0.

54
6

Capability Authorisation

Permission Decision − Fail(ts)

Ti
m

e(
m

s)
Figure 8. The capability authorisation time for an invalid
capability.In this case the timestamp(ts) is not valid, therefore,
the capability is rejected at the very firs instance without
checkingthe other fields

section 8.2, including both when access is allowed and
when it is denied and involving the TH checking a vary-
ing number of conditions. In order to demonstrate the
feasibility of our model, each test was run 100 times to
ensure reliable data. To demonstrate the time taken by
our proposal, all considerations which are extraneous
are excluded, e.g. delays due to other network traffic.
This allows us to demonstrate the load/delay created by
our proposal. For every success and fail, an appropriate
message (e.g. allowed or denied) is sent to the UD. Note
that all times are shown in milli-seconds (ms).

Fig. 8 shows the case where the capability fails on
the initial test of Algorithm 1, whether the current
time falls within the valid period defined by the issued
and expiry time fields of the capability. This represents
the minimum time for a response by a TH once a UD
presents it with a capability. The results show that, the
median time taken for this stage is 0.542ms (µ = 0.540,
σ = 0.003).

Fig. 9 shows two results (i) when the time stamp is
valid but the capability does not apply to the TH. The
median time taken for this stage is 0.564ms (µ = 0.564,
σ = 0.003). And (ii) when the time stamp is valid, the
capability applies to the TH but the capability does
not allow a valid operation on the TH. The median
time taken for this stage is 0.577ms (µ = 0.578, σ =
0.003). These results are only slightly longer than those
in Fig. 8. The second result is longer than the first as the
test for the capability applying to TH must be carried
out and passed before the test on whether the requested
operation is allowed by the capability is applied.

Fig. 10 shows the results of checking a single
condition. The right-hand result is when the condition

12
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

Fail(CapThings) Fail(OpeThings)

0.
55

5
0.

56
0

0.
56

5
0.

57
0

0.
57

5
0.

58
0

Capability Authorisation

Permission Decision

Ti
m

e(
m

s)

Figure 9. The capability authorisation time for an invalid
capability.‘Fail(CapThings)’denotesthat the capabilitydoes not
apply to the thing . ‘Fail(OpeThings)’denotesthat the capability
does not allow a valid operation on the thing . Note, in boththe
cases the timestampis valid.

is failed, the left hand result is when the condition is
passed. For comparison purposes signature checking
was excluded. Note that this time here is considerably
longer than the previous cases, although still only a
handful of milliseconds, as there is some setup involved
in condition checking. The condition checked here was
whether the location of the TH, represented as a string
stored in the TH, satisfied the requirement expressed
in the ‘condition rule’. The median time required when
the condition evaluates to true is 2.87ms (µ = 2.861,
σ = 0.003) and when the condition evaluates to false
is 2.87ms (µ = 2.861, σ = 0.003). That the results are
the same (at least to the precision shown here) is to
be expected, as all other fields must be checked before
this test and whether a condition succeeds or fails will
require much the same operations. The median RAM
and ROM required for the both cases are 15KB and
9.2KB respectively.

Fig. 11 shows the results when the number of
conditions to be checked are varied between one and
four. In all cases, all conditions returned true to enable
checking to complete. The first condition is the same
as in Fig. 10 for comparison purposes. The second
condition checked whether the current time was within
a period specified in the condition rule, the third
condition checked the date and the fourth condition
involved checking the remaining battery power in the
TH. Note that checking of extra conditions after the
first added very little time, the set up being the same
in all cases. The median time required for the one
condition checking is 2.87ms (µ = 2.873, σ = 0.003),
two conditions is 2.87ms (µ = 2.877, σ = 0.003),

Suucess(ts,con) Fail(ts,con)

2.
86

6
2.

86
8

2.
87

0
2.

87
2

2.
87

4

Capability Authorisation

Permission Decision

Ti
m

e(
m

s)
Figure 10. The capability authorisation time for condition
success and failure. ‘Success(ts,con)’represents the time taken
when condition returns true after all previous checks have
succeeded.Similarly‘Fail(ts,con)’representsthe timetakenwhen
the conditionis not valid but all previouscheckssucceeded.

three conditions is 2.88ms (µ = 2.885, σ = 0.003)
and for the four conditions is 2.89ms (µ = 2.894, σ
= 0.003). Again we have excluded signature checking.
Total time for a response to the UD is less then three
milliseconds. Similar systems, e.g. [12] will involve
equivalent signature checks. That is, two checks, one
for the UD’s signature on the request and another for
the CMS (or equivalent) signature on the capability.
The best times in the literature for these signature
checks, using Elliptic Curve Cryptography (ECC) are on
the order of 300ms ([12] gives a figure of 288.18ms).
Including the time period for two such checks in
our results would mean the signature checks, which
are not the focus of our research, would completely
overshadow the time taken by the functions of our
proposal. This does show that our proposal adds no
significant time to the basic signature checks required
by all capability-based access control proposals for the
IoT. In Table 1, we summarise the major performance
results.

Table 1. PerformanceDetails

Description Median Time
Fail(CapThings) 0.564ms
Fail(OpeThings) 0.577ms
Suucess(ts,con) 2.87ms

11. Related Work
Moosavi et al. [22] present a mobility-enabled secure
healthcare scheme for the IoT. The proposed scheme
uses DTLS (Datagram Transport Layer Security) for

13
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

Con(1) Con(2) Con(3) Con(4)

2.
86

5
2.

87
5

2.
88

5
2.

89
5

Capability Authorisation

Permission Decision − Success(ts,con)

Ti
m

e(
m

s)

Figure 11. The capability authorisation time for a valid
capability i.e. the time stampand condition(s)are valid. In this
case we vary the numberof conditionsfromone to four.

end-user authentication and authorisation. However,
policy management is outside the scope of that work,
instead simply assuming users have valid credentials.
While their approach is distinctly different to that
presented here, the RAM and ROM overheads are
of the same order of magnitude. Tarouco et al. [43]
explore the interoperability issues between various
users and devices in an IoT-enabled healthcare system
through WiFi/Bluetooth gateway supported by the
Simple Network Management Protocol (SNMP) or Web
services. Their proposal is based on an SNMP agent
acting as a proxy between the user device and smart
sensor. Access control will be implemented through the
agent, but only a high-level description is given.

Ren et al. [33] and Lee et al. [14], amongst
others, employ ECC for securing healthcare systems.
Using ECC, a high level of encryption becomes more
practical and feasible as it reduces the key size
and computational costs of public key cryptography,
however these proposals do not examine wider
issues of access control, e.g. policy specification and
management. Liu et al. [15] present an access control
model for an IoT system combining ECC with RBAC.
ECC is used for key establishment during entity
authentication and RBAC is used for managing access
control policies. Their approach to using RBAC is highly
centralised, with all decisions being made in a central
server, and all information being required beforehand.
There is no equivalent in their proposal to our approach
of allowing a previously unknown user to gain access by
providing the appropriate attributes.

Various approaches e.g. [1], [42], [30] have used
RBAC, sometimes in combination with other access
control mechanisms, in the context of healthcare

systems. For example, [1] combines RBAC with
Discretionary Access Control (DAC) and Mandatory
Access Control (MAC). RBAC is used to assign roles
to actors within the system, with a MAC approach
to overall security labels. Patients manage DAC-style
access control lists to control access to their data. [30]
combines RBAC with activity-based access control in a
Kerberos-based ticket granting system to provide access
to patient medical records. None of these proposals
address access to IoT-based sensors in the healthcare
context. Zhang and Tian [49] present an access control
model using RBAC and security-relevant contextual
information (e.g. time, location, environment, etc.) for
an IoT system. Unlike our proposal, they do not give
a system architecture or discuss in detail where access
decisions are made. The implication is that the system is
highly centralised, which is not an ideal solution for the
IoT. Xu et al. present an IoT-based data accessing design
for emergency medical services [45]. While this model
shows how to collect, integrate and interoperate IoT
data flexibly in order to provide support to emergency
medical services it simply abstracts access control into
the business activities layer of their model.

Mukherjee et al. [24] and Ray et al. [32] present
an ABAC-based approach to medical healthcare data,
but this addresses central data stores, not IoT-enabled
sensors which may be the source of such data. Zhang
and Liu [48] present an ABAC model to provide a fine-
grained access control for IoT systems. The proposed
model allows permissions to be assigned to a user for
accessing resources based on user attributes, resource
attributes, environment attributes and current tasks.
While their framework includes policy decision and
enforcement points, unlike our system it is not clear
where in the system these are implemented. Further, in
their design policies also have to be written in advance,
based on explicit user identity.

Several proposals discuss capability-based approch
for IoT and healthcare. These approaches enable
access control to be tailored to the requirements of
individual users and avoid fully centralised systems
by providing users with access tokens (i.e. capabilities)
which smart IoT devices can validate for access.
Gusmeroli et al. [10] present a CapBAC approach for
IoT. A similar approach is proposed by Hernandez-
Ramos et al. [11] which describes a distributed CapBAC
framework for IoT devices. A highly optimised version
of Elliptic Curve Digital Signature Algorithm (ECDSA)
is implemented inside these devices ensuring end-
to-end authentication, integrity and non-repudiation.
However, while offering significant detail on capability
structure and processing neither of these proposals
address capability distribution or questions of how
the information defining which users have access to
which capabilities is stored. They simply assume that a
capability issuer exists. Mahalle et al. [17] and Ondiege

14
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

et al. [28] present essentially similar capability-based
proposal for access control in the IoT. It is worth noting
that the first three (i.e. [10], [11] and [17]) include the
subject identity in the capability, to allow verification
of the user making an access request.

As noted earlier, Schwartmann [36] proposed using
attributes to extend RBAC to cater for one of the
situations we address, allowing doctors to only access
resources associated with their particular patients.
As also noted, Schwartmann’s approach required
per-patient policy specification and did not use
attributes for role membership. It was also heavily
centralised. Mao et al. [20] had a similar proposal,
where a language-based approach was taken to role
parameterisation. While this was more concise than
Schwartmann’s proposal, requiring only a single rule
per role (not target patient), the parameterisation was
at the role level, meaning that all permissions of the
role were parameterised under the same rule. This
does not provide fine-grained access unless multiple
roles are created. This minimises the policy reduction
advantages. Unlike our proposal, the system is again
centralised and no implementation details are given.

Our system extends upon the previous capability-
based access approaches. We reduce the number
of capabilities required in the system by allowing
capabilities to grant access to more than one thing.
In previous proposals capabilities were device-specific.
More importantly, we discuss how users obtain
capabilities. Role membership via presentation of
attributes simplifies role specification and avoids the
need to have a priori knowledge of the identity
of every possible user. Capability parameterisation,
allowing different capabilities to be created from the
same capability template, again simplifies the creation
of the policy base. Given the vast number of users
and things that may exist in an IoT system, and the
number of relationships between them, this reduction
is necessary in creating manageable policy bases. Given
the sensitivity of patient data in the healthcare context
management of the policy base, to ensure only intended
access is allowed, is a crucial consideration.

12. Discussions
Access control, policy enforcement and identity man-
agement are amongst the most important issues for the
development of secure IoT-enabled smart healthcare
systems. We have proposed an access control architec-
ture combining the strengths of RBAC, ABAC and capa-
bilities. Attributes are used for both role membership
decisions and for parameterising capabilities, allowing
fine-grained access control with a minimum of policy
specification. The architecture is flexible, as role mem-
bership is based on attributes, not an a priori knowledge
of which roles users are assigned to. This allows a

degree of flexibility and conciseness in policy specifi-
cation unachievable in most other proposed systems.
The use of attributes in the condition rules provides
additional fine-grained control. The parameterisation
of capabilities allows policy specifications to apply
to multiple user-thing relationships without providing
unnecessarily widespread access or requiring exten-
sive policy development. The architecture is partially
decentralised, making effective use of the resource-
constrained things, by tasking them with validating the
capability. On the other hand, the management of roles
is carried out by the central management system (of
which there may be many in a practical system), as
the information managed by it would overburden the
things′ storage and processing capacity.

Our results suggest that this style of decentralised
authorisation systems based on resource-constrained
things can be an alternative to fully centralised autho-
risation systems for a large scale IoT system. The time
required for decentralised authorisation is practical for
a wider IoT-enabled system deployments and within
the capacity of resource-constrained devices. The lim-
iting factor remains signature checking, with the time
requirements of the unique features of our system being
two orders of magnitude less than state of the art in
signature checking employing ECC. While our system
still requires such checks, we are not adding significant
extra resource requirements in providing flexible and
fine-grained access control. It is also worth noting that
communication between the user device (i.e. the UD)
and central management system (i.e. the CMS) will
not be necessary in many cases, as our capabilities can
provide access to more than one smart thing (i.e. the
TH) without loss of security.

13. Conclusion and Future Work

With the advances in IoT-enabled smart healthcare
technologies and its applications, there is a need for
security and privacy to protect the system against
unauthorised access. Significantly, access control, policy
management and enforcement and identity manage-
ment are crucial when considering the massive scale of
the numbers of things and related applications. By com-
bining RBAC, ABAC and CapBAC we have leveraged
the advantages of all these approached, particularly
in providing fine-grained access and ease of manage-
ment. Attributes were employed for role membership,
capability paramterisation and evaluating conditions
in permissions. Capability parameterisation allows us
to provide fine-grained access while minimising the
number of policies required. We do not record explicit
role membership, removing the need to manage the
role-user mapping that is standard in RBAC systems.
However, by employing RBAC, we simplify the policy

15
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

ShantanuPal et al.

management for capabilities, as it can be specified on
per-role basis, rather than per-user basis.

One limitation from a privacy point of view of
our design is that while the role manager does not
need to maintain a list of users who are entitled to
membership of each role, it can build up such a list as
users request capabilities. Similarly, as user identities
are recorded in capabilities, edge devices can build up
lists of users that access them. In our future work,
we will examine questions of identity, e.g. the use
of pseudonyms, to better preserve user privacy. In
this work we used HTTP, however we currently are
redeveloping the architecture using CoAP (Constrained
Application Protocol). We also plan to study trust
management in the context of our architecture.

Acknowledgement. The research is supported by the Interna-
tional Macquarie University Research Excellence Scholarship.

References
[1] Alhaqbani, B. and Fidge, C. (2008) Access Control

Requirements for Processing Electronic Health Records.
In Hofstede, A., Benatallah, B. and Paik, Y. [eds.] Busi-
ness Process Management Workshops (Springer Berlin Hei-
delberg), Lecture Notes in Computer Science 4928, 371–
382. doi:10.1007/978-3-540-78238-4_38, URL http://

dx.doi.org/10.1007/978-3-540-78238-4_38.
[2] Ashton, K. (2009) That ‘Internet of Things’ Thing.

RFID, URL http://www.rfidjournal.com/articles/

view?4986.
[3] Bhatt, Y. and Bhatt, C. (2017) Internet of Things in

HealthCare. In Bhatt, C., Dey, N. and Ashour, S. [eds.]
Internet of Things and Big Data Technologies for Next
Generation Healthcare (Springer International Publish-
ing), Studies in Big Data 23, 13–33. doi:10.1007/978-
3-319-49736-5_2, URL http://dx.doi.org/10.1007/

978-3-319-49736-5_2.
[4] Cue (2017) Cue App., URL https://cue.me/

#inflammation. [Online: accessed 05-June-2017].
[5] Evans, D. (2011) The Internet of Things: How the

Next Evolution of the Internet Is Changing Everything,
URL https://www.cisco.com/c/dam/en_us/about/

ac79/docs/innov/IoT_IBSG_0411FINAL.pdf. [Online:
accessed 02-Nov-2017].

[6] Ferraiolo, F., Sandhu, R., Gavrila, S., Kuhn, R. and
Chandramouli, R. (2001) Proposed NIST Standard for
Role-based Access Control. ACM Trans. Inf. Syst. Secur.
4(3): 224–274. doi:10.1145/501978.501980, URL http:

//dx.doi.org/10.1145/501978.501980.
[7] Firebase (2017) Mobile and web application develop-

ment platform, URL https://firebase.google.com/.
[Online: accessed 07-June-2017].

[8] Gong, L. (1989) A Secure Identity-Based Capability
System. In Proceedings of the IEEE Symposium on Security
and Privacy: 56–63. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.53.1785.
[9] Google (2015) Google Beacon Platform, URL https://

developers.google.com/beacons/. [Online: accessed
10-Oct-2017].

[10] Gusmeroli, S., Piccione, S. and Rotondi, D.

(2013) A capability-based security approach to
manage access control in the Internet of Things.
Mathematical and Computer Modelling 58(5-6):
1189–1205. doi:10.1016/j.mcm.2013.02.006, URL
http://dx.doi.org/10.1016/j.mcm.2013.02.006.

[11] Hernandez-Ramos, J., Jara, A., Marın, L. and
Skarmeta, A. (2013) Distributed Capability-based
Access Control for the Internet of Things. Journal
of Internet Services and Information Security 3(3/4):
1–16. URL http://isyou.info/jisis/vol3/no34/

jisis-2013-vol3-no34-01.pdf.
[12] Hernández-Ramos, J., Jara, A., Marín, L. and

Skarmeta A. (2016) DCapBAC: embedding authoriza-
tion logic into smart things through ECC optimizations.
International Journal of Computer Mathematics 93(2):
345–366. doi:10.1080/00207160.2014.915316, URL
http://dx.doi.org/10.1080/00207160.2014.915316.

[13] Jaiswal, S. and Gupta, D. (2017) Security Requirements
for Internet of Things (IoT). In Modi, N., Verma, P. and
Trivedi, B. [eds.] Proceedings of International Conference
on Communication and Networks (Springer Singapore),
Advances in Intelligent Systems and Computing 508, 419–
427. doi:10.1007/978-981-10-2750-5_44, URL http://

dx.doi.org/10.1007/978-981-10-2750-5_44.
[14] Lee, S., Alasaarela, E. and Lee, H. (2014)

Secure key management scheme based on ECC
algorithm for patient’s medical information in
healthcare system. In The International Conference
on Information Networking (ICOIN) (IEEE): 453–
457. doi:10.1109/icoin.2014.6799723, URL http:

//dx.doi.org/10.1109/icoin.2014.6799723.
[15] Liu, J., Xiao, Y. and Chen, P. (2012) Authentication

and Access Control in the Internet of Things. In
The 32nd International Conference on Distributed
Computing Systems Workshops (IEEE): 588–592.
doi:10.1109/icdcsw.2012.23, URL http://dx.doi.

org/10.1109/icdcsw.2012.23.
[16] Liu, Y., Zhang, Y., Ling, J. and Liu, Z. (2017) Secure

and fine-grained access control on e-healthcare records
in mobile cloud computing. Future Generation Computer
Systems doi:10.1016/j.future.2016.12.027, URL http://

dx.doi.org/10.1016/j.future.2016.12.027.
[17] Mahalle, P., Anggorojati, B., Prasad, N. and Prasad,

R. (2013) Identity Authentication and Capability Based
Access Control (IACAC) for the Internet of Things.
Journal of Cyber Security and Mobility 1(4): 309–348. URL
http://riverpublishers.com/journal_article.

php?j=JCSM/1/4/2.
[18] Maheu, M., Nicolucci, V., Pulier, M., Wall, K., Frye,

T. and Hudlicka, E. (2017) The Interactive Mobile App
Review Toolkit (IMART): a Clinical Practice-Oriented
System: 1–13. doi:10.1007/s41347-016-0005-z, URL
http://dx.doi.org/10.1007/s41347-016-0005-z.

[19] Malina, L., Hajny, J., Fujdiak, R. and Hosek, J. (2016) On
perspective of security and privacy-preserving solutions
in the internet of things. Computer Networks 102: 83–
95. doi:10.1016/j.comnet.2016.03.011, URL http://dx.

doi.org/10.1016/j.comnet.2016.03.011.
[20] Mao, Z., Li, N. and Winsborough, W. (2006) Distributed

Credential Chain Discovery in Trust Management with

16
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

http://dx.doi.org/10.1007/978-3-540-78238-4_38
http://dx.doi.org/10.1007/978-3-540-78238-4_38
http://dx.doi.org/10.1007/978-3-540-78238-4_38
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/10.1007/978-3-319-49736-5_2
http://dx.doi.org/10.1007/978-3-319-49736-5_2
http://dx.doi.org/10.1007/978-3-319-49736-5_2
http://dx.doi.org/10.1007/978-3-319-49736-5_2
https://cue.me/#inflammation
https://cue.me/#inflammation
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://dx.doi.org/10.1145/501978.501980
http://dx.doi.org/10.1145/501978.501980
http://dx.doi.org/10.1145/501978.501980
https://firebase.google.com/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.1785
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.1785
https://developers.google.com/beacons/
https://developers.google.com/beacons/
http://dx.doi.org/10.1016/j.mcm.2013.02.006
http://dx.doi.org/10.1016/j.mcm.2013.02.006
http://isyou.info/jisis/vol3/no34/jisis-2013-vol3-no34-01.pdf
http://isyou.info/jisis/vol3/no34/jisis-2013-vol3-no34-01.pdf
http://dx.doi.org/10.1080/00207160.2014.915316
http://dx.doi.org/10.1080/00207160.2014.915316
http://dx.doi.org/10.1007/978-981-10-2750-5_44
http://dx.doi.org/10.1007/978-981-10-2750-5_44
http://dx.doi.org/10.1007/978-981-10-2750-5_44
http://dx.doi.org/10.1109/icoin.2014.6799723
http://dx.doi.org/10.1109/icoin.2014.6799723
http://dx.doi.org/10.1109/icoin.2014.6799723
http://dx.doi.org/10.1109/icdcsw.2012.23
http://dx.doi.org/10.1109/icdcsw.2012.23
http://dx.doi.org/10.1109/icdcsw.2012.23
http://dx.doi.org/10.1016/j.future.2016.12.027
http://dx.doi.org/10.1016/j.future.2016.12.027
http://dx.doi.org/10.1016/j.future.2016.12.027
http://riverpublishers.com/journal_article.php?j=JCSM/1/4/2
http://riverpublishers.com/journal_article.php?j=JCSM/1/4/2
http://dx.doi.org/10.1007/s41347-016-0005-z
http://dx.doi.org/10.1007/s41347-016-0005-z
http://dx.doi.org/10.1016/j.comnet.2016.03.011
http://dx.doi.org/10.1016/j.comnet.2016.03.011
http://dx.doi.org/10.1016/j.comnet.2016.03.011

Fine-Grained Access Controlfor Smart HealthcareSystems in the Internetof Things

Parameterized Roles and Constraints (Short Paper). In
Ning, P., Qing, S. and Li, N. [eds.] Information and
Communications Security (Springer Berlin Heidelberg),
Lecture Notes in Computer Science 4307, 159–173.
doi:10.1007/11935308_12, URL http://dx.doi.org/

10.1007/11935308_12.
[21] MiniMed (2017) Medtronic, URL http://www.

medtronicdiabetes.com/home. [Online: accessed
05-June-2017].

[22] Moosavi, R., Gia, N., Nigussie, E., Rahmani, M.,
Virtanen, S., Tenhunen, H. and Isoaho, J. (2016) End-
to-end security scheme for mobility enabled healthcare
Internet of Things. Future Generation Computer Systems
64: 108–124. doi:10.1016/j.future.2016.02.020, URL
http://dx.doi.org/10.1016/j.future.2016.02.020.

[23] Mujica, G., Portilla, J. and Riesgo, T. (2017) Deploy-
ment Strategies of Wireless Sensor Networks for IoT:
Challenges, Trends, and Solutions Based on Novel Tools
and HW/SW Platforms. In Keramidas, G., Voros, N.

and Hübner, M. [eds.] Components and Services for
IoT Platforms (Springer International Publishing), 133–
154. doi:10.1007/978-3-319-42304-3_8, URL http://

dx.doi.org/10.1007/978-3-319-42304-3_8.
[24] Mukherjee, S., Ray, I., Ray, I., Shirazi, H., Ong,

T. and Kahn, G. (2017) Attribute Based Access
Control for Healthcare Resources. In Proceedings of
the 2nd ACM Workshop on Attribute-Based Access
Control, ABAC’17 (New York, USA: ACM): 29–40.
doi:10.1145/3041048.3041055, URL http://dx.doi.

org/10.1145/3041048.3041055.
[25] nodeMCU, URL http://www.nodemcu.com/index_en.

html. [Online: accessed 20-Apr-2017].
[26] OASIS (2013) extensible access control markup

language (xacml), 3.0, URL http://docs.oasis-open.

org/xacml/3.0/xacml-3.0-core-spec-os-en.html.
[Online: accessed 02-Nov-2017].

[27] Australia’s healthcare system (2014)
URL https://www.healthdirect.gov.au/

australias-healthcare-system. [Online: accessed
05-May-2017].

[28] Ondiege, B., Clarke, M. and Mapp, G. (2017)
Exploring a new security framework for remote
patient monitoring devices. MDPI Computers
6(1). 1–12. doi:10.3390/computers6010011, URL
http://www.mdpi.com/2073-431X/6/1/11.

[29] Park, K. and Shin, H. (2017) Security assessment frame-
work for IoT service, Telecommun Syst, (Springer US),
64(1): 193–209. doi:10.1007/s11235-016-0168-0, URL
http://dx.doi.org/10.1007/s11235-016-0168-0.

[30] Pulur, N., Altop, D. and Levi, A. (2016) A Role and
Activity Based Access Control for Secure Healthcare
Systems. In Abdelrahman, H., Gelenbe, E., Gorbil, G.

and Lent, R. [eds.] Information Sciences and Systems
2015 (Springer International Publishing), Lecture Notes
in Electrical Engineering 363, 93–103. doi:10.1007/978-
3-319-22635-4_8, URL http://dx.doi.org/10.1007/

978-3-319-22635-4_8.
[31] Ranjan, A. and Somani, G. (2016) Access Control

and Authentication in the Internet of Things Envi-
ronment. In Mahmood, Z. [ed.] Connectivity Frame-
works for Smart Devices, Computer Communications

and Networks (Springer International Publishing), 283–
305. doi:10.1007/978-3-319-33124-9_12, URL http://

dx.doi.org/10.1007/978-3-319-33124-9_12.
[32] Ray, I., Ong, C., Ray, I. and Kahn, G. (2016) Applying

attribute based access control for privacy preserving
health data disclosure. In The IEEE-EMBS International
Conference on Biomedical and Health Informatics (BHI):
1–4. doi:10.1109/BHI.2016.7455820, URL http://dx.

doi.org/10.1109/BHI.2016.7455820.
[33] Ren, Y., Werner, R., Pazzi, N. and Boukerche, A. (2010)

Monitoring patients via a secure and mobile healthcare
system. IEEE Wireless Communications 17(1): 59–65.
doi:10.1109/mwc.2010.5416351, URL http://dx.doi.

org/10.1109/mwc.2010.5416351.
[34] Riazul Islam, M., Kwak, D., Humaun Kabir, M.,

Hossain, M. and Kwak, S. (2015) The Internet of Things
for Health Care: A Comprehensive Survey. IEEE Access 3:
678–708. doi:10.1109/access.2015.2437951, URL http:

//dx.doi.org/10.1109/access.2015.2437951.
[35] Samaila, G., Neto, M., Fernandes, B., Freire, M. and

Inácio, M. (2017) Security Challenges of the Internet
of Things (Springer International Publishing), 53–82.
doi:10.1007/978-3-319-50758-3_3, URL https://doi.

org/10.1007/978-3-319-50758-3_3.
[36] Schwartmann, D. (2004) An Attributable Role-Based

Access Control for Healthcare. In Bubak, M., Albada, G.,
Sloot, P. and Dongarra, J. [eds.] Computational Science
- ICCS (Springer Berlin Heidelberg), Lecture Notes in
Computer Science 3039, 1148–1155. doi:10.1007/978-3-
540-25944-2_149, URL http://dx.doi.org/10.1007/

978-3-540-25944-2_149.
[37] Servos, D. and Osborn, L. (2017) Current Research and

Open Problems in Attribute-Based Access Control. ACM
Comput. Surv. 49(4). doi:10.1145/3007204, URL http:

//dx.doi.org/10.1145/3007204.
[38] Sfar, R., Natalizio, E., Challal, Y. and Chtourou,

Z. (2017) A roadmap for security challenges in the
internet of things. Digital Communications and Networks
doi:https://doi.org/10.1016/j.dcan.2017.04.003, URL
http://www.sciencedirect.com/science/article/

pii/S2352864817300214.
[39] S. Pal, M. Hitchens, V. Varadharajan and T. Rabehaja

(2017) On design of a fine-grained access control archi-
tecture for securing iot-enabled smart healthcare sys-
tems. In Proceedings of the 14th International Conference
on Mobile and Ubiquitous Systems: Computing, Network-
ing and Services, MobiQuitous, (Melbourne, Australia).
doi:10.1145/3144457.3144485, URL https://doi.org/

10.1145/3144457.3144485.
[40] Sicari, S., Rizzardi, A., Grieco, A. and Coen-Porisini,

A. (2015) Security, privacy and trust in Internet of
Things: The road ahead. Computer Networks 76: 146–
164. doi:10.1016/j.comnet.2014.11.008, URL http://

dx.doi.org/10.1016/j.comnet.2014.11.008.
[41] Suhardi and Ramadhan, A. (2016) A Survey of Secu-

rity Aspects for Internet of Things in Healthcare.
In Kim, J. and Joukov, N. [eds.] Information Science
and Applications (ICISA) (Springer Singapore), Lec-
ture Notes in Electrical Engineering 376, 1237–1247.
doi:10.1007/978-981-10-0557-2_117, URL http://dx.

doi.org/10.1007/978-981-10-0557-2_117.

17
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

http://dx.doi.org/10.1007/11935308_12
http://dx.doi.org/10.1007/11935308_12
http://dx.doi.org/10.1007/11935308_12
http://www.medtronicdiabetes.com/home
http://www.medtronicdiabetes.com/home
http://dx.doi.org/10.1016/j.future.2016.02.020
http://dx.doi.org/10.1016/j.future.2016.02.020
http://dx.doi.org/10.1007/978-3-319-42304-3_8
http://dx.doi.org/10.1007/978-3-319-42304-3_8
http://dx.doi.org/10.1007/978-3-319-42304-3_8
http://dx.doi.org/10.1145/3041048.3041055
http://dx.doi.org/10.1145/3041048.3041055
http://dx.doi.org/10.1145/3041048.3041055
http://www.nodemcu.com/index_en.html
http://www.nodemcu.com/index_en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.healthdirect.gov.au/australias-healthcare-system
https://www.healthdirect.gov.au/australias-healthcare-system
http://dx.doi.org/10.3390/computers6010011
http://www.mdpi.com/2073-431X/6/1/11
http://dx.doi.org/10.1007/s11235-016-0168-0
http://dx.doi.org/10.1007/s11235-016-0168-0
http://dx.doi.org/10.1007/978-3-319-22635-4_8
http://dx.doi.org/10.1007/978-3-319-22635-4_8
http://dx.doi.org/10.1007/978-3-319-22635-4_8
http://dx.doi.org/10.1007/978-3-319-22635-4_8
http://dx.doi.org/10.1007/978-3-319-33124-9_12
http://dx.doi.org/10.1007/978-3-319-33124-9_12
http://dx.doi.org/10.1007/978-3-319-33124-9_12
http://dx.doi.org/10.1109/BHI.2016.7455820
http://dx.doi.org/10.1109/BHI.2016.7455820
http://dx.doi.org/10.1109/BHI.2016.7455820
http://dx.doi.org/10.1109/mwc.2010.5416351
http://dx.doi.org/10.1109/mwc.2010.5416351
http://dx.doi.org/10.1109/mwc.2010.5416351
http://dx.doi.org/10.1109/access.2015.2437951
http://dx.doi.org/10.1109/access.2015.2437951
http://dx.doi.org/10.1109/access.2015.2437951
http://dx.doi.org/10.1007/978-3-319-50758-3_3
https://doi.org/10.1007/978-3-319-50758-3_3
https://doi.org/10.1007/978-3-319-50758-3_3
http://dx.doi.org/10.1007/978-3-540-25944-2_149
http://dx.doi.org/10.1007/978-3-540-25944-2_149
http://dx.doi.org/10.1007/978-3-540-25944-2_149
http://dx.doi.org/10.1007/978-3-540-25944-2_149
http://dx.doi.org/10.1145/3007204
http://dx.doi.org/10.1145/3007204
http://dx.doi.org/10.1145/3007204
http://dx.doi.org/https://doi.org/10.1016/j.dcan.2017.04.003
http://www.sciencedirect.com/science/article/pii/S2352864817300214
http://www.sciencedirect.com/science/article/pii/S2352864817300214
http://dx.doi.org/10.1145/3144457.3144485
https://doi.org/10.1145/3144457.3144485
https://doi.org/10.1145/3144457.3144485
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1007/978-981-10-0557-2_117
http://dx.doi.org/10.1007/978-981-10-0557-2_117
http://dx.doi.org/10.1007/978-981-10-0557-2_117

ShantanuPal et al.

[42] Sun, L., Wang, H., Yong, J. and Wu, G. (2012)
Semantic access control for cloud computing
based on e-Healthcare. In Proceedings of the 16th
International Conference on Computer Supported
Cooperative Work in Design (CSCWD) (IEEE):
512–518. doi:10.1109/cscwd.2012.6221866, URL
http://dx.doi.org/10.1109/cscwd.2012.6221866.

[43] Tarouco, M., Bertholdo, M., Granville, Z., Arbiza,

M., Carbone, F., Marotta, M. and de Santanna,

J. (2012) Internet of Things in healthcare: Interop-
eratibility and security issues. In The International
Conference on Communications (ICC) (IEEE): 6121–
6125. doi:10.1109/icc.2012.6364830, URL http://dx.

doi.org/10.1109/icc.2012.6364830.
[44] WIRED (2015) How the Internet of Things got

Hacked, URL https://www.wired.com/2015/12/

2015-the-year-the-internet-of-things-got-hacked/.
[Online: accessed 01-Oct-2017].

[45] Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J. and Bu, F.

(2014) Ubiquitous Data Accessing Method in IoT-Based
Information System for Emergency Medical Services.
IEEE Transactions on Industrial Informatics 10(2): 1578–
1586. doi:10.1109/tii.2014.2306382, URL http://dx.

doi.org/10.1109/tii.2014.2306382.
[46] Yaqoob, I., Ahmed, E., Hashem, A., Ahmed, I., Gani, A.,

Imran, M. and Guizani, M. (2017) Internet of Things

Architecture: Recent Advances, Taxonomy, Require-
ments, and Open Challenges. IEEE Wireless Commu-
nications 24(3): 10–16. doi:10.1109/mwc.2017.1600421,
URL http://dx.doi.org/10.1109/mwc.2017.1600421.

[47] Yuan, E. and Tong, J. (2005) Attributed Based Access
Control (ABAC) for Web Services. In Proceedings of the
IEEE International Conference on Web Services, ICWS’05
(Washington, USA: IEEE Computer Society): 561–569.
doi:10.1109/icws.2005.25, URL http://dx.doi.org/

10.1109/icws.2005.25.
[48] Zhang, G. and Liu, J. (2011) A Model of Workflow-

oriented Attributed Based Access Control. International
Journal of Computer Network and Information Secu-
rity 3(1): 47–53. URL http://www.mecs-press.org/

ijcnis/ijcnis-v3-n1/IJCNIS-V3-N1-7.pdf.
[49] Zhang, G. and Tian, J. (2010) An extended role

based access control model for the Internet of Things.
In The International Conference on Information, Net-
working and Automation (ICINA) (IEEE), 1: 319–323.
doi:10.1109/icina.2010.5636381, URL http://dx.doi.

org/10.1109/icina.2010.5636381.
[50] Zhang, N., Demetriou, S., Mi, X., Diao, W., Yuan,

K., Zong, P., Qian, F. et al. (2017) Understanding IoT
Security Through the Data Crystal Ball: Where We Are
Now and Where We Are Going to Be. URL http://

arxiv.org/abs/1703.09809.pdf. 1703.09809.pdf.

18
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
01 2018 - 03 2018 | Volume 4 | Issue 13 | e5

http://dx.doi.org/10.1109/cscwd.2012.6221866
http://dx.doi.org/10.1109/cscwd.2012.6221866
http://dx.doi.org/10.1109/icc.2012.6364830
http://dx.doi.org/10.1109/icc.2012.6364830
http://dx.doi.org/10.1109/icc.2012.6364830
https://www.wired.com/2015/12/2015-the-year-the-internet-of-things-got-hacked/
https://www.wired.com/2015/12/2015-the-year-the-internet-of-things-got-hacked/
http://dx.doi.org/10.1109/tii.2014.2306382
http://dx.doi.org/10.1109/tii.2014.2306382
http://dx.doi.org/10.1109/tii.2014.2306382
http://dx.doi.org/10.1109/mwc.2017.1600421
http://dx.doi.org/10.1109/mwc.2017.1600421
http://dx.doi.org/10.1109/icws.2005.25
http://dx.doi.org/10.1109/icws.2005.25
http://dx.doi.org/10.1109/icws.2005.25
http://www.mecs-press.org/ijcnis/ijcnis-v3-n1/IJCNIS-V3-N1-7.pdf
http://www.mecs-press.org/ijcnis/ijcnis-v3-n1/IJCNIS-V3-N1-7.pdf
http://dx.doi.org/10.1109/icina.2010.5636381
http://dx.doi.org/10.1109/icina.2010.5636381
http://dx.doi.org/10.1109/icina.2010.5636381
http://arxiv.org/abs/1703.09809.pdf
http://arxiv.org/abs/1703.09809.pdf
1703.09809.pdf

	1 Introduction
	2 Background and Problem Statement
	3 Contributions and Paper Structure
	4 Use-Case Example
	4.1 A Practical Scenario
	4.2 Granting Different Level of Access

	5 Solution Overview
	5.1 Policy Management
	5.2 Capability Management

	6 Challenges and Requirements
	7 Proposed Access Control Architecture
	7.1 Architectural Components
	7.2 Communication Protocol

	8 Model Design and Access Scenarios
	8.1 A Formal Specification
	Basic Concepts
	Capability Structure
	Capability Revocation
	Capability Delegation

	8.2 Different Access Scenarios
	Scenario 1: First access
	Scenario 2: Subsequent accesses, same `thing', same operation
	Scenario 3: Subsequent accesses, same `thing', different operation
	Scenario 4: Access to multiple `things' with a single capability
	Scenario 5: Invalid issuer of the capability and/or signature on request
	Scenario 6: Capability has expired
	Scenario 7: Validating local conditions

	9 Implementation
	10 Performance Evaluation
	11 Related Work
	12 Discussions
	13 Conclusion and Future Work

