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Abstract.Ordinary least squares (OLS) is a method commonly used to estimate 
regression equations. One solution handle OLS limitation to outlier problem is to use the 

robust regression method. This study used least-median squares (LMS) and multi-stage 
method (MM) robust regression. Simulation results of regression analysis in various 
scenarios are concluded that LMS and MM methods have better performance compared 
to OLS on data containing vertical and bad leverage point outliers. MM method has 
lowest average parameter estimation bias, followed by LMS, then OLS. LMS has 

smallest average root mean squares error (RMSE) and highest average 𝑅2 is followed by 

MM then OLS. The results of the regression analysis comparison of the three methods on 
Indonesian rice production data in 2017 which contains 10% outliers were concluded that 
the LMS is the best method. The LMS produces the smallest RMSE of 4.44 and the 

highest 𝑅2 that is 98%. 

Keywords: least median squares, multi-stage method, outliers, robust regression, root 
mean squares error. 

1   Introduction 

The development of Statistics and Mathematics is supported by technology that produces 

various methods that have been applied in various fields of life. One method of analysis that is 
widely applied in various scientific fields is the linear regression method. Linear regression 

method is a statistical method used to evaluate the linear relationship between the quantitative 

response variables with one or more quantitative explanatory variables. The ordinary least 

squares method is the most popular approach used in estimating the linear regression 

estimation parameters [1]. However, this least squares method has limitations, which are 

strongly influenced by outlier data [2]. Outliers are an extreme value observation that is very 

much different from most other data [3]. 

Disposal of outliers from the data set can only be done if the value is known to cause, 

such as measurement or analysis errors, data recording errors, or failure of measuring 

instruments. Outliers sometimes contain information that is more important than the value of 

other data observations so that it will have a big effect on the model formed. Therefore, 
removing the outlier value to improve the compatibility of the regression equation cannot be 

done carelessly because it will provide precision estimation that is not right [3]. 

Completion of outlier problems in the regression analysis process can be done using the 

robust regression method. Robust regression is a regression method that is used when data 
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contains outlier observation values [4]. Ehab Mohamed A and Hisham Mohamed A [5] and 

Arista Oktarinanda [6] examined the comparison of several robust methods. Almetwally and 
Almongy [5] compared the M, S, and MM methods and concluded that the MM method was 

the best method based on the smallest criteria of bias and mean square error (MSE). 

Oktarinanda's study [6] compared the LMS and LTS methods and concluded that the LMS 

method was more accurate in predicting models based on smaller RMSE values. 

The results of this study lead this research in comparing the MM regression estimators 

and LMS estimators and determine the best method. The selection of the best method will be 

based on the value of the regression parameter bias, root mean square error (RMSE), and R-

Square (𝑅2). Therefore, the researcher raised the topic of "Study of Robust Regression 
Modeling Using the MM-Estimation and Least Median Squares". Comparison is done through 

simulating data with various data sizes, outliers, and outliers, then applied to agricultural data, 

namely rice production data (in million tons) in 2017. 

2   Materials 

2.1 Simulation Data 

This study involves generating data that contains outlier observations for robust linear 

regression simulations. The simulation process carried out using data size (𝑛) as many as 50 

data for small size, 200 data for medium size, and 1000 data for large size. There are 3 types 

of outliers that are generated, namely vertical outliers, good leverage points, and bad leverage 

points. Outliers percentage (𝑚) used is 0%, 5%, 10%, 15%, 20%, and 30% for each type of 
outlier. The generation data from the combination of scenarios will then be used in the 

parameter estimation process using the ordinary least squares method (OLS), LMS, and MM. 

The parameters 𝛽0 and 𝛽1used in this study are 5 and 2 respectively so that the linear 

regression model is formed as esquation (1) follows: 

 

𝒚 =  5 +  2𝒙 +  𝜺,    (1) 

 

with, 

𝒚: response data vector size 𝑛 ×  1. 

𝒙: explanatory variable data vector 𝑛 ×  1 

𝜺: error vector size 𝑛 ×  1 

All simulation results are based on 1000 repetitions carried out with the help of R 

software. The process of comparing the goodness of the method is done by looking at the 

parameter estimation bias (𝑏𝑖𝑎𝑠 (𝛽 0) and 𝑏𝑖𝑎𝑠 (𝛽 1)), RMSE, and 𝑅2. 

2.2 Actual Data  

This study also uses actual data as a comparison application of OLS, MM and LMS 

methods. The actual data used is data on rice production (in million tons) and data on the 

amount of use of organic fertilizer (in thousand tons) in 2017 obtained from the Ministry of 

Agriculture's Data and Information System Center of the Republic of Indonesia. The data will 

be analyzed using simple linear regression to determine the linear relationship between 

explanatory variables, namely data on the amount of organic fertilizer with the response 



 

 

 

 

variable, namely rice production data in 2017. The data consists of 34 observations which are 

provinces in Indonesia. 

3 Methods  

3.1 Simulation Data 

The process of data analysis in this study uses R software with the help of "MASS" and 

"robustbase" packages. The simulation steps carried out in this study are as follows: 

1. Set 𝛽0 = 5 and 𝛽1 = 2 

2. Generating vectors explanatory variable (𝒙) with normal distribution as much as 𝑛 
data with average and variety as follows: 

i. 𝑥 ~ 𝑁 (5, 1) for data not outliers. 

ii. 𝑥∗ ~ 𝑁 (30, 1) for outlier data. 

3. Generates a vector of error values (𝜀) as much as 𝑛 data with the following details: 

i. 𝜀 ~ 𝑁 (0, 1) for data not outliers. 

ii. 𝜀∗ ~ 𝑁 (30, 1) for outlier data. 

4. Determine y value vector based on the following scenario: 
i. Vertical Outlier 

Determine y vector based on model in equation (2) 

 

𝒚 =  5 +  2𝒙 +  𝒓 ,   (2) 

 

with 𝑟 being a vector of error components obtained from a combination of 

sampling data 𝜀 ~ 𝑁 (0, 1) as much (1 − 𝑚)  ×  𝑛 and data 𝜀∗ ~ 𝑁 (30, 1) as 

much as 𝑚 ×  𝑛.The vector y will then be regressed with vector x at the next 
stage. 

ii. Good leverage point 

Determine the vector y based on the modelin equation (3) 

 

𝒚 = 5 +  2𝒔 +  𝜺,    (3) 

 

with 𝑠 is a vector of explanatory variables obtained from a combination of 

data sampling 𝑥 ~ 𝑁 (5, 1) as much (1 − 𝑚)  ×  𝑛 and data 𝑥∗ ~ 𝑁 (30, 1) as 

much as 𝑚 ×  𝑛.The vector y will then be regressed with vector s in the next 
stage. 

iii. Bad leverage point 

Determine y vector based on model in equation (4) 

 

𝒚 =  5 +  2𝒙 +  𝒕,   (4) 

 

with 𝑡 is a vector of error components obtained from a combination of 

sampling data 𝜀∗ ~ 𝑁 (30, 1) as much as 
1

2
𝑚 ×  𝑛 with data 𝜀 ~ 𝑁 (0, 1) as 

much (1 −
1

2
𝑚)  ×  𝑛. Then as much as 𝑚 ×  𝑛 the first data in the 



 

 

 

 

explanatory vector (𝑥) is added by 2.The vector y will then be regressed with 
the new x vector at the next stage. 

Illustration of the appearance of the three types of outliers that will be generated can 

be seen in Figure 1 below [7]: 

 

 

Fig. 1. Outliers types 

5. Regress all datasets using OLS,  LMS, and MM with details of the following steps: 

(1) OLS method regression algorithm 
a. Arrange data vectors y and X matrix. X matrix is a data matrix of 

explanatory variables measuring 𝑛 ×  (𝑘 +  1) where 𝑘 is the number of 

explanatory variables and the first column contains vector 1. 

b. Calculates the estimation coefficient of the β parameter using equation (5) 

 

𝜷 =  𝑿′𝑿 −1 𝑿′𝒚  .      (5) 

 

(2) LMS method regression algorithm. 
The parameter estimation steps with the LMS method summarized in a 

PROGRESS algorithm by Rousseeuw and Hubert [7] on the MASS R software 

package are as follows: 

a. Determine the value of g using equation (6) below: 

 

𝑔 =  
𝑛+𝑘+1

2
  .       (6) 

 

b. Taking a random set of g-sized data sets from a data set measuring 𝑛 

observations, so that there will be 𝑓 = 𝐶𝑔
𝑛  the subdata set. 

c. Estimating regression parameters from each set of data using OLS 

d. Calculates the value of 𝑀𝑑  or the median of the residuals square  𝑒𝑣𝑑
2   in 

each set of data. Index 𝑣 is an index for the number of observations in each 

set of data 𝑣 =  1,2,3,… , 𝑔 and index 𝑑 is the number of subsets formed, 

𝑑 = 1,2,3, … , 𝐶
𝑛 . 

e. Determine the value of 𝑀, namely the minimum median 𝑒𝑣𝑑
2  based on the 

results of stage (d). 



 

 

 

 

f. Make an initial estimate of the standard deviation of the LMS (𝜎 𝐿𝑀𝑆 ) using 
equation (7) below: 

 

𝜎 𝐿𝑀𝑆 = 1.4826  1 +
5

 𝑛−𝑔 
  𝑀 .   (7) 

 

g. Calculate LMS estimator weights (𝑤𝑖 𝐿𝑀𝑆
) using equation (8); 

 

𝑤𝑖 𝐿𝑀𝑆
=  

1 ,  
𝑒𝑖

𝜎 𝐿𝑀𝑆
 ≤ 2.5

0 , 𝑙𝑎𝑖𝑛𝑛𝑦𝑎      

  ,      (8) 

 

𝑤𝑖 𝐿𝑀𝑆
 is a diagonal element of the WLMS matrix that has a size of 𝑛 ×  𝑛 

and other elements worth 0. 

 

𝑾𝑳𝑴𝑺 =  

𝑤11 𝑤12 … 𝑤1𝑛

𝑤21 𝑤22 … 𝑤2𝑛

⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 … 𝑤𝑛𝑛

  

 

h. Estimating regression parameters using a weighted regression method as 

equation (9) 

 

𝜷 𝑳𝑴𝑺 =  𝑿′𝑾𝑳𝑴𝑺𝑿 −1 𝑿′𝑾𝑳𝑴𝑺𝒚       (9) 
 

with, 

𝑦 : vector data response size 𝑛 ×  1. 

𝑋 : data matrix explanatory variable size 𝑛 × (𝑘 +  1) with the first 

column containing vector 1 and 𝑘 is the number of explanatory variables. 

𝜷 𝑳𝑴𝑺 : vector regression coefficient size (𝑘 +  1)  ×  1. 
(3) MM estimator algorithm 

The MM estimator method is obtained through two stages. First, calculate scale 

estimate or standard deviation (𝜎 𝑠) using the estimator method based on the 

following steps: 

a. Estimating regression coefficients on data using the OLS method 

b. Calculates residuals value 𝑒𝑖 = 𝑦𝑖 − 𝑦 𝑖 

c. Calculates  𝜎 𝑠 using equation (10) below: 
 

𝜎 𝑠 =  

𝑚𝑒𝑑𝑖𝑎𝑛  𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛  𝑒  

0.6745
                 ; 𝑞 = 1

 
1

𝑛𝐾
 𝑤𝑖𝑆

𝑒𝑖
2𝑛

𝑖=1                           ; 𝑞 > 1.

    (10) 

 

with 𝐾 =  0.199 and 𝑞 is an iteration. 

d. Calculate the estimator weighting (𝑤𝑖𝑆
)using equation (11) as follows: 



 

 

 

 

𝑤𝑖𝑆
=

 
 
 

 
 

  1 −  
𝑢𝑖

𝑐
 

2

 
2

,  𝑢𝑖 ≤ 𝑐; 𝑞 = 1          

 0                    ,  𝑢𝑖 > 𝑐;                      

 

𝜌 𝑢𝑖 

𝑢𝑖
2                             𝑞 > 1

    (11) 

 

The function 𝜌 𝑢𝑖  if using the Tukey weighting function is: 

 

𝜌 𝑢𝑖 𝑇𝑢𝑘𝑒𝑦 =  

𝑐2

6
 1 −  

𝑢𝑖

𝑐
 

2

 
3

 ,  𝑢𝑖 ≤ 𝑐 

1

6
𝑐2                       ,  𝑢𝑖 > 𝑐

     (12) 

 

with 𝑢𝑖 =
𝑒𝑖

𝜎 𝑆
 and 𝑐 = 4.685. 

e. Calculating 𝜷 𝑺 using weighted OLS with weight 𝑤𝑖𝑆
. 

f. Repeating stage b-e until the convergent 𝜷 𝑺value is obtained. 

g. After obtaining the value of 𝜷 𝑺which converges then calculates 𝜎 𝑆 in the last 

iteration to then be used as a scale estimate in the calculation of the next 

MM estimator. 

Second, predict the regression parameters by doing iteratively reweighted least 

squares (IRLS). The calculation steps are as follows: 

a. Calculating the value of 𝑢𝑖 =
𝑒𝑖

𝜎 𝑆
, the value of 𝜎 𝑆 is obtained from the stage 

(g). 

b. Calculates the weighting value of the MM method (𝑤𝑖𝑀𝑀
) using equation 

(13): 

 

𝑤𝑖𝑀𝑀
=   1 −  

𝑢𝑖

4.685
 

2

 
2

,  𝑢𝑖 ≤ 4,685;

0                            ,  𝑢𝑖 > 4,685.

    (13) 

 

c. Calculating 𝜷 𝑴𝑴uses the least weighted square with weight 𝑤𝑖𝑀𝑀
 with 

equation (14) 

 

𝜷 𝑴𝑴 =  𝑿′𝑾𝑴𝑴𝑿 −1 𝑿′𝑾𝑴𝑴𝒚    (14) 

 

d. Repeating stage a-c until a convergent 𝜷 𝑴𝑴value is obtained. 
The MM estimator algorithm process is carried out using the help of the 

robustbase R software package. 

6. Check the diagnostic model of each method in step 5 using the following test: 

(1) The normal assumption of the side is tested using the Kolmogorov-Smirnov test, 

(2) Assume homogeneity of residual using Breusch-Pagan. 

(3) The assumption of free (non-autocorrelated) freedom was tested using the Runs-

test. 

7. Repeat steps 1 to 6 as many as  𝑟 = 1000 replications. 

8. Comparing the average value of parameter estimation bias, RMSE, and 𝑅2. See 
equation (15), (16), (17) respectively. 



 

 

 

 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑏𝑖𝑎𝑠 𝛽 𝑗  =
1

𝑟
  𝛽𝑗 − 𝛽 𝑙𝑗  

𝑟
𝑙=1 , 𝑗 = 0,1   (15) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑅𝑀𝑆𝐸 =
1

𝑟
    

 𝑦𝑖𝑙−𝑦 𝑖𝑙  
2

𝑛−𝑝

𝑛
𝑖=1  𝑟

𝑙=1     (16) 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑅2 =
1

𝑟
  1 −

  𝑦𝑖𝑙−𝑦 𝑖𝑙  
2𝑛

𝑖=1

  𝑦𝑖𝑙 −𝑦𝑙    2𝑛
𝑖=1

 𝑟
𝑙=1    (17) 

with,  

𝑛 : number of observations 

𝑦𝑖𝑙  : respons of the 𝑖-data and 𝑙-replication  

𝑦𝑙  : the average of the response data in 𝑙-replication 

𝑦 𝑖𝑙  : predicted response of the 𝑖-data on the 𝑙-replication 

𝑝 : number of parameters 

𝑟 : number of repetitions 

𝛽 𝑙𝑗  : an estimation of the 𝑗-parameter in the 𝑙-replication, 𝑙 =  1,2, . . . , 𝑟 

9. Summarizes the results of evaluation values on each combination of data size, type of 

outlier, outlier percentage, and estimation method used. 

3.2 Actual Data 

The steps to analyze the actual data of rice production in 2017 are as follows: 

1. Plot data collection on the use of organic fertilizer (thousand tons) and data on the 

amount of rice production (million tons). 

2. Estimating the regression model with the OLS method and calculating the residuals 
value. 

3. Identify vertical outliers through plots of standardized residuals. Vertical outlier 

outliers are indicated by the standardized values of residuals of more than 2 or 2.5 

relatives to the conditions of residuals scattering. 

4. Identify outliers of good leverage points through plots of diagonal matrix hat values. 

Data that has a matrix hat diagonal value greater than twice the average overall 

diagonal matrix hat element are outliers of good leverage points. 

5. Identify outliers of bad leverage points. Data identified as vertical outliers and also 

outliers for good leverage points are data outliers for bad leverage points. 

6. Estimating the regression model with the OLS, LMS, and MM methods for data 

containing these outliers. 

7. Compare the RMSE and 𝑅2 values of the OLS, LMS, and MM methods. 

8. Determine the best guess of the model, namely the alleged model with the smallest 

RMSE value and highest 𝑅2. 

4 Results and Discussion 

4.1 Simulation Study 

Regression analysis simulation using OLS, LMS, and MM methods on data containing 

outliers obtained the following results: 

1. The average estimation bias value of the parameter 𝛽0 

a. Vertical outlier 



 

 

 

 

Table 1 shows the average value of the 𝛽 0 bias in each percentage of vertical 

outliers and for each data size. The average value of bias 𝛽 0 when the data does not 

contain outlier produces the smallest average value of 𝛽 0 bias lies in the OLS method, 

followed by the MM method, then the LMS method. This applies to the overall size 

of the data generated, both sizes 50, 200, and 1000. However, the average value of 

the bias 𝛽 0 OLS method has significantly increased every percentage of vertical 
outliers increase in the data. On the other hand, the LMS and MM methods tend to 

maintain the average value of 𝛽 0 bias at a small value. When viewed based on the 

size of the data used, every size of the data increases, the average value of the 𝛽 0 bias 

of the three methods has decreased. Overall, the MM method has the smallest value 

of the 𝛽 0 bias. The existence of vertical outliers greatly affects the estimation of the 

OLS method 𝛽 0 parameter. 

Table 1 The average value of the 𝛽 0 bias on various data sizes and percentage of 

vertical outlier 

D
at

a 
si

ze
s 

M
et

h
o

d
 

Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.30 7.16 11.58 13.82 17.1 22.5 

LMS 0.72 0.68 0.67 0.65 0.65 0.62 
MM 0.31 0.32 0.33 0.33 0.34 0.36 

200 

OLS 0.15 4.45 7.11 9.96 12.7 17.9 

LMS 0.39 0.40 0.38 0.37 0.37 0.36 

MM 0.15 0.15 0.16 0.16 0.17 0.17 

1000 

OLS 0.06 3.16 6.10 9.09 12.1 18.2 

LMS 0.22 0.21 0.21 0.21 0.21 0.20 

MM 0.07 0.07 0.07 0.07 0.07 0.08 

 

b. Good leverage point 

The average value of 𝛽 0 bias from the data containing outliers of good leverage 

points is presented in Table 2. Table 2 shows that the MM and OLS methods have an 

average value of 𝛽 0 bias which tends to be the same and close to 0. The LMS method 

has the biggest an average 𝛽 0 bias value compared to OLS and MM. However, every 

the data size and outlier percentage are increasing, the average 𝛽 0 bias of the LMS 
method decreases. Overall, the three methods have good performance in the case of 

data containing outliers of good leverage points. This is indicated by the small value 

of 𝛽 0 bias for the three methods. 

Table 2 The average value of the 𝛽 0 bias on various data sizes and percentage good 

leverage points outliers 

D at a si
z

es
 

M et h
o

d
 Percentage of outliers (%) 



 

 

 

 

0 5 10 15 20 30 

50 

OLS 0.30 0.09 0.08 0.08 0.08 0.08 

LMS 0.71 0.52 0.30 0.23 0.21 0.20 

MM 0.31 0.14 0.09 0.08 0.08 0.09 

200 

OLS 0.14 0.04 0.04 0.04 0.04 0.04 

LMS 0.40 0.15 0.12 0.11 0.11 0.12 

MM 0.15 0.04 0.04 0.04 0.04 0.04 

1000 

OLS 0.06 0.02 0.02 0.02 0.02 0.02 

LMS 0.22 0.07 0.06 0.06 0.07 0.07 
MM 0.06 0.02 0.02 0.02 0.02 0.02 

 
c. Bad leverage point 

The average value of 𝛽 0 bias from the data containing outliers of bad leverage 

points for each data size is presented in Table 3. Table 3 shows that when the 

percentage of bad leverage is 0%, the average value of the smallest 𝛽 0 bias lies in the 
OLS method, followed by the MM method and finally is the LMS method. However, 

when the data contains bad leverage points, the OLS method produces the highest 

average value of the 𝛽 0 bias compared to the other two methods. Furthermore, every 

increase in the percentage of outliers in the data, the average value of the 𝛽 0 OLS and 

LMS bias decreases, while the average value of the 𝛽 0 MM bias method increases. 

The average value of the 𝛽 0 bias method MM is greater than that of LMS when the 

data size is 200 with an outlier percentage of 30% and when the data size is 1000 

with an outlier percentage of 15%, 20%, 30%. Overall, the increasing size of the data 

causes the average value of the 𝛽 0 bias of the three methods to decrease. The increase 

or decrease in the average value of the 𝛽 0 bias is not significant. This shows that the 
observation of outlier bad leverage points in the data does not have a significant 

effect on the average value of the 𝛽 0 bias of the three methods. 

Table 3 The average value of the 𝛽 0 bias on various data sizes and percentage bad 

leverage points outliers 

D
at

a 
si

ze
s 

M
et

h
o

d
 

Percentage of outliers (%) 

0 5 10 15 20 30 

50 
OLS 0.12 0.54 0.55 0.55 0.55 0.54 
LMS 0.30 0.29 0.29 0.29 0.29 0.30 

MM 0.13 0.16 0.16 0.17 0.18 0.22 

200 

OLS 0.06 0.53 0.54 0.54 0.54 0.53 

LMS 0.18 0.18 0.17 0.18 0.18 0.19 

MM 0.06 0.08 0.10 0.13 0.16 0.21 

1000 
OLS 0.03 0.53 0.54 0.54 0.54 0.53 

LMS 0.10 0.10 0.10 0.10 0.10 0.12 



 

 

 

 

MM 0.03 0.05 0.10 0.16 0.19 0.21 

 

2. The average value of the estimation bias parameter 𝛽1 

a. Vertical outlier 

The average value of the bias parameter estimation 𝛽1 presented in Table 4 

shows that the OLS method has the smallest average bias value only when there is no 

outlier in the data or when the outlier percentage is 0%. Furthermore, when the data 

contains outliers, the average estimation bias value 𝛽1 by OLS always increases and it 

is at the highest average bias value compared to the other two methods. The average 

estimation 𝛽1 bias value  LMS and MM method for all data sizes remain consistent at 

a relatively small value so that the LMS and MM method is well used for estimating 

the parameter 𝛽1 on data containing vertical outliers. 

Table 4 The average value of the 𝛽1 bias on various data sizes and percentage of 

vertical outlier 

D
at

a 
si

ze
s 

M
et

h
o

d
 

Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.06 1.36 2.06 2.36 2.78 3.21 

LMS 0.14 0.13 0.13 0.13 0.13 0.12 

MM 0.06 0.06 0.06 0.06 0.07 0.07 

200 
OLS 0.03 0.72 1.00 1.21 1.37 1.59 
LMS 0.08 0.08 0.07 0.07 0.07 0.07 

MM 0.03 0.03 0.03 0.03 0.03 0.03 

1000 

OLS 0.01 0.33 0.45 0.54 0.59 0.68 

LMS 0.04 0.04 0.04 0.04 0.04 0.04 

MM 0.01 0.01 0.01 0.01 0.01 0.01 

 

b. Good leverage point 

Observation of the outlier type of good leverage points contained in the data set 

does not affect the performance of the OLS method in estimating parameters 𝛽1. This 

is indicated by the average value of the estimation bias parameter 𝛽1 OLS method 

which is always smaller than the other two methods, even as the outlier percentage 

increase the estimated bias value 𝛽1 OLS decreases closer to the value of  0. A 

decrease in the  bias value of the estimated 𝛽1 also occurs in LMS and MM along 

with the increase in outliers percentage with the average estimated bias value of 𝛽1 by 

MM is always smaller than the LMS method. Table 5 shows that the three methods 

have an estimated bias value of 𝛽1 close to 0. The presence of outlier good leverage 

points does not have a negative influence on the estimation of 𝛽1 by the three 
methods. 



 

 

 

 

Table 5 The average value of the 𝛽 1 bias on various data sizes and percentage good 
leverage points outliers 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.06 0.01 0.01 0.01 0.01 0.00 

LMS 0.14 0.09 0.04 0.02 0.01 0.01 

MM 0.06 0.02 0.01 0.01 0.01 0.01 

200 

OLS 0.03 0.00 0.00 0.00 0.00 0.00 

LMS 0.08 0.02 0.01 0.01 0.01 0.01 

MM 0.03 0.01 0.00 0.00 0.00 0.00 

1000 

OLS 0.01 0.00 0.00 0.00 0.00 0.00 

LMS 0.04 0.01 0.00 0.00 0.00 0.00 

MM 0.01 0.00 0.00 0.00 0.00 0.00 

 
c. Bad leverage point 

The average value of 𝛽 1 bias from data containing outliers bad leverage points 

in Table 6 shows that when the percentage of outliers is 0%, for all data sizes the 

average value of the smallest 𝛽 1 bias lies in the OLS method, followed by the MM 
method, then the method LMS. Furthermore, every increase in the percentage of 

outliers in the data, the average value of the 𝛽 1 bias of the three methods is 

increasing, with the highest average bias value owned by the OLS method for all data 

sizes. The increase in the average value of the 𝛽 1 bias MM method is greater than the 

increase in the average value of the 𝛽 1 bias the LMS method. This is indicated by the 

average value of 𝛽 1 bias MM which is higher than the average bias 𝛽 1 LMS on 

certain outliers percentage and data sizes. Both the LMS and MM method can 

maintain the average bias 𝛽 1 which is consistent with values close to 0 for all data 

sizes and various outliers. Thus, the LMS and MM method is more robust to the 

presence of outliers of bad leverage points compared to the OLS method. 

Table 6 The average value of the 𝛽 1 bias on various data sizes and percentage bad 
leverage points outliers 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.12 1.21 1.22 1.23 1.23 1.24 

LMS 0.27 0.27 0.28 0.28 0.29 0.32 

MM 0.12 0.21 0.23 0.26 0.30 0.41 

200 

OLS 0.05 1.19 1.21 1.23 1.23 1.23 

LMS 0.16 0.16 0.17 0.18 0.19 0.23 

MM 0.06 0.11 0.17 0.25 0.33 0.45 



 

 

 

 

1000 

OLS 0.03 1.19 1.22 1.23 1.23 1.24 

LMS 0.09 0.09 0.09 0.10 0.12 0.18 
MM 0.03 0.09 0.22 0.35 0.42 0.47 

3. Average Determination Coefficient Value 
a. Vertical outlier 

The average value of 𝑅2 by the three methods namely OLS, LMS and MM are 

presented in Table 7. OLS has a high average value of 𝑅2 only when there is no 

outlier in the data. Then when the data contains outliers, the average value of 𝑅2 by 

the OLS has decreased. This shows that even the slightest outlier vertical outlier has a 

bad effect on the coefficient of determination or 𝑅2. The average value of the LMS 

method for all data sizes is at the highest value compared to OLS and MM, which is 

close to 1. The average value of the MM method 𝑅2 is also consistently at a value 
close to 1 for all data sizes. 

Table 7 The average value of the 𝑅2 on various data sizes and percentage of vertical 
outlier 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.94 0.04 0.03 0.03 0.03 0.02 

LMS 1.00 1.00 1.00 0.99 0.99 0.98 

MM 0.95 0.95 0.95 0.95 0.95 0.94 

200 

OLS 0.94 0.03 0.02 0.01 0.01 0.01 

LMS 1.00 0.99 0.99 0.99 0.99 0.98 

MM 0.95 0.95 0.95 0.95 0.95 0.94 

1000 

OLS 0.94 0.02 0.01 0.01 0.01 0.01 

LMS 0.99 0.99 0.99 0.98 0.98 0.97 

MM 0.95 0.95 0.95 0.95 0.95 0.94 

 
b. Good leverage point 

Table 8 shows that the OLS, LMS, and MM methods on data containing outliers 

of good leverage points have an average value 𝑅2 which is very high, which is above 
90% for all data sizes. Having a good leverage point does not worsen the average 

value of 𝑅2 produced by each method. The higher the outlier percentage will increase 

the average value of 𝑅2 for the three methods. The average value of the 𝑅2 by LMS 

method is at the highest position, while the MM method tends to have the same 𝑅2 
value as the OLS method. 

Table 8 The average value of the 𝑅2 on various data sizes and percentage good 
leverage points outliers 
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0 5 10 15 20 30 

50 

OLS 0.94 1.00 1.00 1.00 1.00 1.00 

LMS 1.00 1.00 1.00 1.00 1.00 1.00 

MM 0.94 0.99 1.00 1.00 1.00 1.00 

200 

OLS 0.94 1.00 1.00 1.00 1.00 1.00 

LMS 1.00 1.00 1.00 1.00 1.00 1.00 

MM 0.94 1.00 1.00 1.00 1.00 1.00 

1000 

OLS 0.94 1.00 1.00 1.00 1.00 1.00 

LMS 0.99 1.00 1.00 1.00 1.00 1.00 
MM 0.94 1.00 1.00 1.00 1.00 1.00 

 
c. Bad leverage point 

Table 9 presents the average value of 𝑅2 on various data sizes containing outliers 

of bad leverage points. When data containing 0% bad leverage points, the average 𝑅2 
value for all three methods for all data sizes is in the range of values greater than 

75%. However, when the data begins to contain bad leverage points outliers, the 

average value of 𝑅2 by OLS method decreases to a range of 40%. Conversely, the 

average value of the 𝑅2 methods of LMS and MM has increased to reach a value 

close to 100%. The average value of the LMS 𝑅2 method is at the highest value 
compared to the other two methods for the overall data size. The presence of outliers 

of bad leverage points in the data greatly affects the performance of the OLS method 

but not the LMS and MM methods. 

Table 9 The average value of the 𝑅2 on various data sizes and percentage bad 
leverage points outliers 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.80 0.47 0.46 0.45 0.44 0.40 

LMS 0.85 0.98 0.98 0.99 0.99 0.99 

MM 0.83 0.91 0.93 0.94 0.96 0.98 

200 
OLS 0.80 0.48 0.47 0.45 0.44 0.40 
LMS 0.82 0.97 0.98 0.99 0.99 0.99 

MM 0.83 0.90 0.94 0.96 0.98 0.98 

1000 

OLS 0.80 0.48 0.46 0.45 0.44 0.40 

LMS 0.82 0.97 0.98 0.99 0.99 0.99 

MM 0.83 0.91 0.96 0.97 0.98 0.98 

 

4. Average RMSE Value 

a. Vertical outlier 



 

 

 

 

The average RMSE value of the OLS, LMS, and MM methods in Table 10 

shows that the OLS method has a small RMSE value approaching the value of 0 only 
when there is no outlier in the data. Furthermore, when the data is contaminated with 

vertical outlier outliers, the average RMSE value by OLS has increased very high, 

while the average RMSE value by LMS and MM is at a relatively small value. 

Table 10 The average value of RMSE on various data sizes and percentage of vertical 

outlier 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.50 11.89 18.19 21.05 24.26 27.78 

LMS 0.42 0.44 0.46 0.48 0.49 0.51 

MM 0.49 0.52 0.58 0.62 0.70 0.89 

200 

OLS 0.50 13.12 18.05 21.48 24.07 27.57 

LMS 0.47 0.48 0.49 0.50 0.50 0.51 

MM 0.50 0.53 0.58 0.63 0.69 0.87 

1000 

OLS 0.50 13.09 18.02 21.44 24.02 27.51 

LMS 0.48 0.48 0.49 0.50 0.50 0.50 

MM 0.50 0.53 0.57 0.62 0.68 0.86 

 

b. Good leverage point 

Table 11 shows that the existence outliers of the type of good leverage point is 

not too bad for the performance of each method. The average RMSE value of the 

three methods remains at a value close to 0. There is no increase in the average 

RMSE value which is very high for each method. The average RMSE value for the 

MM method is almost the same as the average RMSE value of the OLS method, 
while the average RMSE value of the LMS method is at the lowest value compared to 

the OLS and MM methods. 

Table 11 The average value of RMSE on various data sizes and percentage good 

leverage points outliers 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 0.50 0.50 0.50 0.50 0.50 0.50 

LMS 0.43 0.43 0.43 0.43 0.43 0.43 

MM 0.49 0.49 0.49 0.49 0.49 0.49 

200 

OLS 0.50 0.50 0.50 0.50 0.50 0.50 

LMS 0.47 0.47 0.47 0.47 0.47 0.47 

MM 0.50 0.50 0.50 0.50 0.50 0.50 

1000 OLS 0.50 0.50 0.50 0.50 0.50 0.50 



 

 

 

 

LMS 0.48 0.48 0.48 0.48 0.48 0.48 

MM 0.50 0.50 0.50 0.50 0.50 0.50 

 
c. Bad leverage point 

The average RMSE value of the OLS, LMS, and MM methods for each data 

size and the percentage of bad leverage points is presented in Table 12. When the 

outlier percentage is 0%, the average RMSE value of the three methods is quite small 

for all data sizes. Furthermore, as the percentage of bad leverage points increases in 

the data, the average RMSE value of each method increases. The highest increase 

was experienced by the OLS method. The average increase in the RMSE value of the 

LMS and MM method is not significant, with the smallest average RMSE value being 
the average RMSE value generated by the LMS method. 

Table 12 The average value of RMSE on various data sizes and percentage bad 

leverage points outliers 
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Percentage of outliers (%) 

0 5 10 15 20 30 

50 

OLS 1.00 4.66 5.64 6.45 7.17 9.01 

LMS 0.56 0.67 0.71 0.76 0.81 0.93 

MM 0.86 0.87 0.87 0.88 0.90 1.07 

200 

OLS 1.00 3.80 5.14 6.20 7.11 8.63 

LMS 0.81 0.86 0.89 0.92 0.94 1.03 

MM 0.87 0.87 0.88 0.91 0.96 1.12 

1000 

OLS 1.00 3.78 5.12 6.17 7.07 8.59 

LMS 0.89 0.91 0.93 0.94 0.94 1.10 

MM 0.87 0.87 0.90 0.95 1.00 1.14 

 
5. Interaction Effect of Factor Used  

Scenarios of variation of outliers percentage affect the evaluation value. The 

increasing percentage of vertical outliers and bad leverage points will cause the 

parameters and RMSE bias values of OLS and MM methods to increase with the highest 

increase experienced by OLS. Increasing the percentage of vertical outliers and bad 

leverage points does not have a major effect on the results of parameter estimation bias 

by the LMS method. This is indicated by the bias value of the parameter estimation LMS 

method decreases every increase in the percentage of vertical outliers and tends to be 
stable with increasing outliers of bad leverage points. However, for the type of outreach 

to good leverage points, the increase in the percentage of outliers in the refractive value 

of parameter estimation by OLS, LMS, and MM methods is decreasing. Increasing the 

size of the data will cause the parameter estimation bias to decrease. This applies to all 

types of outlier and all levels of outlier. 

Likewise, the scenario of variation of outliers percentage affects the coefficient of 

determination. The increasing percentage of vertical outliers and bad leverage points will 



 

 

 

 

cause the coefficient of determination of the OLS method to decrease very high. 

Increasing the percentage of vertical outliers and bad leveerage points did not 
significantly influence the results of the coefficient of determination by the LMS and 

MM methods. This is shown by the coefficient of determination LMS and MM methods 

which tend to be stable at high values. However, the increase in the percentage of good 

leverage point cause coefficient of determination by OLS, LMS, and MM methods is 

increasing. The increase in data size does not have a big effect on the resulting 

coefficient of determination. 

The increasing percentage of outlier vertical outliers and bad leverage points will 

cause the RMSE of OLS, LMS and MM methods to increase with the highest increase 

experienced by OLS. However, for the type of outlier the good leverage point, the 

increase in the percentage of outliers does not affect the RMSE value by the OLS, LMS, 

or MM methods. Increasing the data size will cause the RMSE values of all methods to 
increase. However, the increase that occurred was not significant. 

4.2 Actual Data Study 

Data. The data scatter plot from data used is shown in Figure 2. The data distribution plot in 

Figure 2 shows exploratively that there are several data located far from other data sets. These 

data have the potential to become outliers. Therefore, it is necessary to look at the 

standardized residual value to identify vertical outliers, while the good leverage points are 

identified by using a diagonal matrix hat value plot. 

 

Fig. 2.  Data distribution plot 

Outlier Check. The residual standardized value based on the plot in Figure 3 is at the interval 

of the values of 0 to 4. The majority of the data has standardized residuals that are spread out 

in the value 0-2. However, there is 1 observation that has a value above 2.5, which is the 12th 
data so that this data is a vertical outlier data. On the other hand, based on the plot of diagonal 

matrix diagonal values in Figure 4, there are 2 data which have a diagonal matrix hat value 

greater than 0.12 (twice the average diagonal matrix hat), which is the 13th and 15th data. 

Both data are data outlier good leverage point. There is no data identified as vertical outlier 

outliers as well as good leverage points, so there is no bad leverage point outlier in the actual 

data used. 



 

 

 

 

 

Fig. 3.  Standaridized residuals plot of actual data 

 

Fig. 4.  Hat diagonal matrix plot of actual data 

Regression Analysis. The plot of the regression equation for the OLS, LMS, and MM 

methods is presented in Figure 5. The black, blue, and red lines in Figure 5 are respectively 

the regression equation lines using the OLS, LMS, and MM methods. Figure 5 shows that the 
LMS and MM regression lines tend to be almost the same, while the OLS regression line is 

much different from LMS and MM. The OLS regression line is attracted by the existence of 

outlier observations. This is supported by the estimation value of the third parameter method. 

Table 13 presents the regression coefficient values or parameter estimates generated by the 

three methods. The regression coefficients produced by the LMS and MM methods tend to 

have values that are not much different, while the regression coefficients by OLS have 

different characteristics. Estimation value of the parameter 𝛽0 of the LMS and MM method is 

smaller than the estimated value of the parameter 𝛽1. Conversely, the estimation value of the 

parameter 𝛽0 by OLS is greater than the estimated value of the parameter 𝛽1. 



 

 

 

 

 

Fig. 5. Regression line of OLS, LMS, and MM method 

Table 13  Regression coefficient 

Method 𝛽 0 𝛽 1 

OLS 14.62   4.93 

LMS  -1.01 30.42 

MM   2.53 30.87 

 
Regression Assumptions Check. The regression assumptions p-values are presented in Table 

14. The p-values of KS-test and Breusch-Pagan by OLS are 0.0124 and 0.0195 respectively, 

less than the 0.05 significance level so that the assumptions of normality and homogeneity in 

the range of predictions using OLS are not met. The assumption of randomness of residuals of 

estimation using the OLS method is fulfilled as indicated by the Runs-test p-value of more 

than 0.05, which is equal to 0.1278. The p-value of the KS-test, BP-test, and Runs-test for the 

LMS and MM robust method were at a value of more than 0.05. This means that the 
assumptions of normality, homogeneity, and randomness of residuals of LMS and MM 

methods are fulfilled. 

Table 14 The actual data regression assumptions p-values 

Method KS-test BP-test Runs-test 

OLS 0.0124 0.0195 0.1278 

LMS 0.2791 0.3959 0.4860 

MM 0.4421 0.4017 0.1635 

 

Criteria for the goodness of the model. The RMSE and 𝑅2 OLS, LMS, and MM values in 
estimating the regression model of rice production containing outliers are presented in Table 

15. The method that produces the largest to smallest RMSE value in a row is the OLS method 

of 23.15, the MM method is equal to 6.78, and the LMS method is 4.44. The highest 𝑅2 value 
is generated by the LMS method, which is equal to 98%, then followed by the MM method 

which produces a value of 𝑅2 of 96%, while OLS produces the lowest 𝑅2 value of 58%. 



 

 

 

 

A good method used in regression analysis is a method that produces a small RMSE value 

and conversely produces the largest 𝑅2value. Table 15 shows that the LMS method in this 

study produced the smallest RMSE value of 4.44 and the highest 𝑅2 value of 98%. Therefore, 
the LMS method is the best method in simple regression analysis to determine the effect of 

data on the amount of use of organic fertilizer on total rice production in the provinces of 
Indonesia in 2017. The linear regression simulation results show that in small size data, size 

50 observations which contains outliers of 5% to 10%, the LMS method produces the smallest 

RMSE and the largest 𝑅2 value. This means that the conclusions obtained from estimating 
parameters for the actual data of rice production in 2017 are in line with the results of 

estimating regression parameters through simulation. The best regression line equations 

formed by the LMS method are as follows: 

𝑦 𝑖 = −1.0100 + 30.4200𝑥𝑖  

The estimation of 𝛽0 (𝛽 0) is negative, which is equal to -1.0100. The interpretation of the 

𝛽 0 value is that when no organic fertilizer is used, the estimated average production of rice 

produced will decrease by 1.0100 million tons. On the other hand, the value of 𝛽 1 is positive, 

which is equal to 30.4200. This value illustrates that every addition of one thousand tons of 

use of the amount of organic fertilizer, rice production will increase by 30.4200 million tons.  

Tabel 15 RMSE dan 𝑅2 value of actual data regression model 

Me
thod 

RM
SE 

𝑅2  

OLS 
23.

1500 
0.5

800 
LM

S 
  

4.4400 
0.9

800 
M

M 
  

6.7800 
0.9

600 
 

5 Conclusion and Suggestion 

5.1 Conclusion 

The simulation results of estimating data regression parameters containing outliers show 

that the LMS and MM method is a good method used when data contains vertical outlier 

outliers, good leverage points, and bad leverage points. This is based on the average value of 

the parameter estimation bias and the average RMSE value is quite small and the average 

value of 𝑅2 is high. OLS method is only good to use when the type of outliers contained in the 
data is a good leverage point. The presence of outlier vertical outliers and bad leverage points 

affect the estimation results and normal alignment assumptions by the OLS method. The 

normal assumption of the OLS method is not fulfilled when there are vertical outliers and bad 

leverage points in the data. 

The application of OLS and the LMS and MM robust regression method on actual data on 
total rice production in Indonesia in 2017 resulted in the conclusion that the robust LMS 

method was the best method. This is indicated by the lowest RMSE value, which is equal to 

4.44 and the highest 𝑅2 value, which reaches 98%. The actual data used was detected to 



 

 

 

 

contain vertical outlier outliers and good leverage points. Therefore, the conclusions of the 

best methods produced in applying the actual data of rice production in 2017 are in line with 
the results obtained in the simulation process. The linear regression simulation results show 

that in small size data, that is 50 observations with a 5% to 10% outlier content, the LMS 

method produces the smallest RMSE average and the largest 𝑅2 value average. 

5.2 Suggestion 

Robust regression methods for outliers have been developed. This study uses only two 

types of robust methods in estimating data regression parameters containing outliers, namely 

the LMS and MM methods. Subsequent research is expected to be able to use a comparison of 

other robust regression so that it can compare more robust regression methods. In addition, the 

simulation process in this study did not notice the effect of the distribution of data and the 
variety of data on the estimation results. Therefore, it is expected that the next study also 

evaluates the effect of distribution and a variety of data on the performance of the regression 

model estimation method. 

References 

[1] D’Urso P, Massari R. 2013. Weighted least squares and least median squares estimation for the 
fuzzy linear regression analysis. Metron. 71:279-306 

[2] Atilgan YK, Gunay S. 2011. Least median of squares solution of multiple linear regression 

models through the origin. Communication in Statistics—Theory and Methods. 40:4125-4137 

[3] Montgomery DC, Peck EA, Vining GG. 2012. Introduction to Linear Regession Analysis. 5th Ed. 

Wiley 

[4] Chen C, SAS Institute Inc, Cary NC. 2002. Robust regression and outlier detection with the 

robustreg procedure. SUGI Proceedings. 265-270 

[5] Almetwally EM, Almongy HM. 2018. Comparison between M estimation, S estimation, and MM 

estimation methods of robust estimation with application and simulation. International Journal of 
Mathematical Archive. 9(11): 1-9 

[6] Oktarinanda A. 2014. Perbandingan efisiensi metode least trimmed square (LTS) dan metode 

least median square (LMS) dalam penduga  parameter regresi robust. Jurnal Statistik. 2(3):177-180 

[7] Rousseeuw PJ dan Hubert M. 1997. Recent developments in PROGRESS. L1-Statistical 

Procedure and Related Topics. 31:201-214 


