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Abstract.Quantile regression can be used to analyze symmetric or asymmetric data. 
Estimates of quantile regression parameters are obtained by the simplex method. Another 
approach is the Bayesian method based on Laplace's asymmetric distribution using 
MCMC. MCMC is used numerically to estimate parameters from each posterior 
distribution. The Bayesian quantile regression and the quantile regression can be used for 
statistical downscaling in extreme rainfall cases. This study used statistical downscaling 

to obtain relationship between global-scale data and local-scale data. The data used were 
monthly rainfall data in Indramayu and GCM output data. LASSO regularization was 
used to overcome multicollinearity problems in GCM output data. The purpose of this 
study was to compare Bayesian quantile regression models with quantile regression. The 
Bayesian quantile regression and the quantile regression couldpredict extreme 
rainfallmore accurate and consistent in one year ahead. The Bayesian quantile regression 
model is relatively better than the quantile regression. 
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1   Introduction 

Simple linear regression is used to get a functional relationship between two or more 

variables and can predict the effect of explanatory variables on the response variable. In 

asymmetric data, simple linear regression is not valid because it is sensitive to outliers. 

Therefore, a quantile regression method is developed. Quantile regression can analyze a 

number of data in the form of asymmetric and non-homogenous data [5]. Quantile regression 

can measure the effects of explanatory variables not only at the center of the distribution of 

data but also at the top and bottom of the distribution tail. This is very useful if extreme values 
are an important problem [4]. 

Parameters of quantile regression can be determined by the simplex method on linear 

programming [3] and the Bayesian method that is known as Bayesian quantile regression. Yu 

and Moyeed[12] suggested that the Bayesian quantile regression estimation uses Markov 

Chain Monte Carlo (MCMC) method based on Laplace asymmetric distribution. Kozumi and 

Kobayashi [6] suggested that the Gibbs sampling method can estimate the parameters of the 

Bayesian quantile regression based on Laplace asymmetric distribution. 

Statistical downscaling (SD) is a technique that uses statistical methods to see the 

relationship between global scale data and local scale data. Global-scale data is represented by 

a global circulation model (GCM) data and local-scale data represented by rainfall data. GCM 
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output data has high dimensions that cause multicollinearity. This causes the estimated 

parameters of the model to be biased. This can be solved with the least absolute shrinkage and 
selection operator (LASSO). 

SD modeling with quantile regression has been widely studied. Djuraidah and Wigena [4] 

used quantile regression to explore rainfall in Indramayu. Mondiana [8] researched SD 

modeling with quantile regression using principal component analysis to reduce the 

dimensional of GCM. Santri [9]discussesd quantile regression modeling at SD using penalty 

LASSO. Zakarina [13] discussed SD modeling using guludquantil regression. Cahyani [2] 

researched SD modeling using Elestic-net quantile regression. 

Based on the explanation above, this study aims to develop SD modeling with Bayesian 

quantile regression with LASSO Penalty is used to solve multicollinearity in GCM and 

MCMC method to estimate extreme rainfall in Indramayu.  

2   Materials 

a. Describing rainfall data in Indramayu with descriptive statistical analysis 

b. The Bayesian quantile regression model [6] as follows: 

𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑝𝑣𝑖 + 𝑘 𝜍𝑣𝑖𝑢𝑖 . 

c. LASSO penalty is used at Q (0.75), Q (0.90), and Q (0.95) to get variables that are 

not multicollinearity with formulas 
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d. MCMC, Gibbs sampling, is used to get the parameter estimator. The Gibbs sampling 

algorithm [7] are as follows: 

1) Suppose the initiation value for 𝛽,𝑣𝑖 ,𝜍are 𝛽(0), 𝑣𝑖
(0)
,𝜍(0). 

2) For the first iteration, do 

a) Generate 𝛽(1), 𝛽(1)~𝜋 𝛽 𝑣𝑖
 0 
,𝜍 0 ,𝑦) 

b) Generate 𝑣𝑖
(1)
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(0)
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 0 ,𝜍 0 ,𝑦) 

c) Generate 𝜍(1), 𝜍(0)~𝜋(𝜍|𝛽 0 ,𝑣𝑖
 0 
,𝑦) 

3) Repeat steps 4.ii as many as 𝑚 iterations. 

4) Prepare examples that have a joint posterior distribution 𝜋 𝛽,𝑣𝑖 ,𝜍 𝑦) 
e. The model is evaluated based on the root means square error of prediction (RMSEP) 
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f. and correlation between actual rainfall and estimated rainfall 

𝑟𝑦𝑦 =
𝑛  𝑦𝑖𝑦 𝑖
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g. Validation and consistency of model. 

 



 

 

 

 

3   Materials 

The research data is secondary data from 1981 to 2009. Monthly rainfall data as the 

dependent variable is obtained from BMKG. Monthly rainfall data is the average rainfall from 

nine stations in Indramayu. GCM output data is monthly precipitation data of the Climate 

Forecast System Reanalysis (CFSR) with a grid size of 2.50 × 2.50 from a domain 4 × 8 grid. 
The GCM output data as independent variable. The GCM output data are obtained from the 

National Centers for Environmental Prediction (https://rda.ucar.edu). 

4   Result and Discussion 

4.1   Data Description 

4.1.1   Rainfall in Indramayu 

The Descriptive statistical analysis of monthly rainfall data is done as initial information 

to determine the characteristics and patterns of rainfall, which are used for the next analysis. 

Table 1 presents information about monthly rainfall data in Indramayu. The rainy season has 

an average intensity of monthly rainfall greater than 150mm/month and the dry season has an 

average intensity of monthly rainfall of less than 150mm/month [10]. Based on Table 1, the 

rainy season occurs in December-January and the dry season occurs in March-November. 

Extreme rainfall occurs if the intensity of monthly rainfall is more than 400mm/month 
[1]. Extreme rainfall occurs in January and February because it has a monthly rainfall intensity 

greater than 400mm/month. The highest standard deviation occurs in February, which is 

123.44 mm/month. The highest standard deviation value indicates that rainfall in February are 

most diverse from the other month. The value of the skew coefficient for each month is greater 

than zero. This shows that the distribution of observation data are skewed to the right. 

 
Table 1. Description of Indramayu rainfall data in 1981-2009 

 

  Mean 
Standard 
Deviation 

Maximum Minimum 
coefficient 
of skewness 

Jan 283.73 121.59 530.67 83.78 0.20 

Feb 225.52 123.44 509.00 76.67 0.90 

Mar 159.23 61.85 303.89 65.00 0.97 

Apr 134.33 49.40 213.78 33.11 -0.52 

May 73.74 46.74 188.22 0.00 0.72 

Jun 54.44 36.05 118.11 0.00 0.34 

Jul 26.63 31.72 136.00 0.00 1.80 

Aug 11.86 16.75 59.78 0.00 1.58 

Sep 20.79 32.06 134.78 0.00 2.26 

Oct 70.66 67.30 241.78 0.00 0.74 

Nov 142.13 82.04 302.89 12.56 0.39 

Dec 175.84 70.25 397.22 48.67 1.34 

 

4.1.2   GCM Output Data 

https://rda.ucar.edu/


 

 

 

 

The GCM output data are a high dimension so it need to be checked formulticollinearity 

based on the method of variance inflation factors (VIF). Based on Table 2, there are grids have 
VIF > 10. This shows that in GCM output data have multicollinearity problem. 

 
Table 2. Value of VIF 

 

Variable VIF Variable VIF Variable VIF Variable VIF 

X1 3.46 X9 3.78 X17 5.20 X25 4.33 

X2 4.42 X10 4.29 X18 8.12 X26 7.17 

X3 4.48 X11 5.27 X19 7.72 X27 8.54 

X4 4.89 X12 7.87 X20 9.39 X28 7.27 

X5 4.53 X13 12.65 X21 9.86 X29 7.98 

X6 3.37 X14 12.21 X22 7.45 X30 14.36 

X7 3.03 X15 7.99 X23 13.21 X31 16.81 

X8 4.02 X16 5.05 X24 12.04 X32 10.51 

 

 

4.2Bayesian Quantile Modeling 

 

The The domain of GCM output data used as predictor in Bayesian quantile regression 

model are 4×8 grids or 32 predictor. Furthermore, the LASSO Penalty is used to solve 
multicollinearity in Q(0.75), Q(0.90), and Q(0.95). After obtaining variables that are not 

multicollinearity, the MCMC method is used to obtain parameter estimators. In the next stage, 

the variables of the Bayesian quantile regression model in each quantile are used for quantile 

regression modeling. In the next step, variables of the Bayesian quantile regression model in 

each quantile are used for quantile regression modeling.  

The Bayesian quantile regression model will be compared to the quantile regression 

model to determine the best model. The best model is based on the smallest RMSE value and 

the highest correlation. Based on Figure 1, the lowest RMSE value is in Bayesian quantile 

regression. There is no difference in the correlation value between Bayesian quantile 

regression with quantile regression. Therefore, the Bayesian quantile regression model is 

better than quantile regression. 

 

  
(a) RMSE (b) Correlation 

Fig 1. Value of RMSE and correlation  

 

 



 

 

 

 

TheFigure 2 shows the RMSEP value and the correlation value of each model. The 

Bayesian quantile regression model has the lowest RMSEP value. There is no difference in the 
correlation value of each model. The Bayesian quantile regression model is better than 

quantile regression for prediction. 

 

  
(a) RMSEP (b) Correlation 

Fig 2. Value of RMSEP and correlation  

 

Figure 3 shows the value of rainfall predictions and actual rainfall data. Extreme rainfall 

in January and February are by the Bayesian quantile regression model. Extreme rainfall in 

January can be predicted by model Q(0.90). Extreme rainfall in February can be predicted by 
the model Q(0.95). 

 

 

Fig 3. Plot of actual data and rainfall prediction using Bayesian quantile regression model 

Figure 4 shows the value of rainfall predictions and actual rainfall data. Extreme rainfall 

in February is by the quantile regression model. Extreme rainfall in February can be predicted 

by model Q(0.90). 

 



 

 

 

 

 

Fig 4. Plot of actual data and rainfall prediction using quantile regression model 

 

4.3   Validation and Consistency of Model 

 

Validation is a step to see the accuracy of model predictions. Table 3 shows that the 

Bayesian quantile regression model and quantile regression models are better used to predict 

extreme rainfall for the next 1 year. This is because the model has the largest correlation value 

and the lowest RMSEP value. 

 

Table 3. Value of RMSEP and correlation of each model 
 

Data 

Training 

Data 

Testing 
Quantile 

Bayesian Quantile 

Regression 
Quantile Regression 

RMSEP Correlation RMSEP Correlation 

1981-

2008 
2009 

0.75 42.78 0.96 45.22 0.95 
0.90 39.18 0.97 70.63 0.97 
0.95 31.88 0.98 83.56 0.98 

1981-
2007 

2008-
2009 

0.75 55.63 0.94 59.80 0.92 
0.90 66.90 0.93 68.58 0.93 

0.95 56.54 0.94 77.05 0.93 

1981-
2006 

2007-
2009 

0.75 60.69 0.94 60.34 0.91 
0.90 70.08 0.89 83.02 0.89 
0.95 57.22 0.93 79.77 0.94 

1981-
2005 

2006-
2009 

 

0.75 77.48 0.88 68.89 0.87 
0.90 65.34 0.88 86.83 0.88 
0.95 88.87 0.83 103.27 0.88 

 

The consistency of the model can be seen from the results of the estimation at different 

times. The model will give the best results if the relationship between the independent variable 
and the dependent variable does not change with time changes. The consistency of the model 

is measured based on the standard deviation value of the correlation value in each estimation 



 

 

 

 

year. The smaller the standard deviation, the more consistent the model is [11]. Based on 

Table 4, the standard deviation of the correlation values by the Bayesian quantile regression 
model and the quantile regression model for each quantile has a very small value. Standard 

deviation value in Bayesian quantile regression are 0.06 in Q(075), 0.03 in Q(0.90), and 0.04 

in Q(0.95). Standard deviation value in quantile regression are 0.08 in Q(075), 0.05 in 

Q(0.90), and 0.05 in Q(0.95). Therefore, the Bayesian quantile regression model and the 

quantile regression model are consistent in predicting extreme rainfall for the next 1 year. 

 

Table 4. Value of correlation each model 

 

Training 
Data 

Testing 
Data 

Quantile 

Correlation 

Bayesian 
Quantile 

Regression 

Quantile 
Regression 

1981-2008 2009 
0.75 0.96 0.95 
0.90 0.97 0.97 
0.95 0.98 0.98 

1981-2007 2008 
0.75 0.93 0.91 
0.90 0.91 0.91 
0.95 0.92 0.90 

1981-2006 2007 

0.75 0.92 0.94 

0.90 0.90 0.92 
0.95 0.88 0.90 

1981-2005 2006 

0.75 0.82 0.78 

0.90 0.89 0.84 

0.95 0.90 0.86 

 

5   Conclusion 

The Bayesian quantile regression model and quantile regression model can predict rainfall 

in one year ahead.The Bayesian quantile regression model is relatively better than the quantile 

regression model. 
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