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Abstract.Measurement errors in (spatially lagged) explanatory variables under the 
classical-errors-in variables assumption are not routinely accounted for in applied 
(spatial) research, in spite of their serious consequences. Particularly, the estimator of 
coefficients of variables measured with error but also of those not measured with error 
are biased and inconsistent. The purpose of this paper is to analyze and compare by way 

of Monte Carlo simulation two bias correction methods, i.e. Monte Carlo Expectation-
Maximization (MCEM) and Bayesian approach (BA). We consider spatial lag model 
(SLX) with different spatial correlation of covariate of interest, different measurement 
error variances and sample sizes. We use relative bias (RelBias) and Root Mean Squared 
Error (RMSE) as valuation criteria. The main result is that the Bayesian approach and 
MCEM method outperform the Naive model without measurement error correction. 
Moreover, the Bayesian approach performs better than MCEM method. 
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1   Introduction 

Measurement errors in (spatially lagged) explanatory variables are not routinely 

accounted for in applied (spatial) research, in spite of the fact that their consequences are 

usually serious under the classical-errors-in variable assumption (assumed throughout this 

paper). Particularly, the estimator of the coefficients of the variables measured with error but  

also those of the explanatory variables not measured with error are biased and inconsistent.  

[1] showed that generally the estimator of model coefficients are attenuated, while the 

estimator of variance components are inflated, if measurement error in (spatially lagged) 
covariates variables is ignored.  Furthermore, [2] showed that the amount of attenuation 

depends on the variance of measurement error.  

Several approaches to correct for measurement error in spatially lagged exogenous 

regressors have been proposed.  [1] proposed Expectation-Maximization (EM) estimator under 

a conditional exponential or Gaussian autoregressive (CAR) structure to correct the bias of 

naive estimator, i.e. estimator that ignores measurement error.  [1] considered a structural 

measurement error modelling approach assuming a parametric model of the error prone 

covariate. The spatial correlation exists not only in the outcome variable, but also in the error 

prone covariate with the same spatial correlation structure, but with different parameters. The 

measurement error variance is assumed known or estimated from data.  [1]‘s simulations 
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showed that the EM approach effectively eliminates the biases in naive estimators and has 

smaller MSE. However, computation time rapidly increases for large data sets. To overcome 
this problem, [3] proposed a version of the EM algorithm (Monte Carlo EM [MCEM]) for 

inference of spatial model with covariate measurement error.  [3]‘s simulation revealed better 

performance of MCEM approach compared to naive approach measurement error model. 

[4] using Bayesian approach analyzed Gaussian spatial model with covariate 

measurement error under an exponential spatial structure.  Unlike [1],[4] consider the 

functional model, i.e., a fixed true values of covariate. The simulation found that the proposed 

measurement error model has a better performance than naive model.  The advantage of this 

Bayesian approach is that the proposed model facilitates representing the uncertainties related 

to model parameter values and able to incorporate prior information. 

The purpose of this paper is to analyze and compare by way of Monte Carlo simulation 

two bias correction methods of spatial regression models with a spatially lagged covariate 
measured with error, i.e., Method of Monte Carlo Expectation-Maximization (MCEM) and 

Bayesian approach (BA). 

2   Literature review 

2.1 Bias Correction Methods 

 

We define the model with spatially lagged exogenous covariates (SLX) as follows: 

 

𝒀 = 𝑿𝜷 + 𝑾𝑿𝜸 + 𝜺    (1) 

where𝒀 is the 𝑛 × 1 vector of observations on the dependent variable, 𝑿 the 𝑛 × 𝑘 matrix of 

the true unobserved explanatory variables, 𝜷 the 𝑘 × 1 vector of regression coefficients (if 

𝑥𝑖1 = 1 for all observation 𝑖  𝑖 = 1,… ,𝑛 , the first component of 𝜷 is the constant 

term),𝑾the𝑛 × 𝑛 spatial weight matrix, 𝜸the spatial dependence parameter, and𝜺is a𝑛 ×
1Gaussian error term with zero mean and variance-covariance matrix 𝜮𝜀with 𝜮𝜀 = 𝜎𝜀

2𝐼𝑛  with  

𝐼𝑛  the  𝑛 𝑥 𝑛  identity matrix and σ𝜀
2 is the variance of the error term. 

Letting 𝒁 = [𝑿,𝑾𝑿] and 𝜷 = [𝜷,𝜸]′, the above model becomes: 

 

𝒀 = 𝒁𝜷 + 𝜺     (2) 
 

Let 𝑷 = [𝑸,𝑾𝑸] be the observed error prone explanatory variables related to the true 

covariate 𝒁according to a classical errors in variables model
1
. Then, 

 

𝑷 = 𝒁 +  𝑼     (3) 

 

where 𝑼 is a 𝑛 × 𝑘 matrix of measurement errors. Its rows are assumed to be iid with  

𝑼 ~𝑁(0,𝜮𝑈) and independent of 𝒁 and𝜺. Hence, 

 

𝒀 =  𝑷 −𝑼 𝜷 + 𝜺 = 𝑷𝜷 + 𝝎    (4) 

 
______________________ 
1
Note that not all X variables need to be measured with errors 



 

 

 

 

 

where 𝝎 = 𝜺 −  𝑼𝜷   the error term.This means that the disturbance term 𝝎is correlated with 

𝑷 and 𝑬(𝝎|𝑷) ≠ 𝟎. This violates the orthogonality assumption of OLS. The main 

consequence is that 𝒃  and 𝒔𝜺
𝟐 are biased and inconsistent estimators of  𝜷  and 𝝈𝜺

𝟐[5]. 

 

 

2.2Monte Carlo Expectation-Maximization Method 

 

The present method was introduced by [3].It reads as follows, 

The density function of the complete data, including 𝒁𝒊, of the SLX model (1), can be 

decomposed in terms of conditional densities as [6]:  

 

𝑓  𝒀𝒊,  𝒁𝒊,𝑷𝒊 = 𝑓 𝒀𝒊|𝒁𝒊,𝑷𝒊 𝑓 𝒁𝒊,𝑷𝒊 = 𝑓 𝒀𝒊|𝒁𝒊 𝑓 𝑷𝒊|𝒁𝒊 𝑓 𝒁𝒊                    (5) 

    

(5) is made up three components: the outcome component, 𝑓 𝒀𝒊|𝒁𝒊 , the measurement 

component, 𝑓 𝑷𝒊|𝒁𝒊 , and the covariate component, 𝑓 𝒁𝒊 . We assume that the covariates 𝒁𝒊 

follow a multivariate normal distribution with 𝑘-element mean vector 𝝁𝒁 = (𝜇1 ,… . ,𝜇𝑘) and 

𝑘 × 𝑘 covariance matrices 𝚺𝑍 . 

The likelihood function for the observed data (𝒀𝒊,𝑷𝒊) is:  

 

𝐿𝑛  𝜽 =  𝐿 𝜽|𝒀𝒊,𝑷𝒊 
𝑛
𝑖=1 =  𝑓 𝒀𝒊,𝑷𝒊|𝜽 

𝑛
𝑖=1 =   𝑓 𝐘𝒊 𝐙𝒊 𝑓 𝐏𝒊|𝐙𝒊 𝑓(𝐙𝒊)𝒅𝒁𝒊

𝑛
𝑖=1  (6) 

 

where 𝜽 =  𝜷 , 𝜎𝜀
2 ,𝝁𝒁,𝜮𝑍 ,𝜮𝑈 

𝑇
 denotes the vector of parameters of the joint model.  The 

observed data likelihood therefore depends on the density 𝑓 𝒀𝒊,𝑷𝒊  which can be found by 

marginalizing the joint distribution 𝑓 𝒀𝒊,  𝒁𝒊,𝑷𝒊  over  𝒁𝒊.  

Maximization of the likelihood function of the observed data directly as 𝐿 𝜽|𝒀𝒊,𝑷𝒊  is 

analytically intractable since it typically involves intractable integrals and is not available in a 

closed form [7].  The EM algorithm (EM) is a procedure to find ML estimate when direct 

maximization of the likelihood function is difficult but when maximization of the complete 

data likelihood is easier.  [3] proposed Monte Carlo EM (MCEM) to estimate the model 

parameter 𝜽 of the joint model. This method is a modification of the EM algorithm where the 

expectation in the E-step is computed numerically through Monte Carlo simulation.  

The basic idea of the algorithm is to use the log-likelihood function for the complete data 

where the unobserved latent variable 𝒁 is treated as missing data. The complete data 

loglikelihood function is 

 

ℓ(𝜽|𝒀,𝑷,𝒁) = log(𝑓 𝒀𝒊 𝒁𝒊 ) + log 𝑓 𝑷𝒊|𝒁𝒊  +⁡log 𝑓(𝒁𝒊) ⁡ 

= −
𝑛

2
log 𝜎𝜀

2 −
1

2𝜎𝜀
2 ∥ 𝒀 − 𝒁𝜷 ∥2−

𝑛

2
log 𝜎𝑢

2 −
1

2𝜎𝑢
2 ∥ 𝑷− 𝒁 ∥2−

𝑛

2
log 𝜎𝑍

2 −
1

2𝜎𝑍
2 ∥ 𝒁 − 𝝁𝒁 ∥

2

          (7) 

 

where ∥. ∥ denotes the square norm. 

The joint distribution of the observed data and the missing data is factored into a part due 

to the observed data and the conditional distribution of the missing given the observed.  It can 

be shown that each iteration of the EM algorithm monotonically increases the observed 

likelihood, and MLE 𝜽  is reached upon convergence [8]. 



 

 

 

 

The MCEM algorithm requires an initial estimate of the model parameters, denote as 𝜽(0).  

Let 𝜽(𝑡) be the current (step 𝑡) estimate at the MLE 𝜽 .  In the E-step of EM, we find the 
expected value of the complete data log likelihood function, conditional on the observed data 

and the current estimate of the parameter vector 𝜽(𝑡).  This is denoted as 𝑄 𝜽 𝜽𝑡  and defined 
as 

 

𝑄 𝜽 𝜽𝒕 = 𝐸 ℓ 𝜽 |𝒀,𝑷,𝜽𝒕 =  ℓ 𝜽 𝑓 𝒁 𝒀,𝑷 𝑑𝒁   (8) 

 

where ℓ 𝜽  denotes the contribution to the log likelihood function from observing 𝒀,𝑷,𝒁.Due 

to the complexity of conditional expectations in (8), the Monte Carlo simulation algorithm can 

be used to generate samples from the joint distribution 𝑓 𝒁|𝒀,𝑷; 𝜽𝑡 .   
At the 𝑡th iteration, assume we can randomly draw M values 𝒁1

𝑡 , 𝒁2
𝑡 , …, 𝒁𝑀

𝑡 , each of size 

n from 𝑓 𝒁|𝒀,𝑷; 𝜽𝑡 . Then the Monte Carlo approximation can be written as [3] 
 

𝑄 𝜽 𝜽𝒕 ≈
1

𝑀
 ℓ 𝜽𝒕;𝒀,𝑷,𝒁(𝑚) 𝑀
𝑚=1    (9) 

 

The M-step is to maximize 𝑄 with respect to 𝜽 to obtain 𝜽(𝒕+𝟏) = arg max𝜃∈Θ𝑄(𝜽|𝜽𝒕) 

where 𝜣 is the parameter space.  The two step process is repeated until convergence is met.   

 

2.3Bayesian Approach 

 

Considering model (2), assume that the distribution of 𝒁 is 2𝑘 multivariate normal with 

2𝑘-element mean vectors 𝝁𝒁 = (𝜇1 ,… . ,𝜇2𝑘) and 2𝑘 × 2𝑘 covariance matrices 𝚺𝑍 . The 

observed value of 𝒁 is the 2𝑘-element vector 𝑷 and the Gaussian measurement errors on 

(𝒀,𝑷) have 2𝑘 × 2𝑘 covariance matrix 𝚺𝑼.  Following [9], the statistical model expressed 

hierarchically is then 

 

𝒁 ~ 𝑁2𝑘(𝝁𝑍 ,𝚺𝑍)        (10) 

𝒀|𝒁 ~ 𝑁𝑘(𝜷 𝒁,𝜮𝜀)     (11) 

𝒀,𝑷|𝒁 ~ 𝑁𝑘(𝒁,𝜮𝝎)           (12) 
 

Denoting 𝑨 = (𝒀,𝑷), the observed data likelihood is 

 

𝑝(𝒀,𝑷) =  (2𝜋)−(𝑘)/2|𝚺𝑨|−1/2𝑒𝑥𝑝  −
1

2
 𝑨 − 𝜻 ′𝚺𝑨

−𝟏(𝑨− 𝜻) 𝑛
𝑖=1           (13) 

𝜻 = (𝜷 𝝁𝑍 ,𝝁𝑍)               (14) 

𝚺𝑨 =  
𝚺𝜀 + 𝜷 𝟐𝚺𝒁 𝜷 𝚺𝒁

𝜷 𝚺𝒁 𝚺𝒁 + 𝚺𝑼
               (15) 

 

where 𝜻 is the 𝑘-element mean vector of 𝑨 and 𝚺𝑨 is the 𝑘 × 𝑘 covariance matrix of 𝑨. 

The observed data likelihood can be decomposed as 𝑝(𝒀,𝑷|𝜽) = 𝑝(𝒀|𝑷)  ×  𝑝(𝑷) where 

𝑝(𝑷) = (2𝜋)−(𝑘)/2|𝚺𝑷|−1/2𝑒𝑥𝑝  −
1

2
 𝒀 − 𝝁𝑷 

′𝚺𝑷
−𝟏(𝒀− 𝝁𝑷) , 

𝑝(𝒀|𝑷) = (2𝜋)−1/2|Var𝑌|𝑷|−1/2𝑒𝑥𝑝  −
1

2
 𝒀 − 𝝁𝒀|𝑷 

′
𝑉𝑎𝑟𝑌|𝑃

−1 (𝒀− 𝝁𝒀|𝑷) , 

𝜽 =  𝜷 ,𝝁𝑍 ,𝚺𝒁, 𝚺𝑼,𝚺𝜀 
𝑇
 denotes the vector of parameters of the joint model. 



 

 

 

 

In the Bayesian framework, we need to consider prior distributions for all the unknown 

parameters expressed in the vectors 𝜽.  We consider a multivariate normal prior on the 

regression parameters 𝜷  and the mean vectors 𝝁𝒛 with mean 0 and large variance, 

𝝅(𝜷 )~𝑵𝟐𝒌  𝟎,𝝈
𝛽 
2 and 𝝅(𝝁𝒛)~𝑵𝟐𝒌 𝟎,𝝈𝜇𝑧

2  . We assume the inverse Wishart priorof the 

covariance matrix 𝜮, i.e., 𝜮~𝐼𝑊𝑣 𝚲
−1  where 𝑣the degrees of freedom and𝚲 is a  𝑘 × 𝑘 

positive definite scale matrix[10].  It usually assumed that the model parameter are mutually 

independent. Then, the joint prior distribution of all unknown parameters is  

 

 

𝑝 𝜽 = 𝑝(𝜷 )𝑝(𝝁𝒛)𝑝(𝚺𝒁)𝑝(𝚺𝑼)𝑝(𝚺𝜀)  (16) 

 

Combining the likelihood function and the prior distribution, the joint posterior density of 

all unknowns is 

 

𝑝(𝜽|𝑷,𝒀) ∝  (2𝜋)−(𝑘)/2|𝚺𝑨|−1/2𝑒𝑥𝑝  −
1

2
 𝑨 − 𝜻 ′𝚺𝑨

−𝟏(𝑨 − 𝜻) 𝑛
𝑖=1  𝑝 𝜽         (17) 

 

The Bayesian inference can then be carried out based on the posterior conditionals by 

applying appropriate MCMC algorithms [11]. 

3Simulation 

We consider the common SLX modelas follows:  

 

𝑌𝑖 = 𝛼 + 𝑋𝑖𝛽 + γ 𝑊𝑖𝑗𝒋≠𝒊 𝑋𝑖 + 𝑉𝑖
′𝛿 + 𝜀𝑖    (18) 

 

with 𝑌𝑖  the response in location 𝑖  𝑖 = 1,… ,𝑛 ; 𝛼 the intercept, 𝑋𝑖  is an unobserved mis-

measured true covariates relating to location 𝑖with the regression parameter 𝛽,𝑽𝑖 =
(𝑉𝑖1 ,𝑉𝑖2 ,𝑉𝑖3) the 3 𝑥 1 vector ofperfectly-measured covariates with the associated regression 

parameter 𝛿 = (𝛿1,𝛿2 ,𝛿3)′ ,𝑊𝑖𝑗  is the weights  matrix where the weight 𝑤𝑖𝑗 is 1 if areas 𝑖 and 𝑗 

are neighbors and 0 otherwise, 𝛾a spatial dependence parameter, and𝜀𝑖 is the Gaussian error 

term with zero mean and variance-covariance matrix Σwith Σ = σ𝜀
2𝑰𝑛  with 𝑰𝑛  the  𝑛 𝑥 𝑛  

identity matrix and σ𝜀
2 is the variance of the error term. 

We assume that 

 

𝑃 = 𝑋 +  𝑈      (19) 

 

where 𝑃 is the observed covariates related to the true covariates 𝑋 according to a classical 

measurement error model with 𝑈~𝑁 0, 𝜎𝑈
2𝑰𝑛 . We assume 𝑋~𝑁 𝜇𝑥 ,𝜎𝑥

2  with 𝜇𝑥 = 0 and  

𝜎𝑥
2 = 1. The variables 𝑉1 , 𝑉2 , and 𝑉3 are normal random variables with zero means and unit 

variance.  Path diagram of relationship between observed variables with unobserved variables 

of error models shown in Figure 1. 
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Fig. 1. Path diagram of the error models 

 

We take the data to be on a regular grid with the grid sizes7 (T = 7 x 7) and 20 (T = 20 x 

20) representing small and large sample sizes, respectively.The weights matrix 𝑾 is row 

normalized. We allow different values for spatial dependence parameter 𝛾, namely 0.3, 0.6 

and 0.9. The observed error-prone covariate 𝑃 is generated by adding Gaussian noise with 

variance 𝜎𝑈
2  =0.25 and 0.75 to 𝑋.  Outcome data, 𝑌 are then generated with regression 

coefficients parameters set at  𝛼,𝛽,𝛿1 ,𝛿2 ,𝛿3 
𝑇 =  1, 2,−1,1,−1 𝑇. 

We further take 𝜀 ~𝑁 0,𝜎𝜀
2  with 𝜎𝜀

2 = 1.  For each sample size, 𝛾 and 𝜎𝑈
2, we generate 

100 Monte Carlo simulation datasets.  For each generated dataset, we estimate 𝛽 in the above 

model under the assumption of    
(1) Naïve model with measurement error ignored (NM) 

(2) Monte Carlo Expectation-MaximizationMethod (MCEM)  

(3) Bayesian approach (BA) 

The following independent priors are considered to perform the Gibbs sampler, 

𝛼,𝛽 ,𝛿~𝑁 0, 100 , 𝜎𝜀
2~ 𝑈 0, 100 ,𝜎𝑈

2~𝑈 0, 100 , 𝜇𝑥~ 𝑁 0, 100 , 𝜎𝑥
2~ 𝑈 0,100 [12] and 

𝛾~𝑈 −1,1  [13]. Three parallel chains are generated with 7000 burn-in iterations and 17000 
main iterations with spacing of size 5. To monitor the convergence we use the between and 

within sequence information to obtain the potential scale reduction factor 𝑅 . The 𝑅  
approximately 1 indicates convergence  [10], [14]. 

For each simulation, we compute the relative bias (RelBias) and the Root Mean Square 
Error (RMSE) for each parameter estimate over 100 samples. These statistics are defined as 

 

 𝑅𝑒𝑙𝐵𝑖𝑎𝑠  𝛽 =
1

𝑘
 (

𝛽𝑗 

𝛽
− 1)𝑘

𝑗=1 ,𝑅𝑀𝑆𝐸  𝛽 =  
1

𝑘
 (𝛽𝑗 − 𝛽)2𝑘
𝑗=1  

 

where 𝛽𝑗  is the estimate of 𝛽 for the 𝑗𝑡ℎ  sample and k=100. 

4Results and Discussion 

Table 1 and 2 show that for small sample, all measurement error variance and spatial 

dependence,the regression coefficient𝛽of the naïve estimate (NM) as well astheMCEM and 
BA estimate is attenuated toward zero or downward biases. The other regression coefficient 

including intercept 𝛼, spatial dependence 𝛾 as well as coefficients returned for the perfectly-

measured regressors 𝜹 are also noticeably biased.  The average RelBias (in absolute value) of  

𝛽 and the other regression coefficient of naïve estimates are larger than MCEM and BA.  We 

observed the following rankings: NM > MCEM > BA.  Moreover, based on average RMSE we 

V 

Y 
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observed the following rankings : BA < MCEM < NM.  Note that for 𝜎𝑈
2 = 0.25, the average 

RMSE of 𝛽 is as follows : BA = MCEM < NM.  

 
Table 1.RelBias and RMSE of Regression Coefficients for Spatial Measurement ErrorModels with 

Design Methods for sample size N=49 and measurement error variance 𝜎𝑈
2 = 0.25. 

 
Method 𝛾 = 0.3  

 𝛼 𝛽 𝛾 𝛿1 𝛿2 𝛿3 Average 

Naïve RelBias -0.0246 -0.3929 -0.1680 0.0053 0.2213 -0.5446 0.2261 
 RMSE 0.2278 0.8188 0.3516 0.1916 0.3068 0.5939 0.4151 
MCEM RelBias -0.0037 -0.0507 -0.1330 0.0061 0.1605 -0.3900 0.1240 

 RMSE 0.1712 0.2334 0.3203 0.1636 0.2399 0.4345 0.2605 
BA RelBias -0.0014 -0.0149 -0.1144 0.0082 -0.0019 -0.0195 0.0267 
 RMSE 0.1519 0.2306 0.2723 0.1588 0.1703 0.2336 0.2029 
 𝛾 = 0.6  

Naïve RelBias 0.0041 -0.3918 -0.1725 -0.0007 0.2226 -0.5374 0.2215 
 RMSE 0.2323 0.8143 0.3698 0.1874 0.2965 0.5928 0.4155 
MCEM RelBias -0.0083 -0.0530 -0.0301 0.0107 0.1649 -0.4027 0.1116 
 RMSE 0.1756 0.2538 0.3527 0.1564 0.2438 0.4535 0.2726 
BA RelBias 0.0007 -0.0147 0.0117 0.0133 0.0000 -0.0158 0.0094 
 RMSE 0.1561 0.2272 0.3186 0.1542 0.1724 0.2302 0.2098 

 𝛾 = 0.9  

Naïve RelBias 0.0046 -0.3918 -0.1854 -0.0014 0.2223 -0.5383 0.2240 
 RMSE 0.2459 0.8151 0.3995 0.1876 0.2966 0.5943 0.4232 
MCEM RelBias -0.0083 -0.0530 -0.0201 0.0107 0.1649 -0.4027 0.1100 
 RMSE 0.1756 0.2538 0.3527 0.1564 0.2438 0.4535 0.2726 
BA RelBias 0.0005 -0.0149 0.0078 0.0132 0.0002 -0.0164 0.0088 
 RMSE 0.1562 0.2273 0.3184 0.1543 0.1725 0.2301 0.2098 

 
Table 3 and 4 show that for large sample, all measurement error variance and spatial 

dependence,the regression coefficient𝛽of the naïve estimate (NM) is attenuated toward zero or 

downward biases. Moreover, the MCEM and BA approach resulted in unbiased estimates. The 

other regression coefficient as well as coefficients returned for the perfectly-measured 

regressors𝜹 are also noticeably biased.  The average RelBias (in absolute value) of all 

regression coefficient of naïve estimates are larger than MCEM and BA.  We observed the 

following rankings: NM > MCEM > BA.  The average RMSEof 𝛽 and the other regression 

coefficient sequentially is as follows: BA < MCEM < NM.  Note also that for 𝜎𝑈
2 = 0.25, the 

average RMSE of 𝛽 is as follows : BA = MCEM < NM. Moreover, for 𝜎𝑈
2 = 0.75 and spatial 

dependence 𝛾 = 0.6the MCEM method resulted in downward bias and the RMSEis the same 

as NM method. 

Figures 1 and 2 show that the average RelBias(in absolute value) and the average 

RMSEfor all sample sizes, measurement error variance and spatial dependence and the 

regression coefficient𝛽 and the other regression coefficient averageof the naïve method (NM) 
are larger than for BA and MCEM methods.  Moreover, the average RelBias(in absolute 

value) and the average RMSEof the BA approach is smaller than MCEM method. 

Based on the above results, we find that Bayesian approach (BA) and MCEM method are 

more accurate and efficient than naïve method.  Moreover, BA approach more accurate and 

efficient than MCEM method.   

 



 

 

 

 

Table 2.RelBias and RMSE of Regression Coefficients for Spatial Measurement ErrorModels with 

Design Methods for sample size N=49 and measurement error variance 𝜎𝑈
2 = 0.75. 

 
Method 𝛾 = 0.3  

 𝛼 𝛽 𝛾 𝛿1 𝛿2 𝛿3 Average 

Naïve RelBias 0.0158 -0.6468 -0.3993 -0.0155 0.3796 -0.9322 0.3982 
 RMSE 0.2660 1.3117 0.3339 0.2234 0.4332 0.9641 0.5887 
MCEM RelBias 0.0120 -0.0638 0.0253 -0.0114 0.3370 -0.8616 0.2185 
 RMSE 0.2007 0.2941 0.4177 0.1919 0.3859 0.8841 0.3957 
BA RelBias 0.0167 -0.0180 0.0596 -0.0060 0.0009 -0.0403 0.0236 

 RMSE 0.1637 0.2084 0.3079 0.1531 0.1491 0.1811 0.1939 
 𝛾 = 0.6  

Naïve RelBias 0.0002 -0.6558 -0.4060 -0.0067 0.3788 -0.9059 0.3922 
 RMSE 0.2768 1.3270 0.4047 0.2167 0.4408 0.9441 0.6017 
MCEM RelBias -0.0153 -0.0532 -0.0865 0.0094 0.3623 -0.8653 0.2320 
 RMSE 0.2214 0.3216 0.4386 0.1890 0.4188 0.8918 0.4135 
BA RelBias 0.0004 -0.0143 0.0128 0.0145 -0.0002 -0.0160 0.0097 
 RMSE 0.1559 0.2272 0.3184 0.1546 0.1724 0.2307 0.2099 
 𝛾 = 0.9  

Naïve RelBias 0.0044 -0.6464 -0.4601 -0.0211 0.3871 -0.8887 0.4013 
 RMSE 0.2472 1.3060 0.5211 0.2373 0.4501 0.9202 0.6137 

MCEM RelBias 0.0198 -0.0457 -0.0474 -0.0372 0.3750 -0.8490 0.2290 
 RMSE 0.1922 0.3759 0.3821 0.2038 0.4285 0.8727 0.4092 
BA RelBias 0.0168 -0.0191 -0.0126 -0.0080 0.0226 -0.0184 0.0163 
 RMSE 0.1466 0.2347 0.2836 0.1642 0.1851 0.2125 0.2045 

 
Table 3.RelBias and RMSE of Regression Coefficients for Spatial Measurement ErrorModels with 

Design Methods for sample size N=400 and measurement error variance 𝜎𝑈
2 = 0.25. 

 
Method 𝛾 = 0.3  

 𝛼 𝛽 𝛾 𝛿1 𝛿2 𝛿3 Average 

Naïve RelBias 0.0074 -0.3735 -0.2178 0.0013 0.2179 -0.5179 0.2226 
 RMSE 0.0708 0.7505 0.1282 0.0670 0.2277 0.5245 0.2948 

MCEM RelBias 0.0019 0.0008 -0.0142 -0.0020 0.1377 -0.3323 0.0815 
 RMSE 0.0538 0.0662 0.1113 0.0542 0.1480 0.3385 0.1287 
BA RelBias -0.0007 0.0004 -0.0037 -0.0018 -0.0044 -0.0012 0.0020 
 RMSE 0.0522 0.0687 0.1053 0.0508 0.0554 0.0696 0.0670 
 𝛾 = 0.6  

Naïve RelBias 0.0057 -0.3737 -0.1601 0.0025 0.2234 -0.5218 0.2145 
 RMSE 0.0752 0.7519 0.1473 0.0682 0.2331 0.5282 0.3007 
MCEM RelBias 0.0100 0.0030 0.0188 0.0009 0.1413 -0.3332 0.0845 
 RMSE 0.0578 0.0855 0.1038 0.0547 0.1515 0.3399 0.1322 
BA RelBias 0.0097 0.0002 0.0149 0.0009 -0.0019 -0.0027 0.0051 

 RMSE 0.0543 0.0858 0.0954 0.0491 0.0576 0.0753 0.0696 
 𝛾 = 0.9  

Naïve RelBias -0.0062 -0.3700 -0.1811 0.0026 0.2249 -0.5163 0.2169 
 RMSE 0.0811 0.7443 0.1908 0.0636 0.2350 0.5223 0.3062 
MCEM RelBias 0.0003 0.0008 0.0030 0.0022 0.1415 -0.3299 0.0796 
 RMSE 0.0560 0.0771 0.0880 0.0530 0.1507 0.3353 0.1267 
BA RelBias 0.0010 0.0036 0.0033 0.0025 -0.0030 0.0051 0.0031 
 RMSE 0.0526 0.0792 0.0812 0.0493 0.0520 0.0726 0.0645 



 

 

 

 

Table 4.RelBias and RMSE of Regression Coefficients for Spatial Measurement ErrorModels with 

Design Methods for sample size N=400 and measurement error variance 𝜎𝑈
2 = 0.75. 

 
Method 𝛾 = 0.3  

 𝛼 𝛽 𝛾 𝛿1 𝛿2 𝛿3 Average 

Naïve RelBias -0.0076 -0.6463 -0.4142 0.0066 0.3858 -0.9050 0.3943 
 RMSE 0.0836 1.2943 0.1663 0.0703 0.3925 0.9093 0.4861 
MCEM RelBias -0.0131 -0.0140 0.0860 0.0027 0.3427 -0.8047 0.2105 
 RMSE 0.0647 0.0963 0.1425 0.0611 0.3481 0.8080 0.2535 
BA RelBias -0.0124 -0.0066 0.0364 0.0009 0.0036 -0.0078 0.0113 

 RMSE 0.0492 0.0834 0.1044 0.0523 0.0546 0.0833 0.0712 
 𝛾 = 0.6  

Naïve RelBias -0.0068 -0.6396 -0.4108 0.0110 0.3866 -0.8929 0.3913 
 RMSE 0.0859 1.2812 0.2655 0.0754 0.3933 0.8971 0.4997 
MCEM RelBias -0.0006 -0.0095 -0.0040 0.0034 0.3477 -0.8031 0.1947 
 RMSE 0.0708 0.0992 0.1189 0.0685 0.3532 0.8058 0.2527 
BA RelBias 0.0044 0.0043 -0.0091 0.0020 -0.0051 0.0035 0.0047 
 RMSE 0.0547 0.0862 0.0892 0.0508 0.0550 0.0798 0.0693 
 𝛾 = 0.9  

Naïve RelBias -0.0027 -0.6415 -0.4161 -0.0048 0.3705 -0.9113 0.3912 
 RMSE 0.1005 1.2849 0.3899 0.0769 0.3793 0.9168 0.5247 

MCEM RelBias 0.0018 -0.0141 -0.0046 -0.0017 0.3357 -0.8198 0.1963 
 RMSE 0.0725 0.1133 0.1229 0.0676 0.3417 0.8227 0.2568 
BA RelBias 0.0034 0.0006 -0.0069 0.0011 -0.0057 -0.0061 0.0040 
 RMSE 0.0523 0.0826 0.0841 0.0574 0.0552 0.0715 0.0672 

 

 

 
 

Fig. 2.RelBias and RMSE of Regression Coefficients β for the Methods 

 



 

 

 

 

 

 

Fig. 3.RelBias and RMSE of Regression Coefficients Average for the Methods 

 

5   Conclusion 

This paper analyze and compare by way of Monte Carlo simulation two bias correction 

methods of spatial regression models with a spatially lagged covariate measured with error, 
i.e., Monte Carlo Expectation-Maximization (MCEM) and the Bayesian approach (BA). We 

consider the spatial lag model (SLX) with different degrees of spatial correlation in the 

covariate of interest,different  measurement error variances and different sample sizes.  The 

simulation result show that Bayesian approach (BA) and MCEM method are more accurate 

and efficient than naïve method.  Moreover, BA approach more accurate and efficient than 

MCEM method.  
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