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Abstract

Concurrent transmissions, a novel communication paradigm, has been shown to effectively accomplish a
reliable and energy-efficient flooding in low-power wireless networks. With multiple nodes exploiting a
receive-and-forward scheme in the network, this technique inevitably introduces communication redundancy
and consequently raises the energy consumption of the nodes. In this article, we propose Less is More (LiM),
an energy-efficient flooding protocol for wireless sensor networks. LiM builds on concurrent transmissions,
exploiting constructive interference and the capture effect to achieve high reliability and low latency.

Moreover, LiM is equipped with a machine learning capability to progressively reduce redundancy while
maintaining high reliability. As a result, LiM is able to significantly reduce the radio-on time and therefore
the energy consumption. We compare LiM with our baseline protocol Glossy by extensive experiments in the
30-node testbed FlockLab. Experimental results show that LiM highly reduces the broadcast redundancy in
flooding. It outperforms the baseline protocol in terms of radio-on time, while attaining a high reliability of
over 99.50% and an average end-to-end latency around 2 milliseconds in all experimental scenarios.
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1. Introduction in the following) exploit constructive interference
and the capture effect to achieve highly reliable
data flooding in multi-hop WSNs. These protocols
significantly increase network throughput, enhance
packet transmission reliability, and reduce flooding
latency. However, these protocols have to introduce
high communication redundancy in order to attain
high reliability. That is, to obtain a fast and reliable
coverage of the whole network, each sensor node has to
broadcast the received packet until every node in the
network has been covered. Consequently, there exists
a large degree of transmission redundancy, i.e., many
of these broadcast transmissions are not necessary. In
this case, sensor nodes consume much more energy than
expected. This type of aggressive flooding, generally
referred to as blind flooding [3], is not energy-efficient.

Over the past decade, wireless sensor networks (WSNs)
began to play a significant role as an enabling
technology in a large number of applications, including
health-care, industry, agriculture, and transportation.
Network flooding is a protocol that delivers messages
from a source node to all other nodes in a connected
network. As an essential operation for WSNs, flooding
is widely used for information dissemination, bulk
data transfer, code update, time synchronization, and
network configuration, to name but a few. In the last
few years, flooding in WSNs has been experimentally
proven to be fast, reliable, and energy-efficient [1, 2].
Recently concurrent transmission (CT)-based flooding
has been introduced in low-power wireless networks
as a promising technique. For example, Flash Flooding

[1] and the Glossy protocol [2] (referred to as “Glossy” Moreover, CT-based flooding also suffers from a

scalability problem with respect to the temporal
misalignment among base-band signals. Namely, the
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authors in [4, 5], the probability of receiving a packet
due to the capture effect drops notably, as the number of
synchronous transmitters increases. To overcome these
problems, Chaos [4] exploits in-network processing
together with concurrent transmissions: While each
node receives a packet, it spends a fixed period of time
(processing time) to process the data, and then makes a
decision whether it is necessary to forward the received
packet. In this case, it is able to appropriately decrease
the number of concurrent transmitters and maintain a
best-effort performance even in high-density WSNs.

Furthermore, CXFS [6] concentrates on one-to-one
data transmission and builds a forwarder-selection
scheme on CT-based flooding. CXFS aims to reduce
wasteful transmissions, thus to improve energy effi-
ciency and throughput, while providing a similar relia-
bility. While Chaos and CXFS are based on the Glossy
protocol, they still belong to blind flooding after all.
That means, to achieve high reliability, these Glossy-
based flooding protocols are required to repeat the
transmission for a fixed number of times. For instance,
Glossy sets the maximum number of transmission to
five by default to accomplish high reliability.

In order to avoid blind flooding but at the same
time maintain high reliability, each sensor node should
be able to decide whether or not it is essential to
forward the received packet based on the current
environmental conditions. Decisions are adaptively
made to maintain a good performance of the network,
while minimizing transmission redundancy. Therefore,
this decision-making adaptation can be converted to an
optimization problem.

Generally, reinforcement learning techniques are
effectively applied to solve these types of optimization
problems. Reinforcement learning is a class of learning
algorithms that attempts to maximize the cumulative
reward by taking a specific action in a given state and
following a predefined policy thereafter. Additionally,
among all the reinforcement learning techniques,
a set of so-called multi-armed bandit algorithms
is particularly suitable for the optimization of the
network. That is, the number of transmissions in each
sensor node can be furthermore modeled as a multi-
armed bandit problem, originally described by Robins
[7]. A multi-armed bandit, also called K-armed bandit,
is similar to a traditional slot machine but generally
with more than one lever. This type of multi-armed
bandit algorithm investigates the selection of the “best”
action for the dynamic situations in low-power and
lossy WSNE.

To this end, we propose Less is More (LiM), a
machine learning-based data dissemination protocol
for low-power multi-hop WSNs. In designing LiM, we
utilize a reinforcement learning technique to reduce
redundant broadcast transmissions. We model the
optimization of the transmission times in each sensor
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node as a multi-armed bandit problem. Besides, we
exploit an exponential-weight algorithm for exploration
and exploitation (called Exp3) for bandit learning
in each sensor node of the WSN. Incorporated with
concurrent transmissions, LiM is able to effectively
achieve high end-to-end reliability and low end-to-end
latency. Moreover, LiM empowers sensor nodes with
a learning capability to reduce the redundancy of the
flooding step by step, thereby significantly lowering
power consumption. We implement LiM in Contiki
[8] and conduct extensive experiments in a 30-node
testbed — FlockLab [9]. Furthermore, we compare LiM
to our baseline protocol Glossy [2] focusing on reducing
communication redundancy in flooding.

Our evaluation shows that LiM is able to effectively
limit the number of transmissions of the sensor nodes
while still preserving high reliability and energy
efficiency, as well as low latency: Sensor nodes, which
do not belong to the backbone of the network, stay
only in receiving and sleeping mode. The others
execute the decision-making based on their obtained
experience from the learning phase. With various levels
of transmission power and different topologies, LiM
obtains an average reliability of over 99.50% and an
average end-to-end latency of less than 2.5 milliseconds
(ms) in all experimental scenarios. Moreover, LiM
reduces the radio-on time by at least 30% compared to
the default configuration of Glossy.

We make the following contributions in this work:

* We propose LiM, an energy-efficient flooding
protocol with progressive learning ability for low-
power multi-hop WSN.

* As a basis for LiM, we explore and implemented a
light-weight bandit-learning scheme to determine
the number of broadcasts in each node. It guar-
antees a correct exploration of the “redundant”
nodes and further conducts a progressive learning
of the other nodes to greatly reduce broadcast
redundancy.

* We implemented LiM in Contiki OS and con-
ducted extensive experiments with various con-
figurations in a 30-node real-world testbed. After
that, we evaluated the performance of LiM in
terms of end-to-end reliability, radio-on time, and
latency.

The remainder of this article is organized as follows.
Section 2 explains the basis of LiM and provides a brief
overview. Section 3 details the design perspectives of
LiM, followed by performance evaluations elaborated
in Section 4. Section 5 discusses related work with
two foci: on Glossy-based flooding protocols and on
bandit-learning strategies applied in WSNs. Section 6
concludes our work and leads to an outlook for future
work.
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2. Overview

In this section, we explain the basis of LiM in two
dimensions: i) reliable flooding and ii) machine leaning.
Then, we provide a brief overview of the protocol.

2.1. Reliable Flooding

Proposed in the year of 2011, Glossy [2] is one of
the most representative CT-based flooding protocols
in the community. Basically, Glossy exploits both,
constructive interference to avoid the contention of the
communication medium access and the capture effect
to ensure that a receiver is able to correctly demodulate
a received packet. These two mechanisms are able to
empower Glossy to manage a highly reliable flooding
and an accurate time synchronization.

Constructive  Interference. Constructive interference
occurs only when two or more nodes transmit identical
packets. With IEEE 802.15.4 radios operating in the 2.4
GHz ISM band, these identical packets are required to
overlap within 0.5 ps [2, 10], which makes the signals
appropriately superposed. Glossy manages this tight
bound by using a radio-triggered synchronization
mechanism.

Capture Effect. The capture effect is a phenomenon,
where the receiver can lock on to and correctly
demodulate the signal when a received signal is
approximately 3 — 4 dB stronger than the sum of all the
other received signals [2, 11]. Besides, in IEEE 802.15.4
wireless networks, the strongest signal must arrive no
later than 160 us after the weaker signals [4] in order to
be properly recognized and decoded by the receiver.

2.2. Machine Learning

Machine learning is a sub-field of artificial intelligence
that is concerned with the question of “how to construct
computer programs that automatically improve from
experience” [12]. This property makes the family
of machine learning-based algorithms attractive for
reliable and efficient communications in WSNs.

Reinforcement Learning. Reinforcement learning is one
of the machine-learning techniques, in which the
learning agent earns knowledge from the interaction
with the environment. Technically, reinforcement
learning is a class of algorithms that seeks to maximize
the cumulative reward by executing different actions
in a task. In this case, different configurations of a
system can be modeled as the corresponding actions
to maximize the reward in order to optimize the
performance of the system.

Multi-Armed Bandit Problem. The well-studied multi-
armed bandit problem was originally proposed by
Robbins [7] in 1985. A gambler, firstly, chooses K slot

D EAI

machines to play. At each time step, the gambler pulls
one arm of one machine (out of K) and then receives
a positive, zero, or negative reward. The purpose is to
maximize the total reward over a sequence of trials.
Assuming each arm in a slot machine has a different
distribution of rewards, the goal is to find out the arm
with the best expected return as early as possible and
then to keep using that specific arm. The problem is a
classical example of the trade-off between exploration
and exploitation [13]: On the one hand, if the gambler
plays exclusively on the machine which the gambler
supposes to be the best one (“exploitation”), then the
gambler may fail to discover that one of the other
arms, in fact, has a higher average return. On the other
hand, if the gambler spends too much time trying out
all K machines and then makes a decision based on
the gathered statistics (“exploration”), then the gambler
may fail to play the best arm for long enough a period
of time to get a high total return.

To solve the multi-armed bandit problem, the
exponential-weight algorithm for exploration and
exploitation (Exp3) was proposed by Auer et al. [14] in
2002. Exp3 is based on a reinforcement learning scheme
and it solves the following problem: “If there are many
available actions with uncertain outcomes in a system,
how should the system act to maximize the quality of
the results over many trials?” We provide the details
of Exp3 and the related implementation issues later in
Section 3.

2.3. LiM in a Nutshell

LiM exploits both, constructive interference and the
capture effect to guarantee a good performance of
the network. However, the packets in LiM are not
necessarily identical, because the feedback byte from
the neighboring nodes should be renewed according
to the dynamic environment. In this case, the capture
effect is supposed to effectively function.

Additionally, LiM models the redundancy optimiza-
tion problem as a multi-armed bandit problem and
maps a number of configurations to the corresponding
actions in each sensor node. Furthermore, LiM employs
a bandit-learning scheme — Exp3 — in order to pro-
gressively optimize the efficiency of the network. This
learning scheme investigates the selection of the “best”
action for the dynamic environment, dramatically min-
imizing the redundancy of the communications while
still maintaining a high reliability.

In general, there are two main phases in LiM: i) the
greedy exploration phase and ii) the bandit-learning
phase. The former one is an exploration process where
the “redundant” nodes can be discovered. This type
of nodes acts as a concurrent transmitter in CT-based
protocols. LiM attempts to seek these nodes and then
keeps them staying in either receiving mode or sleeping
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mode in the network. Therefore, it is able to reduce
redundancy and to save more energy. The latter phase is
a reinforcement learning process. It has no conflict with
data dissemination, which means, in this phase, LiM
concurrently floods the information while progressively
learning from the dynamics. In the following section,
we explain these two phases of LiM in more detail.

3. Design of LiM

In this section, we detail the design aspects of LiM. We
discuss the basis of LiM: concurrent transmissions and
the reinforcement learning scheme, respectively.

3.1. Concurrent Transmissions

As derived from Glossy, LiM is based on concurrent
transmissions, i.e., constructive interference and the
capture effect. LiM adds an action scheme together with
a feedback scheme to progressively learn the dynamics
of the network. As a consequence, the content of a
packet cannot be guaranteed to be identical all the time.
By exploiting the capture effect, however, the receiver
is able to correctly receive a packet with the stronger
signal strength. In other cases, LiM similarly works
with constructive interference as Glossy. Figure 1 shows
the protocol stack of LiM. LiM operates IEEE 802.15.4
radios (i.e., CC2420) and is integrated with Glossy.
As a result, LiM can be considered as an extension of
Glossy, namely, it builds the learning scheme consisting
of feedback and action selection on higher layer of
Glossy. The application layer can be further developed
to meet the users’ requirements. Later in this section,
we explain the action and the feedback scheme in more
detail.

APP

Application

N
Vi

Learning

I AN
Action Feedback
V ]

Glossy

N
Vi

CC2420 Radio

MAC

PHY

Figure 1. Protocol stack of LiM. LiM builds on Glossy and
exploits an iterative learning scheme to select an action based
on the feedback.

Number of Transmissions. By design, LiM maps four
configurations of transmission times to four actions
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respectively: Action 0 stands for a node staying only in
receiving (low-power listening) or sleeping mode, i.e.,
N = 0; Action N (N =1, 2, 3) means that a node works
normally except setting the maximum transmission
times to N, i.e., forwarding the received packet N
times. In general, nodes in LiM exploit one of the
above-mentioned four actions to effectively reduce the
broadcast times in order to improve energy efficiency.
Besides, the initiator in LiM is exempted from the action
selection. Namely, the initiator maintains the default
maximum number of transmission (i.e., N = 5, the same
as Glossy), and does not execute neither the greedy
exploration phase nor the bandit-learning phase.

Frame Structure. To support the feedback scheme, LiM
extends the frame structure in Glossy by adding one
byte for an exploring ID field and one byte for a
feedback field, respectively. One example of a frame
structure is illustrated in Figure 2.

. . | Frame Exploring Relay
Field: Length Header Data D Feedback Counten CRC
Bytes: 1 1 4 1 1 1 2

Figure 2. An example of an application-level frame structure in
LiM. By design, the length of the data field (payload) is set to
eight bytes in LiM. The exploring ID field is to notify the nodes
in the network to proceed to different phases. The feedback field
is to carry a response for the learning process.

The frame length stands for the length of the whole
frame. The header is a constant value, e.g., 0xAQ in
LiM. The length of the data (i.e., payload) in LiM
can be adjusted according to the needs of different
applications. By default, LiM sets the payload length
to eight bytes. The exploring ID field is to disseminate
the ID of the current exploring node: A node that
receives the packet is able to notice whether it is the
right time for itself to explore or to learn. While a node
experiences a packet loss, the feedback field is in use
and is updated to a negative feedback value. If not,
the feedback is not updated after the data packet has
been received from the upper-level nodes, and hence,
remains a positive feedback value. The relay counter is
inherited from Glossy for concurrent transmissions and
time synchronization. A cyclic redundancy check (CRC)
is an error-detection field to discover accidental changes
to the raw data while transmission in the air.

3.2. Feedback Scheme

The feedback scheme is one key feature of LiM. Namely,
only with the accurate feedback, sensor nodes can make
the correct decision of choosing the appropriate action.

LiM assigns two types of feedback: a positive
feedback (0x01) and a negative feedback (0x00). When
being in the exploration phase, if it is the time for a
node to explore whether it is a “redundant” node or
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not, it stops forwarding the received packets in the
current round. As a result, the nodes (e.g. in the lower
level from the data source) which suffer a packet loss,
update the feedback to a negative one. In the following
round, while the exploring node recovers to forward,
the nodes which lost a packet in the previous round
rewrite the received packet with the renewed feedback
byte and forward the packet to the neighboring nodes.
Correspondingly, the exploring node i) receives the
packet and ii) reads the feedback byte, and then iii)
makes a decision on its own.

When in the bandit-learning phase, the criterion
is similar to the one in the exploration phase. If a
node receives at least one packet, it does not update
the feedback byte in the received packet. Otherwise,
it renews the feedback byte to a negative value. The
exploring node subsequently receives the packet and
then updates the probability distribution of the action
selection based on the received feedback. In a few cases,
the capture effect could fail to work correctly due to the
density of the nodes and the reason that the feedback
byte is different, e.g., a positive feedback from “upside”
and a negative one from “downside”. In this case, LiM
extends one extra listening time slot particularly for
the packets from downside nodes to obtain a correct
feedback. Figure 3 reveals the timeline of one single
round in the flooding protocol.

X RX X RX TX

™M ™M

RX TX RX TX RX TX

RX X RX TX RX TX RX

W MW MW

RX X RX TX RX TX

RX TX RX X RX X

Time Slot 0 1 2 3 4 5 6 7

[ |
— W
[ '

Figure 3. Time slots in one round of LiM with a configuration of
N = 3. A data packet is generated in and flowed from node | to
all the others. LiM compels node B to extend one extra listening
time slot for the exploring feedback, particularly for receiving the
feedback from downside nodes.

3.3. Greedy Exploration

In addition to a bootstrap procedure, LiM comes to
an exploration phase that can be considered as an
initialization of the protocol. In this phase, LiM uses
a greedy algorithm to explore the nodes that are not
essential for transmitting (forwarding) the received

2 EAI

packets in the network. Throughout this article, we
define this type of nodes as “absorbing nodes” that can
always stay in either receiving mode or sleeping mode.
Due to the special characteristics of these nodes, the
number of absorbing nodes significantly affects the
performance of the CT-based flooding protocols. On
the one hand, reducing the number of absorbing nodes
increases the concurrent transmitters, consequently
strengthening the concurrent transmissions in the
network. Based on the results in [4], however, the
reliability (i.e., packet delivery ratio) degrades greatly
with the number of synchronous transmitters. On
the other hand, maintaining too many absorbing
nodes might lead to a fragile network with a higher
probability that nodes get disconnected while the
environment dynamically changes.

LiM appropriately explores the absorbing nodes
by considering the dynamical environment in the
exploration phase using a greedy search algorithm.
That is, the initiator firstly generates an exploring list
containing all the node IDs of the whole network, and
then disseminates each node ID in each packet in a
number of rounds (e.g., 10 rounds for each single ID in
LiM by default). As long as a node receives the packet
containing the ID of its own, it acts as an absorbing
node for the current round, i.e., it only receives the
packets from others but does not forward any packet.
Afterwards, the node works as a normal node in the
next round, i.e., it continues to forward the received
packets and meanwhile checks the feedback byte of
the received data packet. Generally, as long as a node
loses a packet in this phase, it updates the feedback
byte in its received data packet and forwards it in the
following round. In this case, each node attempts to
explore whether it is an absorbing node. Therefore, it
is able to make a decision in the next round based on
the feedback from its neighboring nodes.

Figure 4 demonstrates an example after greedy
exploration in LiM. Previously, node B is in the first hop
from the initiator, connecting node I and C (as shown
in Figure 3). While in the exploration phase, node B
finds out that it is not necessary for itself to forward the
received packet to the next hop. Since with or without
it, the neighboring nodes do not loss any packet. Hence,
node B decides to act as an “absorbing node”: staying
only in receiving mode or sleeping mode. When a node
decides to be an absorbing node, then it extends one
more slot for listening on the occasion that it misses
the packet in the first slot. This is because after the
exploration phase, once being in the absorbing state,
the node cannot forward a packet any more. Please note
that, in the exploration phase, the initiator in LiM by
default does not transmit any real data in the payload
except the node ID, since the probability of packet loss
is relatively high. However, if users can tolerate the loss,
then the initiator can be set to transmit real data also in
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this exploration phase. We show the reliability of LiM
particularly in the exploration phase later in Section 4.

™ | R | X | RX | TX
N /2 O
RX | TX | RX | TX | RX | TX
Lo
RX
|
R | X | Rx | TX | RX | TX
)
RX | TX | Rx | TX | RX | TX
TimeSlot . @ | 1 2 | 3 4 | 5 | & | 7
™ ‘ ‘ RX ‘ —

Figure 4. Nodes self-prune the connection links during the
exploration phase. Node B (in dark yellow) then acts as an
absorbing node and stays in receiving mode in a LiM round. In
this example, node B in time slot 1 attempts to relax the listening
time conservatively, in case that it misses the packet in slot 0.
As a result, node B still saves the energy consumed in four slots
compared to the other nodes.

3.4. Multi-Armed Bandit Learning

In the following, we explain the details of the main
learning algorithm in LiM. As different configurations
are mapped to responding actions, we model the opti-
mization problem as a multi-armed bandit problem. In
order to overcome this problem, we use one algorithm
from the set of multi-armed bandit-learning algorithms:
Exp3. In our case, the goal of the algorithm is to opti-
mize the energy efficiency with reliability based on the
policy of selecting transmission times for each sensor
node.

Considering a process with K different actions, the
Exp3 algorithm functions as shown in Algorithm 1,
where y is the exploration factor and w; is the weight
of each action i. p;(t) is the probability of selecting
action i in round t, while T means the total number
of iterations. At the beginning, the algorithm initializes
the exploration parameter y. This parameter adjusts
the possibility that the algorithm attempts to explore
other actions while a certain action has already achieved
the highest probability. Next, the algorithm associates a
weight with each action in order to give each action a
probability to form a distribution over all actions.

After the exploration phase, the algorithm iterates
T times the learning procedure in order to learn from
the environment and to generate a better probability
distribution to receive more accumulative rewards
from the environment. In the learning procedure, the
algorithm selects an action i based on the distribution
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P at first, and then receives a reward x; (t) from the
environment. Thereafter, an estimated reward £%; (t)
is calculated as x;,(f)/p;(t) to further include the
influence of the probability on the reward. In the end,
the weight of the sampled action is updated, while
the weights of other actions (wj, Vj=i,jefl,...,K})
remain unchanged. While the algorithm converges, the
eventual probability distribution over different actions
is considered to be the best strategy of maximizing the
reward.

Algorithm 1 Exp3
1: procedure INITIALIZATION
2: initialize y € [0, 1]
3: initialize w;(1) =1, Vi € {1,...,K}

4: for P, set p;(t) = (1 — 7/);}1# + Z,
j=1 w;(t) K

5: Viell,...,K}

6: end procedure

7: procedure ITERATION

8 repeat

9: draw i; according to P
10: observe reward x;,(t)
11: define estimated reward %;,(t) = x;,(t)/p;, (t)
12: setw; (t+1)= u/it(t)ey’eit(t)/K
13: setw;(t+1) =wj(t),Vj=#isand j€{l,...,K}
14: update P:

il Y i, K

15: () =(1-

16: until T times
17: end procedure

To integrate Exp3 in LiM well, each action in this
algorithm is associated with a possible configuration
of a sensor node, which is mentioned in Section 3.1.
In each iteration, the probability of selecting a certain
action is calculated based on the feedback from
previous broadcasting round. For instance, there are
three actions (K = 3) in the learning procedure of LiM
by design, i.e., action 1, 2, and 3. Respectively, action 1,
2, and 3 are mapped to three different configurations,
where nodes transmit the received packet once, twice
or three times. That is, if the randomly sampled action i
is 1, then the node only transmits once in the current
round. After the node receives the feedback, the weight
of the corresponding action (i.e., action 1) is updated as
shown in line 12 of the algorithm. The weights of other
actions (i.e., action 2 and 3) stay the same.

In the final step, the distribution P is updated to
prepare for the next iteration round according to the
formula in line 15 of the algorithm. At this point, one
learning iteration has been performed. This iteration
phase continues until the number of iteration rounds
reaches T. By design, LiM sets this value to T = 200,
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i.e., a fixed learning period for each node in LiM.
However, due to the dynamic environmental changes,
a fixed period might cause a case that the probability
of choosing an action does not converge. We detail and
evaluate this case later in Section 3.5.

After the learning phase of one particular node
(when T reaches 200), the initiator randomly assigns
another node to learn by exploiting the algorithm.
Correspondingly, when the node receives the ID
information in the data packet, it knows that it is its
turn to start learning. In the end, after all nodes (except
the initiator) have completed their learning phase, the
learning procedure finishes and then the nodes mainly
focus on data flooding. Figure 5 demonstrates the
timeline of an example where all nodes have decided
their own actions.

™ | Rx | TX | RX | TX
A /2 O
RX | TX | RX | TX | RX | TX
L]
RX | RX
]
R | X | R | TX | RX | TX
i
RX
TimeSlot . @ | 1 | 2 | 3 4 | 5 | & | 7
™ ‘ ‘ RX ‘ —

Figure 5. Nodes self-determine the actions based on the results
of their learning phase. This example shows the final state after
all sensor nodes (in light yellow) have completed their learning
phase. Node A and C choose action 3 to ensure the reliability,
while node B and D act as absorbing nodes. Node D hears
nothing in the fourth time slot, since there is no neighboring
node on the same or on a lower level.

3.5. Implementation Aspects

In this part, we give additional implementation aspects
of LiM.

Destructive Action. In the bandit-learning phase, the
nodes — except the absorbing ones — learn to make a
decision based on the feedback they receive. By trying
action 1, where a node only forwards the received
packet once, receivers might miss the packet so that the
reliability of the whole network degrades. Because of
the dynamics in the environment, this packet has higher
possibility of getting lost since it is only transmitted
once. Consequently, the nodes which are far away from
the initiator would suffer a packet loss with relatively
high probability. To avoid this negative effect, LiM
learns conservatively to select action 1. Namely, if a
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node in LiM i) gets a negative feedback of the exploring
action in the previous round, and ii) this specific
action is action 1, then the node abandons selecting
actionl, i.e., it stops exploring action 1. The mechanism
leads LiM to make a relatively conservative decision of
choosing action 1.

Non-Converging Case. Practically, the learning proce-
dure in a node may not always converge: The learning
duration might not be long enough for the node to
clearly distinguish the variance of the probability of
selecting different actions. That is, at the end of the
learning phase, the difference between each probability
might not be large enough. Figure 6 demonstrates two
cases of the convergence of the learning algorithm.
In Figure 6(a), the probability of selecting action 1
converges and the node chooses action 1 as its final
decision. Comparatively, as shown in Figure 6(b), the
probability of choosing action 1 and action 2 is almost
the same. That means, the node might take a wrong
decision according to the final probability. In case of
this exception, to better maintain a high reliability
instead of reducing the power consumption any further,
LiM selects action 3 with a maximal transmission of
N = 3. Note, that this is an example of a special case.
In practice, LiM defines the learning round to be T =
200 in order to avoid non-converging cases as often as
possible.

4. Performance Evaluation

In this section, we provide an extensive evaluation of
LiM based on a number of extensive experiments in a
real-world testbed.

4.1. Methodology

In this work, we use the FlockLab testbed [9] for
our experimental evaluation. FlockLab is located at
ETH Zirich, Switzerland, and consists of 30 TelosB
nodes inside and outside of an office building. For
more details, we refer readers to Lim et al. [9] and
the website! of FlockLab. Besides, the topology of the
testbed is shown in Figure 7. We use 28 sensor nodes
(observers) out of 30 existing ones (except node 201 and
202) in the testbed since they had not been constantly
available during our experiments.

To fairly evaluate the performance of the protocols,
we use different nodes (i.e., node 1, 16, and 20) as
initiator, respectively, in different scenarios. Besides, we
vary the transmission power level as —7, -3, and 0 dBm
in different scenarios. The default wake-up frequency
of all protocols is set to 4 Hz, that is, a packet with
eight bytes payload is generated and transmitted by the

Lyww.flocklab.ethz.ch
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Figure 6. Two convergence cases of a learning phase in LiM. In
(a), action 1 dominates at the end of the learning phase, while
in (b), action 1 and action 2 still compete with each other in the
end.
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Figure 7. The deployment of sensor nodes in FlockLab.

initiator every 250 ms. We perform three independent
runs for each experimental configuration throughout
this article. Each run lasts 45 minutes, in which there
are over 10000 packets generated by the initiator and
flooded to the whole network. All the experimental
results are averaged over these three runs and the
standard deviations are revealed by error bars. The
evaluation setting is summarized in Table 1.

D EAI

Table 1. Evaluation settings in the FlockLab testbed.

Initiator ID
1,16, 20

TX Power (in dBm) | Network Size (in hops)
-7,-3,0 3-8

Protocols. A number of the state-of-the-art protocols
integrate a specific application layer with Glossy, e.g.,
LaneFlood [15]. It might not be fair to compare LiM
to them since LiM is not application-specific such
as LaneFlood. Therefore, in this the work, we only
compare LiM to the our baseline Glossy in various
scenarios. However, we believe that our protocol can
be easily integrated with a specific application, for
example, a data dissemination application. We are eager
to compare LiM with the other relevant state-of-the-art
protocols in the future.

Metrics. We focus on three key metrics to evaluate
the performance of the related protocols, i.e., packet
delivery ratio (PDR), radio-on time, and latency.

* PDR: The PDR is the ratio of the number of
packets which are successfully delivered to a
destination over the number of packets sent by
the transmitter in an end-to-end communication.
In most cases, PDR is the basic evaluation metric
of a network, representing the reliability of the
communication protocol.

* Radio-on Time: Radio-on time is the time dura-
tion that the radio is turned on in a single duty
cycle, including the time for listening, receiving,
and transmitting. Instead of considering the duty
cycle — the portion of radio-on time over the total
time — we directly take the radio-on time into
account (note, that Glossy uses the same metric
[2]), since the total time of each round is the same.
It can be considered as an indicator of power con-
sumption and describes the energy efficiency of
the protocol. We measure radio-on time by using
the software-based energy profiler [16] provided
by Contiki.

* Latency: Latency is the time elapsed from the
application on the initiator handing the packet
to the MAC layer until the packet arrives at the
other node’s application. Therefore, latency in this
article represents the end-to-end latency on the
application level. Minimizing end-to-end latency
in random access networks is one of the key goals
of protocol design, especially for mission-critical
applications. In this article, we measure latency
based on the time-stamps of the serial outputs
from all the sensor nodes.
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4.2. Impact of the Number of Transmissions

In this part, we analyze how the performance metrics
are affected by the number of transmissions (N) of
a node during network flooding. Firstly, we run the
experiments of our baseline Glossy and vary N as 1, 3,
and 5, respectively.

As LiM flexibly tunes N according to the learning
experience, LiM starts with N = 5, as Glossy constantly
sets N to 5 by default. In this part, for both protocols,
we set node 1 — a node on the edge of the network — as
the initiator, and use various transmission powers of -7,
-3, and 0 dBm, respectively, resulting in a WSN with
different diameters.

1.00F
0.95}
o
E 0.90F —3 TX power = -7 dBm
0.85 /= TX power = -3 dBm
[ TX power = 0 dBm
080 I I I I I I
10
[0} —— L
E 8 ]
3
6 — [
gE
oL 4 - .
el 2t i
©
o
0
25— . . . . . .
2.0=— £ T + —
> I
22 15¢ 1
BE
5 € 1.0f
=
0.5}
00 "\r "’) ‘<'> : .'\/ "’) "o : "\/ T
ARG //\‘§\ R /,\‘§“ 7 S
S S S S S

Figure 8. Performance metrics of Glossy with various N values
and of LiM, respectively. Both protocols set node 1 as the initiator
and use the transmission power of -7, -3, and 0 dBm. LiM inherits
the advantages from Glossy in terms of high reliability with
various levels of transmission power, while effectively reducing
the radio-on time. The longer latency in LiM stems from the
overall processing time in the bandit-learning phase.

Figure 8 revels the performance comparison between
Glossy and LiM. For reliability, Glossy achieves
extremely high PDRs even with various N values. LiM
is able to maintain this advantage of Glossy: It achieves
an average PDR of over 99.85% similar to the one of
Glossy with N = 1.

Moreover, LiM succeeds in reducing unnecessary
broadcast redundancy, resulting in a notable decreased
portion of radio-on time, compared to Glossy with N =
3 and 5. The radio-on time is even close to the one of
Glossy with N = 1 by using —3 or 0 dBm as transmission
power level. Even with a transmission power of -7 dBm,
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LiM is able to carry out a radio-on time similar to the
one of Glossy with N = 3.

For the flooding latency, LiM has to spend more
time for data processing, decision making, probability
calculation, and so on, consequently leading to an
average latency of approximately 2 ms in most cases.

Note that, in reality, Glossy with N =1 may
have a bootstrap problem and experience a highly
fragile network according to our experience from the
experiments that we carried out. We argue that LiM
aims to progressively learn from the environment and
thus makes a decision of N to progressively reduce the
broadcast redundancy while maintaining acceptable
levels of reliability and latency. In Section 4.4, we
take a closer look at how LiM affects the number of
transmissions.

4.3. Impact of the Topology

In this section, we evaluate LiM with different positions
of the initiator. We change the position of the initiator
(i.e., node 1, 16, and 20) to alter the flooding diameter
of the network, making the topology different in each
set of experiments. While the position of the initiator
changes in the testbed, the logic network topology
varies as well. Besides, we exploit the transmission
power of —7 dBm to result in a WSN with approximately
eight hops.

Figure 9 illustrates the results of LiM with various
network topologies. For the reliability, LiM is able to
achieve an average PDR of over 99.80% in all scenarios.
The average radio-on time and latency change slightly
along with the topology. However, LiM maintains a less
than 6 ms radio-on time and a less than 2 ms average
end-to-end latency only with a transmission power of
—7 dBm regardless of the topology.
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Figure 9. Performance metrics of LiM with various initiator
positions using a transmission power of -7 dBm. Even with
relatively weak link connections, the network can still provide
high reliability, low radio-on time, and low latency.
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4.4. lmpact of the Exploration Phase

Absorbing Nodes. In general, the main part of redun-
dancy reduction is contributed by the greedy explo-
ration phase in LiM, where the absorbing nodes are
discovered. These nodes stay in a receiving mode and do
not forward a received packet after waking up from the
sleeping mode. Figure 10 shows the average number of
transmissions of each node in LiM from one experiment
with node 1 as the initiator and 0 dBm transmission
power. The nodes that have no transmission are actually
the absorbing nodes, as the other nodes can be consid-
ered as a set of backbone nodes of the network in this
case.
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Figure 10. Average number of transmissions with node 1 as
initiator and 0 dBm transmission power. The dotted line shows
the overall average number of transmissions. As LiM starts with
N equal to 5, and progressively determines N, the average value
of N in each node is not constant. After the learning phase, LiM
eventually obtains an average N equal to 1.

Reliability Drop. Since nodes in the exploration phase
exploit a temporary log-out strategy, the network
reliability cannot be guaranteed to be 100%. However,
LiM reserves ten flooding rounds for each node to
explore its role. Additionally, during these rounds, a
node only logs out of the network for one particular
round (out of 10), where the node stays in receiving
mode and does not transmit.

Consequently, assuming there are 30 nodes in a
WSN and that nodes are well synchronized, then a
node can lose 29 packets out of 300 in the worst-
case, i.e., PDR equals 90.33%. Figure 11 illustrates the
dynamically changing PDRs of all the nodes in the
testbed along with the running time. As shown, even
though several nodes suffer a packet loss during the
exploration phase, they are still able to maintain a high
reliability afterwards.
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Figure 11. PDRs of all nodes in FlockLab changing over run-
time. PDR drops during the greedy exploration phase while
finding all the absorbing nodes, but it is still higher than 90%. In
this case, users can decide whether to put important or dummy
data in the payload during the exploration phase according to
application-level requirements.

4.5. Discussion

To summarize, in this section, we demonstrated
the performance of two different protocols: LiM
and our baseline protocol Glossy, respectively, in
various evaluation scenarios. Our experimental results
revealed that LiM effectively inherits the benefits from
concurrent transmission. It delivers a high end-to-
end reliability of over 99.50% with an average end-
to-end latency of less than 2.5 ms in all cases. More
importantly, LiM is able to decrease the radio-on
time to less than 6 ms step-by-step, and significantly
reduces broadcast redundancy. Even with different
topologies, LiM is able to manage a high reliability with
low end-to-end latency, while reducing unnecessary
communication redundancy. Table 2 summarizes our
experimental results.

5. Related Work
5.1. CT-Based Flooding Protocols

Network flooding is one of the most fundamental ser-
vices in wireless sensor networks. It forms the basis
for a wide range of applications and network opera-
tions. Glossy [2] provides a fast and efficient network
flooding service by using concurrent transmissions in
WSNs. By exploiting constructive interference and the
capture effect on the physical layer, Glossy is able to
get an average packet delivery ratio of 99.99% in real
testbeds. Afterwards, Ferrari et al. adds an application-
level scheduler to construct a so-called Low-power
Wireless Bus (LWB) [17]. LWB centrally schedules the
data communication to support one-to-many, many-to-
one, and many-to-many traffic patterns in WSNs. On
the contrary, Chaos [4] builds on Glossy to achieve fast
all-to-all data sharing in a distributed manner. Chaos
further combines programmable in-network processing
with concurrent transmissions in WSNs.

Splash [18] builds a tree pipeline [19] on Glossy,
thereby improving channel utilization. Furthermore,
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Table 2. Summary of experimental results. In all experimental scenarios, LiM maintains a best-effort end-to-end PDR and latency,
taking advantage of concurrent transmissions. Besides, LiM decreases approximately 5 ms radio-on time compared to the default
configuration of Glossy. The maximum value of radio-on time in Glossy is N = 5, while the minimum value is N = 1. LiM reduces
the radio-on time by at least 3 ms compared to the default setting of Glossy (i.e, N = 5).

Protocol | Initiator ID | TX Power || PDR (%) | Radio-on Time (ms) | Latency (ms)
0 dBm 99.97 5.42 1.24
(max: 100.00 min: 99.88) | (max: 8.41 min: 2.53) | (max: 1.26 min: 1.23)
99.97 5.61 1.44
Glossy Node 1 -3 dBm (max: 100.00 min: 99.88) | (max: 8.71 min: 2.61) | (max: 1.69 min: 1.30)
7 dBm 99.84 6.17 1.95
(max: 99.97 min: 99.66) | (max: 9.26 min: 3.25) | (max: 2.03 min: 1.89)
0 dBm 99.91 3.02 2.00
(max: 99.98 min: 99.80) | (max: 3.22 min: 2.82) | (max: 2.12 min: 1.92)
99.84 3.48 2.01
Node 1 -3 dBm (max: 99.92 min: 99.76) | (max: 3.69 min: 3.25) | (max: 2.34 min: 1.44)
7 dBm 99.86 6.00 1.95
(max: 99.95 min: 99.73) | (max: 6.33 min: 5.68) | (max: 2.33 min: 1.62)
0 dBm 99.97 3.89 0.91
(max: 99.99 min: 99.94) | (max: 4.70 min: 3.14) | (max: 1.06 min: 0.80)
. 99.84 3.64 1.53
LiM Node 16 -3 dBm (max: 99.91 min: 99.76) | (max: 4.07 min: 3.27) | (max: 1.58 min: 1.48)
7 dBm 99.89 4.87 1.28
(max: 99.96 min: 99.84) | (max: 5.38 min: 4.34) | (max: 1.38 min: 1.18)
0 dBm 99.91 2.96 0.94
(max: 100.00 min: 99.79) | (max: 3.11 min: 2.83) | (max: 1.12 min: 0.87)
99.93 3.11 1.18
Node 20 3dBm o x: 99.94 min: 99.92) | (max: 3.20 min: 2.98) | (max: 1.23 min: 1.07)
7 dBm 99.95 4.47 1.40
(max: 99.98 min: 99.92) | (max: 4.77 min: 4.18) | (max: 1.44 min: 1.35)

Pando [20] integrates fountain code with pipelining to
overcome the long-tail problem of Splash. While Glossy
disseminates one packet in each communication round,
Splash and Pando are designed to deliver large data
objects to all nodes in a network, e.g., for the purpose
of reprogramming WSN-based applications. Ripple [21]
also relies on Splash and network coding techniques
to further improve particularly in terms of network
throughput.

Carlson et al. propose CXFS [6], a forwarder selection
mechanism for concurrent transmissions. In CXFS,
sensor nodes use a hop count in each packet to get
their relative distance to each other. CXFS builds
on Glossy and supports point-to-point transmissions
while achieving high reliability, high energy efficiency,
and high throughput. Moreover, Sparkle [22] selects
subsets of nodes that participate in Glossy-based
flooding. It also supports one-to-one communication.
Similarly, LaneFlood [15] is built on Glossy and further
integrates the forwarder selection scheme of CXFS
with application-level network protocols in WSNs.
LaneFlood thus supports one-to-one traffic, forwarder
selection, and standard protocols in IoT such as
TCP/UDP and the constrained application protocol
(CoAP). RTF [23] further extends Sparkle and exploits
TDMA for data scheduling to improve reliability and
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energy efficiency in point-to-point traffic. RFT identifies
reliable relay nodes to limit the number of concurrently
active neighbors to save more energy.

5.2. Multi-Armed Bandit Algorithms

Many real-word problems require decisions to be made
for maximizing the expected reward. Over the last two
decades, a number of algorithms have been designed for
this purpose.

One simple strategy called e-greedy was first
investigated by Watkins [24]. This method introduces
an e-frequency, which is configured by the users, to
decide the probability of uniformly trying an action.
Otherwise, the algorithm executes the action with the
highest mean value p. The Exp3 algorithm [13], first
introduced by Auer, considers using a modified softmax
function to decide the possibility of trying different
actions.

Besides, several more strategies were proposed after
e-greedy and Exp3. For instance, in 1998 Cesa-Bianchi
et al. introduced SOFTMIX [25]. In 2005, Vermorel
et al. introduced the POKER algorithm [26]. These
algorithms are claimed to perform better than e-
greedy and Exp3. However, Exp3 is the most popular
one among all these learning algorithms. Therefore,
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in this work, we select the Exp3 algorithm i) to
prove the feasibility of learning algorithms in resource-
constrained sensor nodes, and ii) to evaluate its
usability and adaptability in WSNs.

5.3. Bandit Learning in WSNs

Motamedi et al. in [27] propose a distributed multi-
channel MAC protocol for wireless networks. It
formulates the dynamic channel selection in wireless
networks as a multi-armed bandit problem and derives
optimal channel selection rules. The authors investigate
the effectiveness of their protocol by using simulations
only. Thus, the effectiveness in real-world scenarios is
therefore not clear.

Similarly, another multi-channel access scheme is
proposed in [28] to schedule the access with the
unknown environment information for cognitive users,
in order to maximize the throughput in cognitive radio-
based WSNs. By their simulation results, the authors
claim that the proposed scheme could effectively
improve the utilization of the idle spectrum and
guarantees the fairness of selecting channels between
cognitive users.

In [29], Kadono et al. propose a budget-limited multi-
armed bandit algorithm, which is suitable for resource-
constrained WSNSs. It could limit sources to be retrieved
when a relatively hard budget limitation has been
applied. By conducting simulations, they claim that the
proposed protocol outperforms the state-of-the-art.

A duty cycle learning algorithm (DCLA) is presented
in [30] for IEEE 802.15.4-standardized WSNs. DCLA
automatically adapts the duty cycle during run-time to
minimize power consumption and to balance the packet
delivery ratio and delay constraints of the application.
It estimates the incoming traffic by collecting network
information during each active phase and then uses
a reinforcement learning framework to learn the
best duty cycle at each beacon interval. Simulations
demonstrate that the proposed scheme achieves the best
overall performance for both, constant and event-based
traffic, compared to existing IEEE 802.15.4 duty-cycled
adaptation schemes.

In [31], the authors study the long-term information
collection in the WSN domain. Then, they propose
a multi-armed bandit-based approach for the energy
management problem in WSNs. They also describe a
multi-armed bandit algorithm - Exp3 - that can be
used to efficiently deal with the energy management
problem. They show through simulations that their
approaches improve the performance of the network by
up to 120%.

Villaverde et al. in [32] present a route selection algo-
rithm (InRout), which shares local information among
neighboring nodes to enable efficient, distributed route
selection. They model it as a as a multi-armed bandit
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problem and use Q-learning techniques to obtain the
best routes based on current network conditions and
application settings. Then, the authors compare InRout
with with existing approaches by simulations. Their
results demonstrate that InRout provides gains ranging
from 4% to 60% in the number of successfully delivered
packets compared to current approaches while having a
lower control overhead.

5.4. Summary

Concurrent transmissions — a promising technique in
this field — allow highly energy-efficient, low-power
communication in WSNs. The technique has been
developed and integrated with different standards
and techniques. None of the state-of-the-art protocols,
however, makes a great effort to apply an adaptive
machine-learning scheme to concurrent transmissions.
On the other hand, the bandit-learning scheme has been
exploited in the field of WSNs for smart duty cycling,
long-term energy management, and route selection.
Most of the work is investigated by using simulations
only. As a consequence, their effectiveness in real-world
scenarios has not been shown yet.

LiM incorporates concurrent transmission with a
bandit-learning scheme in order to take advantage
of both techniques. Meanwhile, LiM proves the
feasibility of applying relatively light-weight machine-
learning techniques to concurrent transmission for
low-power wireless in real-world applications. To the
best of our knowledge, LiM is the first primitive that
integrates a machine-learning scheme with concurrent
transmissions, especially for low-power multi-hop
WSNs. We believe that LiM is able to be further
developed to robustly resist more adverse conditions
in reality, e.g., with a channel hopping scheme, and to
satisfy the requirements of the various applications.

6. Conclusion

This article introduces LiM, a machine learning-
based flooding protocol for low-power duty-cycled
WSNs. LiM applies a multi-armed bandit-learning
scheme in CT-based flooding, thereby, benefiting from
both. Concurrent transmissions ensure LiM a highly
reliable communication with low end-to-end latency
and low energy cost. Machine learning brings the
adaptation ability to deal with the dynamics of
the environment, thereby further improving energy
efficiency. We implement our protocol in Contiki OS
and evaluate it with extensive experiments in a real-
world testbed FlockLab.

Our experimental evaluation shows that LiM
achieves less radio-on time, and — as a consequence —
it greatly improves energy efficiency of the network.
Meanwhile, LiM manages a more than 99.50% average
end-to-end reliability and a less than 2.5 ms average
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end-to-end latency in all experiments in the testbed.
Furthermore, with its learning ability, LiM maintains
a flexible adaptation to the dynamics of the network,
when compared to the baseline protocol Glossy. To
sum up, LiM inherits the benefits from concurrent
transmissions and a machine-learning scheme,
outperforming our baseline protocol Glossy in the
light of energy efficiency while maintaining a high
end-to-end reliability and low latency.

In the future, we plan to extend LiM to the frequency
domain, i.e., adding a channel hopping strategy to
enhance the robustness of the protocol. Moreover, we
are also interested in how the other learning algorithms
perform in networked low-power wireless.
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