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Abstract.Small area estimation (SAE) techniques are now widely employed to produce 
parameter estimates for smaller domains where sample sizes cannot be used to deliver 

direct estimation. SAE as an indirect estimation method utilizes strength from other 
related small areas to improve the precision. In the 'Big data' era, database size and 
technology has developed rapidly. This leads to computational and statistical challenges 
since the availability of high data volume. Thus, the existing SAE methods can not 
longer handle the complexity of fixed effects or random effects in this data. The big data 
also provide large number areas as observation where not all them are small areas. This 
sparsity of random effects also brings out violation to its normal assumptions. Therefore, 
identifying the effective random effects is very important to ease the computational 

burden and to construct more interpretable models. This study presents a small area 
estimation method that is able to overcome the complexity of random effects with hard-
ridge penalty. In this paper, simulations are delivered to demonstrate the performance of 
the methods and applied to estimate sub-district level mean of per capita income using 
the poverty survey data in Bangka Belitung Province at 2017. 
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1   Introduction 

Survey is an effective tool to collect information of a certain population in a region or a 

country. The results are population characteristics estimates and used by the government to 

construct indicators for evaluating the development, making decisions or allocating funds. 

Sample size is an issue in survey estimation reliability, moreover if some of it needed to 
present by its subdomains. Thus, small area estimation can been used to overcome this 

problem by obtaining reliable indirect estimates. Small area refers to a small group or 

geographical area which is only a few samples is available from a given small area. In order to 

increase the estimate precision, it needs relevant auxiliary information such as data from other 

related small areas.  

The Fay-Herriot model and the Nested Error Regression Model (NERM) are the typical 

models used for the small area estimation. Regarding the situation in which auxiliary 

information are available, NERM is the unit-level models entails information at the area and 

individual level. The area level-model known as Fay-Herriot model is more applicable in 

small area estimation since it does not require the confidential information of the observations 
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[1]. Then, the model represents the corresponding area-level auxiliary variables 𝑿𝑖 to the direct 

survey estimator of the ith small area 𝒚𝑖can be written as: 

𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖 ,        𝜃𝑖 = 𝑿𝑖
𝑇𝜷 + 𝑢𝑖 , 𝑖 = 1,… ,𝑚      (1) 

 

where m is the number of small areas, 𝜷 is a p × 1 unknown common vector of regression 

coefficients, and 𝜃𝑖 is a summary measure of the characteristic to be estimated for the ith small 

area. The sampling error 𝑒𝑖~𝑁 0,𝜎𝑒𝑖
2  and random effects 𝑢𝑖~𝑁 0, 𝜎𝑢

2  are assumed to be 

independent. The random effects u_i  denote the model error measuring the departure of 𝜃𝑖 

from its linear regression on 𝑿𝑖 ,𝑿𝑖
𝑇𝜷. It also called specific small area effects since it present 

area-specific variations that cannot be explained by the auxiliary variables in the model. Thus, 

the good small area models have strong covariates that relate with 𝜃𝑖and expected that random 

area effects 𝑢𝑖are small. Regarding the sample size in survey areas, the random eff ects term 

may be negligible in the SAE model moreover if areas are similarly large. Moreover, a test for 
the presence of the random eff ects issuggested in the general linear model [2]. If the null 

hypothesis of no small-area eff ect is failed to reject, the random eff ects term is eliminated 

completely from the model. However, eradicating the random eff ects from the model may not 

be the best choice in terms of prediction accuracy. 

Recently, the big data leads to confronting the high volume of public records in small area 

estimation. It also increases the sizes of databases tremendously and brings unexpected 

computational and statistical challenges. Large scale data such as one „modern data‟ type has 

large observations or small areas. The existing SAE methods are not appropriate for modern 

data because they cannot handle the complexity of random eff ects. The number of small areas 

in fact is relatively small compared to the sample size n. The rate of convergence of the 

estimator is depend on the number of small areas. The rate of convergence of the estimator is 

faster when the number of small areas is smaller [2,3]. In other words, the speed of 
convergence in the SAE model is associated with the complexity of random eff ects. 

Therefore, reliable estimates can be obtained with selection the true small areas (true nonzero 

random eff ects) efficiently. Sparsity on 𝑢𝑖  can be imposed by assigning zero for a large area i, 

whereas it preserve the nonzero value of 𝑢𝑖  for a small area i. This sparsity of random eff ects 

brings heavy tails. As a result, the normality assumption of random eff ects is not retained any 

longer. 

Therefore, this paper review the Small Area Estimation with Random Effects Selection 

(SARS) model in order to emphasized the selection methods under assumption the random 

effects sparsity which has been proposed by Lee [4] and apply the model to estimate sub-district 

level mean of per capita income using the poverty survey data in Bangka Belitung Province at 2017. 
This paper is organized into four sections. The first section presents the background, 

motivation and purpose of this research. Second section describes the material that is used in 
this study and the third section describes the Small Area Estimation with Random Effects 

selection Model. The empirical results obtained in the application and the main findings of the 

analysis and discusses the further possible researches are presented in section 4. 

2   Methods 

Consider estimator of the ith small area 𝒚𝑖can be written as: 

 

𝒚 = 𝑿𝜷 + 𝒖 + 𝒆 ,         (2) 



 

 

 

 

 

where 𝒚 ∈ ℝ𝒎, 𝑿 =  𝑿1 , 𝑿2 ,… ,𝑿𝑚  𝑇is 𝑚 × 𝑝 explanatory variables, 𝜷 ∈ ℝ𝒑is a 𝑝 × 1 

unknown vector of the regression coefficients, 𝒖 ∈ ℝ𝒎and 𝒆 ∈ ℝ𝒎  are vector of the random 
eff ects and vector of the random errors, respectively. Refers to linear mixed model, The Fay-

Herriot model is a kind of specific models of LMM or two-level hierarchical model which can 

be written as: 

 
 𝒚 𝒖~𝑵 𝑿𝜷 + 𝒖, 𝝈𝒖

𝟐 .       (3) 
 

Fay-Herriot model assumes that its random effects are normally distributed, but in can be 

violated such in case the point-mass at zero for large areas.  As Fay-Herriot model in (1) 

where 𝜷as fixed parameters and let U be a set of small areas, then 𝑢𝑖~𝑁 0,𝜎𝑢
2 for 𝑖 ∈ 𝑼 and 

𝑢𝑖 = 0 for 𝑖. 
In small area estimation, the method of estimating parameters are decided by 𝝈𝑢

2 and 𝜷 

assumption. Assuming 𝝈𝑢
2 and 𝜷 are known, the best predictor (BP) or best linear unbiased 

predictor (BLUP) is derived by 𝐸  𝒖 𝒚 = 𝝏 𝒚 − 𝑿𝜷 and 𝐸  𝜽 𝒚 =  𝑰 − 𝝏 𝑿𝒚 + 𝝏𝒚where 

𝑽 = 𝒅𝒊𝒂𝒈 𝜎𝑢
2 + 𝜎𝑒𝑖

2  and 𝝏 = 𝑽−𝟏𝝈𝑢
2 . Assuming 𝝈𝑢

2 = 𝜎𝑢
2𝑰𝑛is known, the estimates of 𝜷is 

𝜷 𝟏 =  𝑿𝑇𝑽−1𝑿 −1𝑿𝑇𝑽−1𝒚. The EBLUP of 𝜽 is estimated by replacing 𝜷 with its maximum 

likelihood estimator (MLE) and substituting 𝝈𝑢
2 with its estimate by MLE, restricted maximum 

likelihood estimator (REML) using mean squared prediction error (MSPE) or mean squared 

error (MSE) approximation. 

The best empirical estimator 𝜽 does not depend on the model but on the weighting factor 

𝝏[5]. Whereas in estimating the best empirical linear parameter, the weighting factor  𝝏 

depends on the random effects variant 𝝈𝑢
2 and 𝜎𝑒𝑖

2 . So, it needs to be identified correctly to 

bring out the accurate estimation for the fixed effect of 𝜷 and direct estimation 𝜽. Somehow in 

the modern condition such as large-scale data, the normality assumptions in random effects u 

can be violated. So, estimators of the random effects variant through ML or REML are no 

longer appropriate. 

If it is assumed that U is a small set of areas with 𝑢𝑖~𝑁 0,𝜎𝑢
2   for 𝑖 ∈ 𝑈and 𝑢𝑖 = 0 for 

𝑖 ∈ 𝑈𝐶 and 𝝈𝑢
2 and 𝜎𝑒𝑖

2  are unknown,)Lee [4] developed a model Small Area Estimation with 
Random Effects Selection (SARS). Since sparsity in vector u is interpreted as the complexity 

of random effects, thus this model employ penalized regression in optimizing the function of 

the least squares difference for estimating the Fay-Herriot parameter. SARS model as a 

selective shrinkage estimator employs the penalized regression using the hard-ridge penalty. 

The SARS model uses multiple penalties for a fixed effects as well as for its random effects. 

With the multiple penalties the reference is a combination of penalties ℓ0 and ℓ2 which are 

referred to as Hard-Ridge Penalty [6]. In the SAE model, assuming that the random effects u 
are sparse, the hard-ridge penalty for select the random effects is stated as: 

 

𝑃02 𝒖; 𝜆𝑢 ,𝜂𝑢  =
𝜂𝑢

2
 𝑢 2 +

𝜆2
𝑢

2 1+𝜂𝑢  
 𝑢 0 =   

𝜂𝑢

2
𝑢𝑖

2 +
𝜆2

𝑢

2 1+𝜂𝑢  
1𝑢𝑖≠0

 𝑛
𝑖=1   (4) 

 

where 𝜆𝑢  is tuning parameter for hard penalty in order to optimized SARS prediction 

information criteria (𝜆𝑢 ≥ 0) and 𝜂𝑢  tuning parameter for ridge penalty in order to select the 
random effects. So the objective functions in the small area estimation model with the random 

effects selection is: 

 



 

 

 

 

min𝒖𝜖ℝ𝐽  𝒖 𝑓 𝒖;𝛽, 𝜆𝑢 ,𝜂𝑢  ≜
1

2
 𝑦 − 𝑍𝛽 − 𝑢 2 + 𝑃02 𝒖; 𝜆𝑢 ,𝜂𝑢  .   (5) 

Under assumption the sparsity of u, SARS prediction information criterion (PIC) is used 

as criteria to achieve the optimal prediction tuning parameter threshold in u. SARS 

optimization problem is challenging due to the non-convex and non-smooth feature of the 

hard-ridge penalty. Then, an iterative technique can be employed to solve SARS problem. Lee 

[4] proposed an iterative selection-estimation (SE) algorithm to resolve the issue of multiple 

tuning parameters. The selection step is to screen small areas and significant coefficients by 

repeatedly applying quantile thresholds and the estimation step is associated with a ridge 

regression for estimating u with the support sets the true non-zero small area effects obtained 

from the selection step 

To evaluate the performance of parameter estimators in the SAE model, the means 

absolute error (MAE) and median absolute error are employed in order to measuring the 
relative predictive accuracy of the SAE model with the formulation as follows: 

 

𝑀𝐴𝐸 𝜃 𝑖 = 𝑚−1   𝜃𝑖 − 𝜃 𝑖 
𝑚
𝑖=1        (6) 

 

𝑀𝑒𝑑.𝐴𝐸 𝜃 𝑖 = 𝑚−1   𝜃𝑖 − 𝜃 𝑖 
𝑚
𝑖=1        (7) 

The more accurate prediction is achieved whenever the measurement above is smaller 

than the estimated model. 

3   Materials 

This paper illustrates the general results from simulation in order to verify parameter 

estimation performance of SARS model. The customized data are set with some different 

random effects variance components, sparsity levels and correlation between auxiliary. The 

random effects variance components in the simulation are set to be 0.3 and 1 since those value 

represent small and big value of correlation between model error. Simulation is used to 

emphasize that the model can be applied eventhough vector uis sparse. Thus, it set the 

percentages of small area number are 10% and 50% to all analysis areas. The simulation in 
this study is also used to provide empirical evidence that model is a model that has considered 

the condition of the relationship between explanatory variables. For this reason, in this 

simulation the relationship between explanatory variables is also setup with values of 0, 0.5 

and 0.8, each of which represents the condition of the uncorrelated, moderately correlated and 

highly correlated data, respectively. 

This model also applied to Indonesian poverty data; it is used to estimate the mean of per 

capita income of each sub-district in Bangka Belitung Province at 2017. Since, one of 

substantial poverty indicator is regional mean of per capita income. In this paper, mean of per 

capita income is estimated from some auxiliary variables such as infrastructure, electricity and 

regional accessibility. 

4   Results 

Some simulated data are conducted with different random effects variance components, 

sparsity levels and correlation between auxiliary variables in order to emphasize the 



 

 

 

 

performance of SARS estimator. In the simulation, the sampling variance is set to be 1 and 

model error variance is 𝜎𝑢
2 =   0.3,1 .  Under the large-scale data condition, it set the number 

of small areas is 60 with the number of true nonzero small areas are 10% and 50%. The 

number of auxiliary variables is set to be 10 and the correlation between them are set up to be 
uncorrelated, 0.5 and 0.8.  

The Selection-Estimation algorithm is applied in this paper to attain the SARS model 

parameter estimation. Since the study focus on the sparsity of u, the simulation results are 

presented by the true nonzero proportion. 

Table 1.  MAE and Median Absolute Error of SARS model prediction value with 10% true non-zero 
random effects. 

𝜎𝑢
2 Correlation MAE Med. AE 

0.3 Uncorrelated 0.2574 15.4463 

0.3 0.5 0.2574 15.4463 

0.3 0.8 0.2574 15.4463 

1 Uncorrelated 0.1154 6.9256 

1 0.5 0.1754 10.5246 

1 0.8 0.1776 10.6579 

 

Table 1 and Table 2 present that the SARS model prediction values precision are not 

significantly different by the correlation between auxiliary variables but those differ slightly 

by the variance component. 

Table 2.MAE and Median Absolute Error of SARS model prediction with 50% true non-zero 
random effects. 

𝜎𝑢
2 Correlation MAE Med. AE 

0.3 Uncorrelated 0.2160 12.9623 

0.3 0.5 0.2160 12.9623 

0.3 0.8 0.2160 12.9623 

1 Uncorrelated 0.1849 11.0934 

1 0.5 0.3380 20.2826 

1 0.8 0.3483 20.8980 

 
Thus, it gives strong evidence that estimating the regression coefficient and variable selection 

in linear mixed models is not only selecting fixed effects or random effects but also 

considering the random effects variance components. 

In this section, SARS model is applied to sub-district means per capita income in Bangka 

Belitung province at 2017. The data consist of 140 sub-districts and 6 auxiliary variables. The 

auxiliary variables are total population, household total in each sub-district that have access to 

electricity from Indonesia Electricity Company, distance of the sub-district center to the 

municipality office, distance of the sub-district center to harbor, distance of the sub-district 

center hospital and distance means of the household resident to elementary schools. Those 

variables have linear correlation coefficients between two paired variables are between 0.3 and 

0.7. Based on Figure 1, it can be presented the performance the SARS PIC as decision rule for 
finding the optimal tuning parameter that applied in real dataset. This model also have good 



 

 

 

 

performance since the means absolute error of the sub-district means per capita income in 

Bangka Belitung Province at 2017 is 0.5217 with number of small areas are 37 of 140 areas. 

 
Fig. 1. SARS Predictive Information Criterion  (PIC) Values against 𝜆𝑢 . 

  

5   Conclutions 

Summarizing the value of the regression coefficient and the selection of variables in the 

linear mixed model is not just a process of selecting a permanent or random effect but also 

taking into account the matrix components of the various random effects and error models. 

Meanwhile, SARS model employs hard penalty to select the small areas over all areas.  
as one of the component hard-ridge penalty that is discrete and non-convex. And, according to 

“Big data” era and the current challenges, thus it is necessary to develop SAE methods that not 

only select the random effects but also shrinkage the value of their coefficients at once in 

order to get the parsimony. 
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