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Abstract.Excess zeros can be solved by Zero Inflated Poisson (ZIP). If over-dispersion 
still exists in the data, the ZIP model is no longer suitable. Replacing the Poisson 

distribution with negative binomial distribution in the counting process may provide an 
alternative solution. Zero Inflated Negative Binomial (ZINB) regression model is 
estimated using the Bayesian method. Conjugate non-informative priors were used. 
Sampling parameters from posterior distribution is conducted using Markov Chain 
Monte Carlo (MCMC) simulation with 50,000 burn-in and 150,000 iterations. The model 
was then implemented to Parkinson’s disease data obtained from the Parkinson’s 
Progression Markers Initiative (PPMI) program. The MCMC result showed the 
convergence of the parameters. The result of the inspection of motoric aspect was 

significant in explaining does Parkinson’s patients have to consume drugs or not. The 
result of the inspection of non-motoric aspect and body response were significant in 
explaining motoric complication in Parkinson's disease sufferers. 
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1   Introduction 

In regression modeling for count data, problem of over-dispersion may arise due to 

excess zeros on the response variable. In this case, zero-inflated model might be suitable to 

model the data. Zero-inflated model assumes that zero value on the response variable were 

generated by two processes, namely the random zeros and structural zeros [1]. ZIP consists of 

two stages modeling: the first step to differentiate structural zeros with the counting process, 

and the second stage is to model the counting process, given the structural zeros have been 

sorted out from the data.  

However, when observations included in the counting data still exhibits over-dispersion, 

then the expansion of Poisson distribution is required [2]. Zero Negative Binomial Inflated 

(ZINB) model might be the alternative for this condition, with the logistic regression model at 

the first stage and negative binomial regression for the second stage.  
Bayesian method is more flexible for parameters estimation. In addition to the 

information from the data through the likelihood function, experts’ judgement may be 

incorporated through specification of prior distribution for the parameters of interest. 

Combination of these two results in the posterior distribution, where sampling on the 

parameters can be done using Markov Chain Monte Carlo (MCMC)–Gibbs sampling 

technique. Therefore, in this paper, Bayesian method was implemented for the ZINB model 

parameters estimation, following a recommendation of Garay et al. (2015) [3]. 

2   Data 

Data collected on 232 people with early Parkinson’s disease (PD), taken in March 2019 

from the Parkinson's Progression Markers Initiative (PPMI) database [4] were used in the 

analysis. This database named Movement Disorder Society-Unified Parkinson’s Diseases 

Rating Scale (MDS-UPDRS) instrument. The subjects were on the scale of Hoehn and Yahr 

ranging from 0 to 3 in a period of one to five years. Before the data was filtered, data must be 

cleaned first. Patients whose data are incomplete will be eliminated. After that, data filtered by 

time period and Hoehn and Yahr scale.The response variableis the frequency of motoric 
complications experienced by people with PD. The subtotal scores from three parts of the 

MDS-UPDRS, namely Part I measuring the result of inspection of non-motoric aspect  𝑋1 , 
Part II measuring the result of inspection of motoric aspects  𝑋2 , and Part III measuring the 

result of inspection of body responses  𝑋3 . 

3   Statistical methods 

3.1 Zero Inflated Negative Binomial Regression Model 

Zero-inflated models assume that a response variable distributed zero-modified. Zero-

modified distribution is a combination of a degenerate distribution at zero and such discrete 

distribution. For ZINB, the discrete distribution is a negative binomial distribution. 



 

 

 

 

Suppose 𝑌 is a discrete random variable that consisting of  the counts on 𝑛 subjects, 

𝑦1 , 𝑦2 ,… , 𝑦𝑛 . Observations that go into structural zeros  𝑦𝑖 = 0  have a degenerate distribution 

at zero with a probability of occurring is 𝑝. While the observations included in the NB counts 
 𝑦𝑖 = 0, 1, 2, …  follow a negative binomial distribution with probability of occurring is 
 1 − 𝑝 . Therefore, 𝑌is ZINB distributed which defined by 

𝑌 =  
𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑧𝑒𝑟𝑜𝑠,
𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠,

with probability 𝑝
with probability (1 − 𝑝)

  (1) 

Based on the probability function of the zero-modified distribution [5], then probability 

mass function (pmf) for ZINB distribution [3] is 
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where  𝜙 −1 , 𝜇, and Γ(. ) representing dispersion parameter, mean, and gamma function, 

respectively. 

Assume that there are 𝑟 predictors for logistic regression function [6], 𝑠 predictors for 

negative binomial regression function [7]. Hence, ZINB regression model [3] can be written as 

follows. 

𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝑙𝑛  
𝑝

1 − 𝑝
 = 𝑿𝟏

′ 𝜷 = 𝛽0 + 𝛽1𝑋11 + 𝛽2𝑋21 + ⋯ + 𝛽𝑠𝑋𝑟1 = 𝑙𝑛  
𝑝

1 − 𝑝
  (3) 

𝑙𝑛 𝜇 = 𝑿𝟐
′ 𝜸 = 𝛾0 + 𝛾1𝑋12 + 𝛾2𝑋22 + ⋯ + 𝛾𝑠𝑋𝑠2 (4) 

where 

𝑋𝑗1 : the j-th predictor at stage one, 𝑗 = 0, 1, 2, … , 𝑟. 

𝑋𝑘2 : the k-th predictor at stage two, 𝑘 = 0, 1, 2, … , 𝑠. 

𝛽𝑗  : the j-th regression parameters in stage one.  

𝛾𝑘  : the k-th regression parameters in stage two. 

3.2 Bayesian Method for ZINB Regression 

The main characteristic of the Bayesian method is that it uses a probability function to 

measure uncertainty in statistical inference, in other words its probability function can be used 

as a benchmark for a researcher's trust in an event.Applying the  Bayes' rule [8], the posterior 

distribution (𝑝 𝜃 𝑦  for the model’s parameters, 𝜃, can be written as 

 
𝑝 𝜃|𝑦 ∝ 𝑝 𝜃  𝑝 𝑦|𝜃  

(5) 

where 𝑝 𝜃  is prior distribution, and 𝑝 𝑦|𝜃  is the likelihood obtained from the data. 

3.2.1 The Likelihood Function for ZINB Regression 



 

 

 

 

Based on the explaining data in Data section above, this paper will use PPMI database, 

named MDS-UPDRS instrument. The response variable is the MDS-UPDRS Part IV, or the 

frequency of motoric complications experienced by people with PD (𝑌). The subtotal scores 

from three parts of the MDS-UPDRS, namely Part I measuring the result of inspection of non-

motoric aspect  𝑋1 , Part II measuring the result of inspection of motoric aspects  𝑋2 , and 

Part III measuring the result of inspection of body responses  𝑋3 . Suppose 𝑌 is a random 

variable with ZINB distribution containing 232 independent observations, then the likelihood 

function for ZINB regression is as follows. 
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3.2.2  Prior Distribution for Parameters 𝜷, 𝜸, and 𝝓 

Since there is no prior information from historical data or from previous experiment, 

then all parameters will use conjugate non-informative priors.Prior distribution for 𝛽 and 𝛾 are 

assumed to be normal, while 𝜙 is assumed to be gamma distributed. So, the joint prior 

distribution for ZINB regression parameters is 

𝑝 𝜷, 𝜸, 𝜙 =  

 
 
 
 
 

1

𝜎𝛽𝑗
 2𝜋

𝑒

− 𝛽 𝑗−𝜇𝛽 𝑗
 

2

2𝜎𝛽𝑗
2

 
 
 
 
 𝑟

𝑗 =0

×   
1

𝜎𝛾𝑘
 2𝜋

𝑒

− 𝛾𝑘−𝜇 𝛾𝑘
 

2

2𝜎𝛾  𝑘
2

 

𝑠

𝑘=0

× 
1

𝑏𝑎Γ 𝑎 
𝜙𝑎−1𝑒−𝜙 𝑏  

(7) 

All parameters assumed have prior specification, that is 𝛽𝑗 ~normal (0,1000), 𝛾𝑘~normal 

(0,1000), and 𝜙~gamma  𝑎, 𝑏  with 𝑎 = 0.001 and 𝑏 = 0.001. 

 

3.2.3 Posterior Distribution for Parameters 𝜷, 𝜸, and 𝝓 

Combining the prior and the likelihood, the resulting posterior for the parameter 𝛽, 𝛾, 
and 𝜙 is 
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(8) 

Posterior distribution in (8) is difficult to be solved analytically. Therefore, a numerical 

simulation using the Markov Chain Monte Carlo-Gibbs sampling is used to update the 

parameters given initial values, and to sample the parameters given the simulation is 

convergent. 

4Results and Discussion 

In modeling the frequency of motoric complications data from Parkinson's patients, a 

computer program R version 3.5.3[9] with R2JAGS package[10] is used to run the MCMC-

Gibbs sampling algorithms. Table 1 reports the posterior means (mean), standard deviations 

(SD), and 95% credible intervals (2.5 percentile and 97.5 percentile) of the model parameters 

fitting the ZINB. Significant variables listed in Table 1 with bold prints on each parameter. 

According to Liu & Power [11], a significant variable is a variable with the coefficient 

parameters that do not contain zero between 2.5 percentile and 97.5 percentile. 

Table 1. The results of parameter estimate for 232 patients using MCMC-Gibbs 

sampling algorithm. 

Parameter Mean SD 
2.5 

Percentile 
Median 

97.5 

Percentile 

𝜙 3.43698 1.22132 1.74547 3.22431 6.38276 

𝛽0 0.00599 0.03144 -0.05601 0.00581 0.06753 

𝛽1 -0.00215 0.02519 -0.05211 -0.00164 0.04704 

𝜷𝟐 -0.06189 0.02421 -0.10950 -0.06204 -0.01463 

𝛽3 -0.00180 0.01027 -0.02272 -0.00156 0.01789 

𝛾0 0.02364 0.03141 -0.03828 0.02373 0.08543 

𝜸𝟏 0.04209 0.01565 0.01079 0.04245 0.07256 

𝛾2 0.02778 0.01560 -0..00227 0.02733 0.05824 

𝜸𝟑 0.01895 0.00519 0.00854 0.01905 0.02901 

 



 

 

 

 

 

From Table 1, we can write the estimates of ZINB regression model. 

𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝑙𝑛  
𝑝

1 − 𝑝
  

= 0.00599 − 0.00215𝑋11 − 0.06189𝑋21 − 0.00180𝑋31 
(9) 

𝑙𝑛 𝜇 = 0.02364 + 0.04209𝑋12 + 0.02778𝑋22 + 0.01895𝑋32  
(10) 

 
In Table 1, the variables having a significant effect on logistic regression is variable 

with the total inspection score of motoric aspect, with the estimated parameter is -0.06189. 

That is, the separation of observation whether patients need to take drugs or not can be 

affected by variable MDS-UPDRS Part II. Parameter estimates of variable MDS-UPDRS Part 

II is -0.06189, means that the risk of the patient not taking the drug and not experiencing 

motoric complications is equal to exp(−0.06189𝑋21 ), where the other variables are assumed 

to be constant. Then for negative binomial regression, the variables that affect significantly is 

the total score of non-motoric aspects of the examination and the body's responses, with the 

estimated parameter is 0.04209 and 0.01895 respectively. That is the frequency of motoric 

complications influenced by variable MDS-UPDRS Part I and Part III. Parameter estimates of 

variable MDS-UPDRS Part I is 0.04209 and variable MDS-UPDRS Part III is 0.01895, means 

that the mean of frequency of motoric complications each patient equal to exp(0.04209𝑋12 +
0.01895𝑋32 ), where the other variables assumed to be constant. 

In (9), all variables have negative regression coefficients. Because of logit function, 

model in (9) means that the smaller the MDS-UPDRS Part I, II, and III scores, the greater the 

probability of observations included in structural zeros. In other words, if a patient has a small 

score for the MDS-UPDRS Part I, II and III variables, then the probability that the patient will 

not has a motor complication due to drugs will be even greater, because this patient did not 

consume the drug indeed. 

Model (10) shows a relationship between the probability of how often the patient 

experiences motoric complications with total score of each variables. It is seen that the 
regression coefficient is positive. This means that if score of each variables has increase, then 

motor complications will often occur because of the increased probability. In other words, 

patients taking drugs with large MDS-UPDRS Part I, II, and III scores have a high probability 

too for the occurrence of motor complications. 

Random values generated from the posterior distribution can be described through a 

density plot in Figure 1. Beta represents parameter coefficients in the first stage (structural 

zeros), and gamma represents parameter coefficients in the second stage (NB counts). 



 

 

 

 

 

Fig. 1. Posterior density plot of estimated regression coefficients from ZINB regression. 

5Conclusion 

ZINB regression can overcome data with over-dispersion caused by excess zero and 

calculate data using two regression models, namely logistic regression and negative binomial 

regression. In estimating the parameters, Bayesian methods will be used. Complex 

calculations using the Bayesian method in the estimation parameters can be solved by the 

Markov Chain Monte Carlo (MCMC) simulation that can generate random values with the 

Gibbs-sampling algorithm. The application of ZINB regression using the Bayesian MCMC-
Gibbs sampling method in 232 Parkinson data provides two conclusions. First, the variables 

that determine significantly on the need for patients to take MDS-UPDRS medicine are Part II. 

Second, in patients taking drugs the frequency of motor complications is calculated by the 

MDS-UPDRS variable Part II and Part III. 
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