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Abstract. Skeleton-based action recognition has attracted lots of attention in computer vi-
sion. Human mutual interaction recognition relies on extracting discriminative features for better
understanding details. In this work, we propose two vectors to encode joint dynamics and spa-
tial interaction information. The proposed model shows remarkable performance at handling
sequential data. Experimental results demonstrate that our model outperforms state-of-the-art
approaches with much less overheads.
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1 Introduction

Human action recognition has been an active research topic since there are a variety of appli-
cations, such as video surveillance, video understanding, and human-computer interaction [1, 2, 3].
A lot of researches have focused on single-person action recognition [4, 5, 6, 7, 8, 9, 10, 11, 12];
however, lots of social actions occur between/among persons. Mutual action recognition has been
studied in computer vision [13, 14, 15, 16, 17, 18]. In this task, extracting representative spatial-
temporal information within mutual interactions is crucial for understanding the relationship of joint
movements conducted by two persons.

Most of the conventional studies focus on recognizing actions from RGB videos recorded by
2D cameras [19, 20, 21, 22]. However, there remain three main challenging problems not fully
addressed. First, it loses depth information from the 3D space. Second, the recognition results are
highly vulnerable to recording distance and angle, human body occlusion, and background changes.
Third, it is difficult to extract useful features, like human poses and relationship between joints, from
high dimensional input data directly.
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With the development of depth sensors, such as Intel RealSense [23] and Microsoft Kinetic
[24], and the advance of human pose estimation [25, 26, 27, 28], skeleton data is easily accessible
and several approaches based such data have been proposed. Human actions can be represented
as a series of articulated skeleton frames, which are more robust to the variations of background
and viewpoint changes. Recently, Graph Convolutional Networks (GCNs) has also been applied
to skeleton structures for action recognition [11, 29, 30, 12] and it has demonstrated promising
performance.

Fig. 1. Workflow of the skeleton-based interaction recognition.

In skeleton-based action recognition, an action is represented as a sequential 3-dimensional po-
sitions of joints. However, in this representation, there are two potential problems. First, using only
positions cannot explicitly encode the joint dynamics. Second, the coordinates of joints are sensi-
tive to camera setup and human locations. Thus, more complicated networks, such as GCNs, are
required to explore more informative features, and it leads to more computational complexity. We
propose to construct two feature vectors, Coordinate Transformation Vectors (CTV s) and Temporal
Difference Vectors (T DV s). CTV s can mitigate the impact of camera setup difference and obtain
more spatial interaction information. T DV s can encode the joint dynamics throughout a frame se-
quence. In addition, the low-dimensional but more informative feature vectors allow us to adopt
a more lightweight network than the state-of-the-arts models and speed up training and inferring
processes. The generated features are concatenated and fed into a stacked bidirectional Long Short-
Term Memory (LSTM) network, which explores deeper forward and backward information. Fig. 1
illustrates the whole process of the skeleton-based mutual action recognition. To validate our claims,
we evaluate our model on three datasets, SBU [13], NTU RGB+D [31], and NTU RGB+D 120 [32].
Our model outperforms the state-of-the-art approaches on these datasets with much less computa-
tion. The floating-point operations per second (FLOPs) v.s. accuracy diagram on NTU RGB+D is
shown in Fig. 2.

To summarize the contributions of this work, we propose two skeleton data representations
(CTV s and T DV s) to encode joint dynamics and spatial interaction information, a stacked bidi-



Fig. 2. FLOPs v.s. accuracy on the NTU RGB+D CS protocol.

rectional LSTM network that processes CTV s and T DV s to model temporal information, and a
lightweight model that boosts computational speed.

The rest of this paper is organized as follows. Chapter 2 reviews some related works on action
recognition. Chapter 3 presents our proposed method. Chapter 4 presents our experiment results and
ablation study. Chapter 5 concludes this paper.

2 Related Work

Most of the earlier approaches design handcrafted features to represent a human body. In
[33], skeletons are modeled by rotations and translations in Lie group, which are then classified
by a combination of dynamic time warping, Fourier temporal pyramid representation and linear
support vector machine (SVM). In [34], use the covariance matrices are used to encode skeleton
joint locations over time as a discriminative descriptor. In [35], joint data can also be represented by
the parameters of ranker by the rank pooling method. However, since these handcrafted features are
dataset-dependent, they are not capable of capturing all the information at the same time, limiting
their performance.

With the development of deep learning, such as recurrent neural network (RNN) and convolu-
tional neural network (CNN), RNN-based and CNN-based methods have attracted more and more
attention. RNN-based methods show promising performance due to their strengths to capture tem-
poral dependencies in sequential data. In [36], human skeletons are divided into five body parts
and then a hierarchical bidirectional RNN model is applied to recognize actions. Reference [31]
proposes a part-aware LSTM model, which splits a LSTM cell into five sub-cells corresponding to
these body parts, i.e. torso, two arms, and two legs. A tree-like structure for human body and a



gating mechanism to handle the noise and occlusion in 3D skeletons are proposed in [5]. The work
[37] introduces an end-to-end spatial and temporal attention model, which learns to selectively fo-
cus on discriminative joints and frames. CNN-based methods convert skeleton information into a
pseudo image and apply a convolution neural network, such as ResNet[38], to extract features. Liu
et al. [39] transform the view-invariant skeleton information into a series of color images, while[40]
proposes to use CNN to learn long-term temporal information of skeleton sequences and then uses a
Multi-Task Learning Network (MTLN) to incorporate spatial structural information. It is proposed
in [41] to represent the joint coordinate sequences as an image by treating xyz coordinates as image
channels. Reference [18] also encodes the relationship between joints by three matrices and applies
an Inception CNN-LSTM network to extract spatial and temporal information.

Recently, GCN-based methods become popular for this task due to their expressive power
for skeleton data. A skeleton sequence can be represented as a graph, where joints correspond
to vertices and bones correspond to edges. These methods can model the kinematic structure of
human bodies more naturally than RNN-based methods and CNN-based methods. Reference [11]
first proposes to use GCNs for skeleton-based action recognition. A skeleton sequence encoded as a
graph, which consists of intra-body edges between joints and inter-frame edges between consecutive
frames, which are fed to ST-GCN to learn both spatial and temporal patterns. 2s-AGCN [29] is
proposed to learn the optimal edges in the spatial graph and to exploit the second-order information.
Skeleton data is represented as a directed acyclic graph (DAG) based on the kinematic dependency
between the joints and bones in [30]. An action-structural graph is proposed in [12] to capture
action-specific later dependencies and to represent higher order dependencies.

3 Proposed Method

The key to success in skeleton-based action recognition is to extract discriminative features
from a sequence of skeleton data. In this work, we consider 3-dimensional joints coordinates from
two persons in a sequence of video frames. Instead of directly taking the original coordinates as
inputs, we introduce two data representations to model spatial interaction information and joint
dynamics. In order to make this paper self-contained, we first review stacked bidirectional LSTM.
Then, we propose our data representations. Finally, we introduce our complete network architecture,
which is a stacked bidirectional LSTM network.

4 Overview of Stacked Bidirectional LSTM

Long Short-Term Memory (LSTM) [42] is a type of recurrent neural network capable of learn-
ing long-term dependencies. Fig. 3 depicts the structure of a LSTM neuron. The transition equations
are formulated as follows:



Fig. 3. The architecture of a common LSTM neuron.

Fig. 4. The architecture of a bidirectional LSTM network and a stacked bidirectional LSTM network.

it = σ(Wi[xt ,ht−1]+bi) (1)

ft = σ(Wf [xt ,ht−1]+b f ) (2)

ot = σ(Wo[xt ,ht−1]+bo) (3)

c̃t = σ(Wc[xt ,ht−1]+bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦σ(ct) (6)

With the input xt and the previous hidden state ht−1, three control signals, it , ft , and ot are
generated. The input gate signal it controls how much input information should be taken. The forget



gate signal ft decides which part of the current cell state will be remembered or forgot. The output
gate signal ot determines what information should be output. W and b are the trainable weights and
bias for each gate signal. Given an input sequence x = (x0, ...,xT−1), we can derive a sequence of
cell states c = (c0, ...,cT−1) and a sequence of hidden states h = (h0, ...,hT−1).

In order to utilize the forward and backward information, bidirectional LSTM (bi-LSTM) [43]
contains two hidden layers of LSTM with opposite directions, where the first layer learns the input
sequence and the second layer learns the reverse of the input sequence as shown in Fig. 4(a). For ev-
ery point in bi-LSTM, the outputs are obtained based on the past and the future context information,
which is beneficial to learn more comprehensive temporal dependencies. Take the action “exchang-
ing objects” in SBU for example. At the moment of “exchanging”, we can leverage the past action
“giving objects” information and the future action “receiving objects” information, which are both
important to learn the characteristic of the action.

A Stacked LSTM [44] is an extension of LSTM model that consists of multiple LSTM layers.
In every layer of the stacked LSTM, we can create more complex features based on the outputs of the
previous LSTM layer. Therefore, by stacking LSTM layers, the model can learn deeper and more
accurate descriptions. In this work, we leverage a stacked bidirectional LSTM as shown in Fig. 4(b).

5 Data Representations

In order to extract discriminative features from a sequential skeleton data, we propose two data
transformation techniques to represent spatial interaction information and joint dynamics. Let the
two skeletons sequence of a frame at time t be a vector vt ∈ R2·J×3 represents the 3-dimensional
coordinates at time t, where J is the number of joints per person. We convert vt to Coordinate
Transformation Vectors CTVt ∈ R2·J×4 and Temporal Difference Vector T DVt ∈ R2·J×4 as Fig. 5.

Fig. 5. Reference pivot and CTV .

5.1 Coordinate Transformation Vector

We first compute the reference pivot, which is defined as the center point of all 2 · J ·T joints
of two persons from all T frames. Next, we construct CTVt for time t, which contains the relative



coordinates of all joints to the pivot and their Euclidean distance to the pivot. Fig. 5 illustrates the
concept.

pivot =
1

2 ·T · J
·

T

∑
t=1

J

∑
j=1

vt [1, j,1 : 3]+ vt [2, j,1 : 3] (7)

CTVt [i, j,1 : 3] = vt [i, j,1 : 3]− pivot,∀i = 1, ...,2, j = 1, ...,J, t = 1, ...,T (8)

CTVt [i, j,4] =∥ vt [i, j,1 : 3]− pivot ∥,∀i = 1, ...,2, j = 1, ...,J, t = 1, ...,T (9)

The pivot is the mean joint throughout the time. There are two properties in this representation:
Spatial normalization. Coordinates are camera setup dependent. For example, in Fig. 6, the

two persons appear at the upper-left and the lower-right corners of a picture. After transformation,
the relative coordinates are restricted to the region centered at the pivot. This helps a model focus
on the difference among actions instead of their absolute locations.

Fig. 6. An example of spatial normalization.

Spatial modeling of interaction. The interaction between two persons can be better repre-
sented through the pivot. Fig. 7 illustrates a “hand shaking” example. At the beginning, the two
persons approach to the pivot. Then, they hold each other’s hand, shake, and move away from each
other. All these actions, when represented relative to the pivot, seem to be more informative.



Fig. 7. An example of spatial modeling with respect to the pivot.

5.2 Temporal Difference Vector

We construct T DVt to model joint dynamics. The purpose is to find the difference of each joint
between frames, and focus more on their movements. The process can be formulated as follows:

T DVt [i, j,1 : 3] = vt [i, j,1 : 3]− vt−1[i, j,1 : 3],∀i = 1, ...,2, j = 1, ...,J, t = 2, ...,T (10)

T DVt [i, j,4] =∥ vt [i, j,1 : 3]− vt−1[i, j,1 : 3] ∥,∀i = 1, ...,2, j = 1, ...,J, t = 2, ...,T (11)

We calculate T DV s by finding the temporal difference in Eq. (10) and the Euclidean distance
of each joint in Eq. (11) between adjacent frames. There are two properties in this representation:

Robustness to camera setup. This enables us to focus on the movements of joints, thus
removing the impact of camera setup.

Joint dynamic modeling. We can directly model joint dynamics, instead of counting on the
network to learn.



6 Network Architecture

Fig. 8. The proposed network architecture.

Fig. 8 depicts the complete network architecture. First, we concatenate CTV s and T DV s as our
inputs. Next, we leverage a 2-layer stacked bidirectional LSTM with 512 neurons and 256 neurons,
respectively, to learn deep temporal forward and backward information. Finally, we apply a 2-layer
fully connected network, which contains 128 and 26 neurons, with a dropout layer to predict the
score of each action type.

7 Evaluation Results

7.1 Datasets

We adopt three datasets in this work. SBU [13] is a small-scale dataset of mutual interaction
recognition captured by Microsoft Kinetic, providing 282 videos (around 2∼3 seconds for each clip)
with sequences of skeleton data. SBU dataset contains eight interactions (approaching, departing,
pushing, kicking, punching, exchanging objects, hugging, and shaking hands) and seven partici-
pants. In each frame, skeleton information is presented as 3D coordinates over 15 joints per person.
In this work, we follow the five-fold cross validation protocol suggested by the authors and report
the average recognition accuracy by comparing different models.



NTU RGB+D [31] is the most widely used benchmark dataset for skeleton-based action recog-
nition, containing 56,880 RGB videos with 3D skeleton data collected by Microsoft Kinetic V2. The
action samples are performed by 40 volunteers and categorized into 60 action classes. Each skeleton
data consists of 3D coordinates of 25 body joints from at most 2 persons per frame, captured by 3
cameras from different horizontal angles: -45°, 0°, and 45°. While this dataset is not specially de-
signed for mutual interaction recognition, it contains 11 interaction classes (slapping, kicking, push-
ing, patting on the back, pointing finger, hugging, giving object, touching pocket, shaking hands,
walking toward, and walking apart) with a total of 10,347 videos. The authors recommended two
benchmarks: 1) cross-subject (CS): training data comes from 20 subjects, and validation data comes
from the remaining 20 subjects. 2) cross-view (CV): training data comes from camera 2 and camera
3, and testing data comes from camera 1.

NTU RGB+D 120 [32] is the extended version of the NTU RGB+D dataset captured by Mi-
crosoft Kinetic V2, containing 114,480 videos performed by 106 volunteers with 60 additional
classes. There are 15 more mutual action classes (hit with object, wield knife, knock over, grab
stuff, shoot with gun, step on foot, high-five, cheers and drink, carry object, take a photo, follow,
whisper, exchange things, support somebody, and rock-paper-scissors) with a total of 24,794 videos.
Similarly, the authors suggested two benchmarks: 1) CS: training data comes from 53 subjects, and
validation data comes from the remaining 53 subjects. 2) CV: training data comes from cameras
with even IDs, and validation data comes from cameras with odd IDs.

7.2 Implementation Details

Data Preprocessing. Videos in the above datasets may differ in length. In order to align
the length of input data, we use interpolation to make the number of frames consistent to 100.
Furthermore, in many actions, there exists an active-passive relationship between two persons, such
as “giving object” in SBU. In order to reduce the bias on the order of active and passive parties, we
extend each dataset by swapping all frames by 180 degrees along the x-axis.

Training Procedure. Our model is trained using the Adam optimizer [45] with a dropout rate
0.5 and a batch size 64. At the beginning, we set the learning rate to 0.001 for 100 epochs. Then, we
decrease the learning rate to 0.0005 for further optimization.

7.3 Ablation Studies

We perform experiments on NTU RGB+D for ablation studies and report the top-1 accuracy
in Table 1. We design 6 different input features on the same stacked bidirectional LSTM model to
observe the strengths of our proposed data representations.

Using Original Coordinates. Here, we directly input original data, which contains the 3D
coordinates of every joint and their Euclidean distances to the origin. From Table 1 (a), we can
observe a significant gap between the result of CS protocol and CV protocol. Since CV protocol
splits training and validation data by different viewing angles, the results indicate that using the
original coordinates without spatial normalization is vulnerable to different camera setups.

TDVs. Next, we validate the effectiveness of T DV s. By comparing (a) and (b) in Table 1,
we can observe a notable improvement, especially in CV protocol. The results in CS protocol



Table 1: Ablation studies on NTU RGB+D.

Input Cross Subject Cross View

(a) Original coordinates 71.4% 10.9%
(b) TDVs only 79.1% 84.0%
(c) CTVs only with two separated reference pivots on each person 85.2% 89.3%
(d) CTVs only with a center reference pivot 93.3% 94.6%
(e) CTVs only with a non-fixed center pivot through time 92.7% 94.2%
(f) CTVs + TDVs 93.9% 95.6%

demonstrate the ability of T DV s in modeling joint dynamics. The results in CV protocol further
show that T DV s are much more robust to different camera setups.

Spatial Normalization of CTVs. We design another input feature vectors in (c) for ablation
study. First, we define the center point of each person as the reference pivot, so there are two pivots.
Next, we transform the original coordinates feature vectors for each person based on its own pivot.
With these feature vectors, we can keep the spatial normalization characteristic of the original CTVs,
but we cannot extract mutual-person interaction information. By comparing (a) and (d), we observe
that spatial normalization can significantly boost the performance, particularly in CV protocol.

Spatial Interaction Information Modeling of CTVs. In Table 1 (d), we consolidate the
reference pivots of each person to the same one, which is the same as that defined in Eq. (7). It
allows us to collect more spatial interaction information rather than counting on the network only.
From (c) and (d), we can see an obvious improvement in both of CS and CV protocol.

Stability of CTVs. Video frames are sequential data. In Table 1 (e), instead of finding a fixed
reference pivot throughout all frames, we obtain a reference pivot per frame at the center of the two
persons. Thus, reference pivots are dynamic. As shown in (d) and (e), using a fixed reference pivot
is more preferable as it can better track the movement of the two persons. If we adopt per-frame
pivots, we might obtain similar relative coordinates but lose the track of a person’s moving features.

Proposed CTVs and TDVs. From Table 1 (a) to (e), we can observe that both CTV s and
T DV s have their advantages. Table 1 (f) further the advantage of integrating CTV s and T DV s.

7.4 Comparisons with the State-of-the-arts

To verify the performance of our model, we perform experiments by considering top-1 accuracy
on the SBU, NTU RGB+D, and NTU RGB+D 120 datasets. In order to verify the efficiency of our
model, we further consider computational complexity on the NTU RGB+D dataset.

SBU. On the SBU dataset, we compare our method with 10 other approaches and report the
results in Table 2. The experiments include handcrafted methods, RNN-based methods, and CNN
based method. Our method shows the highest accuracy, surpassing the previous best approach,
Inception CNN-LSTM [18], by 0.2%.

NTU RGB+D and NTU RGB+D 120. In order to verify the robustness of our model, we con-
duct experiments on large-scale datasets, NTU RGB+D and NTU RGB+D 120, and the results are



Table 2: Results on SBU.

Method Top-1 Accuracy

Co-occurence LSTM [4] 90.4%
Deep LSTM (reported by [4]) 86.0%
ST-LSTM [5] 93.3%
DM-3DCNN [6] 93.7%
VA-LSTM [7] 97.2%
Wu et al. [16] 91.0%
Two-stream GCA-LSTM [8] 94.9%
LSTM-IRN [17] 98.2%
Inception CNN-LSTM [18] 98.6%
Our method 98.8%

Table 3: Results on NTU RGB+D and NTU RGB+D 120.

reported in Table 3 (a) and Table 3 (b), respectively. Our model is compared with 8 other methods,
including CNN-based method [10], RNN-based methods [5, 9, 8, 17, 18], and GCN-based [11, 12]
methods. On NTU RGB+D, our model outperforms all previous methods, exceeding Inception
CNN-LSTM, which is the second best, by 3.0% in the cross-subject protocol and by 1.7% in the
cross-view protocol. On NTU RGB+D 120, which is more challenging for its larger dataset size
and more action categories, our model can still outperform or be competitive to almost all previous
works. Compared with AS-GCN [12], our model surpasses it by 1.0% in CS protocol and slightly
loses by 0.3% in CV protocol.

Model Complexity. An important characteristic of our model is its low complexity. We
demonstrate the lightweightness of our model on NTU RGB+D by comparing with 3 state-of-the-art
methods, one RNN-based method [18] and two GCN-based methods [12, 5]. We evaluate complex-
ity by the number of parameters and FLOPs, which impact both training and inference efficiency.
Table 4 shows the comparison on two metrics. The ratios following parameter number and FLOPs



Table 4: Results of model complexity on NTU RGB+D.

Method Cross Subject Cross View #Params Ratio FLOPs Ratio

Our method 93.9% 95.5% 6.43M 1x 0.000138G 1x
Inception CNN-LSTM [18] 90.9% 93.9% 7.65M* 1.19x 1.90G* 13,768x
AS-GCN [12] 89.3% 93.0% 9.50M† 1.48x 26.76G† 193,913x
ST-GCN [5] 83.3% 87.1% 3.10M† 0.48x 16.32G† 118,261x

* The results are measured by implementing the released code.
† The results are obtained from [46].

reflects that our model is much more lightweight than the other models, especially those GCN-based
ones, owing to its relatively simple architecture.

8 Conclusions

In this work, we propose a novel method for two-person mutual action recognition. First, we
propose two data representations, Coordinate Transformation Vectors and Temporal Difference Vec-
tors, for capturing spatial interaction information and joint dynamics. Then, we introduce a stacked
bidirectional LSTM to learn the deep forward and backward temporal dependencies. Through ex-
periments on the small-scale SBU dataset and the large-scale NTU RGB+D and NTU RGB+D 120
datasets, we demonstrate that our method outperforms the state-of-the-art approaches with higher
accuracy and much less complexity. A possible future work is to extend the current model for real-
time action recognition, which can validate the robustness of our model.



References

[1] Poppe R. A survey on vision-based human action recognition. Image and Vision Computing.
2010;28(6):976-90.

[2] Weinland D, Ronfard R, Boyer E. A survey of vision-based methods for action representation,
segmentation and recognition. Computer Vision and Image Understanding. 2011;115(2):224-
41.

[3] Aggarwal JK, Ryoo MS. Human Activity Analysis: A Review. ACM Comput Surv.
2011;43(3).

[4] Zhu W, Lan C, Xing J, Zeng W, Li Y, Shen L, et al. Co-Occurrence Feature Learning for
Skeleton Based Action Recognition Using Regularized Deep LSTM Networks. Proceedings
of the AAAI Conference on Artificial Intelligence. 2016;30(1).

[5] Liu J, Shahroudy A, Xu D, Wang G. Spatio-Temporal LSTM with Trust Gates for 3D Human
Action Recognition. 2016:816-33.
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