
Jayasankar. M, Anandi Giridharan

Jayasankar. M is with Quest-Global, e-mail: (jayasankar.m@gmail.com)
Anandi Giridharan, Principal Research Scientist was with ECE Department, Indian Institute of Science, Bangalore. (e-mail:
anandi@iisc.ac.in).

Abstract

With the advancements in technologies, there has been a growing trend to move from desktop applications towards web and
mobile applications. This move was made possible through introduction of the RESTful Web Services. The benefits of such a
move include minimal installation costs, automated upgrading for all users, and increased interactivity and universal access.
Modbus is a serial communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use with its
programmable logic controllers (PLCs). Simple and robust, it has since become a de facto standard communication protocol,
and it is now a commonly available means of connecting industrial electronic devices.
This paper, demonstrates the advantages of providing RESTful interface to modbus protocol. We have used formal SDL
(Specification and Description Language) to specify this framework and study their performance evaluation.
Keywords: HTTP, Modbus, REST, SDL, TCP, MSC

1. Introduction

Representational State Transfer (REST) has gained
widespread acceptance across the Web as a simpler
alternative to SOAP and Web Services Description
Language (WSDL) based Web services. Key evidence of
this shift in interface design is the adoption of REST by
mainstream Web 2.0 service providers including Yahoo,
Google, and Facebook, who have passed on SOAP and
WSDL-based interfaces in favor of an easier-to-use,
resource-oriented model to expose their services.

Statelessness is the key of REST. Necessary state to handle
the request is contained within the request itself, whether as
part of the URI, query-string parameters, body or headers.
The URI uniquely identifies the resource and body contains
the state of that resource. Then after the server does it's
processing, the appropriate state, or the piece of state that
matter are communicated back to the client via headers,
status and response body.
REST is any interface between systems using HTTP to
obtain data and generate operations on those data in all
possible formats, such as XML and JSON. This is an
increasingly popular alternative to other standard data
exchange protocols such as SOAP (Simple Object Access

Protocol), which have a high capacity but are also very
complex. Sometimes it's preferable to use a simpler data-
processing solution such as REST.

2. RESTFUL SERVICES

 REST defines a set of architectural principles by which one
can design Web services that focus on a system's resources,
including how resource states are addressed and transferred
over HTTP by a wide range of clients written in different
languages. If measured by the number of Web services that
use it, REST has emerged in the last few years alone as a
predominant Web service design model. In fact, REST has
had such a large impact on the Web that it has mostly
displaced SOAP and WSDL based interface design because
it's a considerably simpler style to use. A concrete
implementation of REST Web service follows four basic
design principles:
1. Use HTTP methods explicitly.
2. Be stateless.
3. Expose directory structure-like URIs.

Specification of REST API Services for Modbus

Protocol using Formal technique

EAI Endorsed Transactions
on Cloud Systems Research Article

Received on 10 October 2017, accepted on 28 November 2017, published on 20 December 2017
Copyright © 2017 Jayasankar. M and Anandi Giridharan, licensed to EAI. This is an open access article distributed under
the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.*
doi: 10.4108/eai.20-12-2017.153492

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

1

4. Transfer XML, JavaScript Object Notation (JSON), or
both.

 In this work, we propose a framework for the formal
specification of REST API Services for Modbus Protocol
using SDL based system. The purpose of this framework is
to provide a formal basis for their performance evaluation
and behavioral study. The rest of the paper is organized as
follows. Section 4. illustrates specification design of
RESTAPI Services for Modbus Protocol using formal SDL
language. Section 5 describes of verification and validation
of the protocol to rule out design errors. Section 5 illustrates
experimental simulations with results and Section 6.
provides our conclusion.

3. Modbus protocol

Modbus protocol is an application layer messaging protocol
at Level 7 of the OSI Model that provides client/server
communication between devices connected on different
types of buses or networks. The Modbus messaging
structure was developed by Modicon in 1979. Different
versions of Modbus used today include Modbus RTU
(based on serial communication like RS485 and RS232),
Modbus ASCII and Modbus TCP, which is the Modbus
RTU protocol embedded into TCP packets.

4. Specification of the framework using

formal language SDL

Specification using formal SDL (Specification and
Description Language) to specify this framework and study
their performance evaluation was proposed.

 Figure 1 and 2 shows the package RMB and the system
RESTMB. The package RMB contains declarations of all
the signals used in the system RESTMB

Figure 1: Specification Package
RMB

Figure 2: Declaration of all signals used

4.1 Possible Communication losses:

Figure 3 shows the possible communication losses that can
happen in the system. There are 2 types of losses that can
happen viz. http request/response losses and Modbus
request/response losses.

Figure 3: RESTMB system specification

 Figure 4. depicts the RESTMB block which shows how
the system works.
1.User sends a http request to a REST server (

RESTServerAndModbusMaster in the figure) using a
RestClient like postman and waits for response.
2.The REST server(which also acts as Modbus master) on
receiving a request, processes it and sends a modbus
request to modbus slave (slave simulator in this case) and
waits for response.
3.The modbus slave sends back modbus response to the
Modbus master.
4.The modbus response is processed and send as http
response back to the RestClient.
5.The losses that can happen in the http and modbus
channels are also depicted in the block.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

2

Jayasankar. M and Anandi Giridharan

 Specification of REST API Services for Modbus Protocol using Formal technique

 Figure 4: RESTMB block specification

Figure 5: User Process specification

Figure 4 and 5 shows the User process and RestClient process
respectively.

1.User initiates a rest request through the RestClient once the
RestClient is ready.

2. The RestClient after sending the request starts a timer and
waits for a specified time for the response.

3. if response is not received with in specified time, timeout
happens and an error message is as indicated in the process
diagram.

Figure 6 : RestClient process specification

Figure 7: RestClient Process

 Figure 8: RESTServerAndModbusMaster Process

 Figure 7 and 12 shows http request and response channels
respectively which acts as channel for sending and receiving
REST request and response.
Figure 8 shows the RESTServerAndModbusMaster. It

processes and converts http (ReST) request from
RestClient to modbus request and modbus response from
ModbusSlave to http(ReST) response.

Figure 9 and 11 shows modbus request and response channels
respectively which acts as channel for sending and
receiving modbus request and response.

Figure 10 shows Modbus Slave process which waits and listens
for modbus request from the Modbus master
(RESTServerAndModbusMaster). On receiving a request,
it sends back a modbus response.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

3

 Figure 9:MBReqChannel Process

 Figure 10:ModbusSlave Process

FiFigure 11:MBrespChannel Process

 Figure 12:httpRespChannel Process

5.Verification and Validation

The design of the framework must ensure its ability to
operate under increasing load, increasing complexity of
requests and increasing size of resulting composite services.
Hence verification and validation is done to check for
correctness of protocol specification and check the protocol
for liveness property and safety properties. Protocol
validation can be used to increase the quality of protocol
design by verifying the system against the requirement.

Validation ensures that the protocol specifications will not
get into protocol design errors. (Deadlock, unspecified
reception etc).
The message sequence chart in figure 13, shows interaction
between entities and complete service discovery process.

Safety Property:
1. Ensures non-violation of assertions.
2. System ensures that proper data is send from

“RestClient” and “RESTServerAndModbusMaster”,
although it may get lost in the channel

Liveness Property:
1. Ensures proper termination of protocol.
2. Even if the data send from RestClient” /

“RESTServerAndModbusMaster” gets lost in the
channel,it is ensured that the protocol terminates
correctly.

Validation
1. From the message chart diagram, it is seen that the proper

response is obtained for valid requests.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

4

Jayasankar. M and Anandi Giridharan

 Specification of REST API Services for Modbus Protocol using Formal technique

2. It is also ensured that incase of lossy channel/data loss,the
system does not go to a deadlock.

3. The timers in the “RestClient” and
“RESTServerAndModbusMaster” ensures that if the
response is not obtained within a timelimit,an error
response is generated and the system again is ready to
accept new requests.

Figure 13 : MSC chart generated using SDL

The Message Sequence chart generated for the system for
normal flow is shown in figure 13.

1. The RestClient sends a http request “restreq” through http
request channel once the user initiates it.

2. The http request is converted to modbus request “mbreq”
by the server and send to the modbus slave through
modbus channel.

3. On receiving a modbus request, the modbus slave sends
back the modbus response “mbresp” to the server.

4. The server processes the modbus response and generates
the http response “restresp” which is send back to the
rest client through http channel

5.Implementation

Following tools were used for implementation of the system

5.1 Slave Simulator

A slave simulator is used for simulating a device which has
modbus capability.Basically it listens for modbus requests
and responds based on the modbus command received.
“Diagslave”, a freely available slave simulator for modbus
was used for the project, is shown in figure 14.

Figure14: Diagslave server

5.2 RestServer

This is required for performing REST operations, and to
obtain the appropriate “REST” response when a query was
given by user.
“EVE”, a freely available python library was used to
perform necessary REST related operations and to generate
appropriate REST response.Figure15 shows documentation
of Eve framework.

Figure 15 – Eve python ReST API framework

5.3 Rest Client

A Rest Client is required for the user to send “REST” query
to rest server. “POSTMAN” extension of chrome was used
in the project to act as RestClient.Figure16 shows UI
interface of POSTMAN tool.

Figure 16: Postman extension for chrome

5.4 Modbus Master

A modbus master is required to send modbus command to
the slave simulator and obtain the modbus response.
“Pymodbus” a freely available python library for modbus
was used in the project.Figure 17 shows Pymodbus
documentation.

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

5

Figure 17:Pymodbus module
1.Using “Eve” Rest framework,the rest services for the
Modbus function codes “Read holding registers” and “Write
holding registers” were implemented.This can be extended
to other function codes as well.
2.User can send modbus requests(function codes) by
embedding the required data in the request made to the
server.On receiving the request,the eve server processes the
request and using the “pymodbus” makes a modbus request
to the slave simulator and receives back the modbus
response.
3.The Modbus response thus obtained can be send back to
the user by embedding it in the response data as a response
to a rest request.

6.Conclusion

Formal SDL (Specification and Description Language) to
specify framework and study their performance evaluation
was used. Any web/mobile application which requires
interaction with devices can directly call the REST API for
modbus and communicate with device.

References

1. http://python-eve.org
2. https://pymodbus.readthedocs.io/en/latest/
3. http://www.modbusdriver.com/diagslave.html
4. https://chrome.google.com/webstore/detail/postman/

fhbjgbiflinjbdggehcddcbncdddomop
5. https://en.wikipedia.org/wiki/Representational_state

_transfer
6. http://www.ibm.com/developerworks/library/ws-

restful/
7. https://en.wikipedia.org/wiki/Modbus

EAI Endorsed Transactions on

Cloud Systems
06 2017 - 12 2017 | Volume 3 | Issue 10 | e2

6

Jayasankar. M and Anandi Giridharan

http://python-eve.org/
https://pymodbus.readthedocs.io/en/latest/
http://www.modbusdriver.com/diagslave.html
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ibm.com/developerworks/library/ws-restful/
http://www.ibm.com/developerworks/library/ws-restful/
https://en.wikipedia.org/wiki/Modbus

