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Abstract.Spatial dependence and spatial heteroskedasticity are problems in spatial 

regression. Spatial autoregressive regression (SAR) concerns only to the dependence on 
lag. The estimation of SAR parameters containingheteroskedasticityusing the maximum 
likelihood estimation (MLE) method provides biased and inconsistent. The alternative 
method is the generalized method of moments (GMM). GMM uses a combination of 
linear and quadratic moment functions simultaneously so that the computation is easier 
than MLE. The bias is used to evaluate the GMM in estimating parameters of SAR 
model with heteroskedasticity disturbances in simulation data. The results show that 

GMM provides the bias of parameter estimates relatively consistent and smaller 
compared to the MLE method. 

Keywords: Heteroskedasticity, spatial autoregressive, maximum likelihood, generalized 
moment method. 

1 Introduction 

 Spatial dependence and spatial heteroskedasticity are problems inspatial data [1]. Lesage 

[2] stated that spatial dependence can be described in regression models, such as 

autoregressive response, error, or both. Models with dependencies in response are called 

spatial autoregressive models (SAR).Fotheringham[3] stated that spatial heteroskedasticity can 

be described using  geographically weighted regression (GWR). 

 Ord [4] considered the maximum likelihood (ML) for the estimation of the regression 

model. Kelejian and Prucha [5]extended that the MLE estimator is inconsistent in 

heteroskedasticity disturbances. Anselin[1] introduced the two-stage least squares (S2SLS) 
method. Kelejian and Prucha [6] introduced the generalized method of moments (GMM). 

GMM does not require a distribution assumption of the disturbance andcomputationally easier 

than the ML methods [7]. 

 The results of Kelejian and Prucha’s research [5] showed that the estimation method is 

valid if the assumption of errors is stochastic and identical normal. However, 

heteroscedasticitycan occur in aggregation data. In this case,heteroskedasticity originates from 

a data averaging process with many different observations at the time of aggregation [6].  

Kelejian and Prucha [7]developed the GMM method into a robust form that has been proven 

to be consistent if there is heteroskedasticity. Combination of linear and quadratic in moment 

functionsare simultaneously assumed by GMM. 

 

ICSA 2019, August 02-03, Bogor, Indonesia
Copyright © 2020 EAI
DOI 10.4108/eai.2-8-2019.2290489



 

 

 

 

 This study evaluated the MLE and GMM methods for the solution in heteroscedasticity 

disturbances in the SAR model. In the simulation data, the bias value is used for the 
evaluation. 

2Materials and Methods 

2.1 SAR Model with GMM Approach  

 SAR model specification is considered y = ρW y+Xβ+εwhereε ~N(0, σ2I), yis the n×1 

vector of  a dependent variable, Xis the n×k matrix predictor, βis the k×1 vector of regression 

coefficient parameter, Wis the n×n spatial weight matrix, εis the n×1 vector of disturbances 

(or innovations), and ρ is the spatial autoregressive parameter[1]. Kelejian and Prucha [7] 

motivated to control spatial autocorrelations in the model and then reduced the form of the 

modelas follows: 

 y = ρWy+Xβ+ε  

 I - ρW  y =Xβ+ε  

 Sy = Xβ +ε 

 y =S
-1

Xβ +S
-1

ε 

S= I - ρW is the n × n matrix and X is the nxk matrix a non-stochastic of the independent 

variable, Wis the nxn matrix a weighting dimension with the main diagonal of zero, and ε is 

vector ε with dimension nx1. Let's W*is the n × n matrix a weighting such that: 

W*y = W*S
-1

Xβ +W*S
-1

ε 

 = GXβ +Gε (1) 

Liu et al. [8] states W*yis called the spatial distance of the dependent variable and is a non-

stochastic function (GXβ)  and stochastic (Gε), with W*y is correlated with ε or can be stated 

as follows: E[ Gε 'ε]= E[(W* I - ρW 
-1

ε )'ε ]=σ2tr W* I - ρW 
-1
 ≠0, so that this condition 

fulfils heteroscedastic conditions. GMM estimates parameters in this heteroscedastic condition 

by weighting the combination of linear and quadratic moment functions. Non-stochastic and 

stochastic functions are used in shaping the moment function for the GMM estimator, with 

θ=(ρ, β)′ with the true parameter value is θ0=(ρ
0
,β

0
)′. Liu and Lee [9] define for Q is a matrix 

constructed from functions W* and X. Based on equation (1), G= W*S
-1

then Q= GXβ, X is 

the non-stochastic part that forms the moment function of the populationQ'ε. Let P be the size 

matrix n×n with tr(P)=tr G-Diag G  =0, so we get the population moment function in the 

form of ε' Pjεis obtained from the orthogonal form of the moment function as follows: 

 E Q'ε   =Q'E ε =0 k+1 ×1 (2) 

  E(ε' Pjε) =E  tr ε'Pjε  =E  tr Pjε ε'   

  =tr PjE ε ε'  =tr  PjΣ =0 (3) 

where Σ=diag (σ1
2,….,σn

2)is a variation of the matrixn×n. Because ofE Q'ε  =0 and 

E(ε' Pjε) =0, meaning that there is no longer a correlation between Pj and ε.The moment 

function based on Qis linear and based on Pj is quadratic in ε with j = 1,2, ..., n. The choice of 

the Pjquadratic moment matrix is asymptotically efficient as a GMM estimator [11]. The 

moment parameter function of the spatial model together with GMM is a combination of the 

linear and quadratic moment functions as follows: 



 

 

 

 

  g
n
 θ  =  

Q'ε θ 

ε θ 'Pjε θ 
 = 

ε θ ′  G-Diag G  ε θ 

 GXβ,X 'ε θ 
  (4) 

Where ε  θ =S y-Xβ.Suppose that 𝛀 is a matrix of moment functions. 𝛀 consist of variance 

and covariance that are linear and quadratic[1] in ε. 

 Ω=E[g
n
 θ0 gn

′ θ0 ]= 
tr  𝚺𝐏∗ 𝐏∗′ 𝚺 + 𝚺𝐏∗  01×(k+1)

01×(k+1) 𝐐′𝚺𝐐
  (5) 

[2] 𝚺= diag (σ1
2,….,σn

2) and 𝐏∗ = ( G-Diag G ), the parameters of the spatial model are 

simultaneously suspected by a combination of linear and quadratic in moment functions by 

GMM approach.  GMM robust estimator specification is considered: 

 θ =  
ρ 

β 
 =argmin

θ∈θ
g

n
′ θ Ω 

-1
g

n
 θ  (6) 

where 𝛀  is a consistent estimator for Ω. 
 

 

2. 2 Data 

 Simulation data was used in this study. Simulation is conducted with 1000 replications 

with the number of observations n=30, n=90 and n=900. Simulation data will be considered as 

the following scenario: 

1. The SAR model is specification considered y
i
 = ρWy+Xiβ+φ

i
. 

2. There are two independent variables without an intercept, Xi= X1i, X2i  where 

i = 1,2,… , n and β=(β
1
, β

2
)' and coefficient β=(1, 2)'. 

3. X1 dan X2 are the n × 1vector and generated from normal distribution N 0,1 . 
4. ρ is the autoregressive coefficient in the SAR model. The coefficientρthat use for 

simulation are  -0.8, -0.5, -0.2, 0,0.2, 0.5, 0.8 . 
5. There are two matrices of spatial weights to be used. 

a) Circular World (CW) Matrix  

1. The first 𝑛/3 rows (except the first row) all elements are zero except in 

positions (𝑖, 𝑖 + 1) and (𝑖, 𝑖 − 1), for 𝑖 = 2, … , 𝑛/3. While for the first row 

all elements are zero except in position (1,2) and (1, 𝑛). The number of 

neighbors in these rows is 2. 

2. The second 𝑛/3 rows of each element are zero except in positions (𝑗, 𝑗 ±

𝑟),𝑗 =
𝑛

3
+ 1,… ,

2𝑛

3
;   𝑟 = 1,2,…,5.  The number of neighbors in these rows 

is 10. 

3. The third 𝑛/3 rows (except the last row) all elements are zero except in 

positions (𝑗, 𝑗 + 1) and (𝑗, 𝑗 − 1), for 𝑗 = 2𝑛/3 + 1,… , 𝑛 − 1. While for the 
last row all elements are zero except in position (n, 1) and (n, n-1). The 

number of neighbors in these rows is 2. 

4. This matrix then is row standardized. 

 

[1]Appendix 1 can be used to derive Ω matrices ithis section 
[2]Appendix 2 



 

 

 

 

 
Fig. 1. Circular world matrix 

 

b) Small-Group Interaction (SGI) Matrix 

This matrix isintroduced by Lin dan Lee (2010).  For each sample size n, we 

generate random groups where the size of each group is drawn from Uniform 

(3,20) distribution. For each group, if the group size is greater than 10, thenthe 

variance equal to the group size; otherwise,  thevariance is  square of the inverse 

of the group size.  

 

 
Fig. 2. Small group interaction matrix 

 

6. Heteroskedasticity is generated by ℎ𝑖  in the number of neighbours in the units i 

and𝜑𝑖 is the size of the sampleφ
i
~N (0,1). 𝜀𝑖  generated by εi=σiφi

, whereσi=c
hi

 hj/n
n
j=1

. 

7. The coefficient c used is the signal-noise ratio of the model and c=0.5 is the optimal 

coefficient. 

 



 

 

 

 

2.3 Data Analysis Procedure 

 
 Data Analysis used software R Studio 3.5.2 for simulation data. Following Kelejian and 

Prucha[6] the estimators will be GMM estimators corresponding to the following: 

1. Generate simulation data. 

2. Estimate parameter by GMM approach. 

3. Evaluate estimation parameters based on bias values (Bias-β ) 

  Bias-β =
1

s
 i=1

s  βi − β i  (7) 

3Result and Discussion 

 Figures 3-11 has presented bias of estimated parameters forρ,β
1
, and β

2
from the MLE 

and GMM methods. The matrix is used a circular world (CW) matrix that illustrates 

heteroscedastic conditions in spatial units globally, and small group interactions (SGI) matrix 

illustrate heteroscedastic conditions in small group interactions.. 

 

Parameter of 𝝆 

 Figure 3.is presentedcomparison of the estimated bias values of the parameters ρ GMM 

and MLE with n = 30 in the matrix [a]CW matrix and [b]SGI matrix. The bias of the CW 
matrix is smaller than SGI matrix. Based on Figure 3. [a], the simulation results almost give 

the same pattern. The bias value of the parameter ρ is around 0.25 (positive or negative), that 

both GMM and MLE provide the estimated bias value of the maximum parameter of 0.25.  

GMM gives the estimated bias value ρ smaller than the MLE. Based on Figure 3. [b], the 

estimated bias value of the ρ parameter is 0.5 (positive or negative), that both GMM and MLE 

provide the estimated parameter bias value of 0.5. MLE gives the estimated bias value ρ 

smaller than the GMM method.  

 The difference in spatial interactions (ρ) does not significantly influence the bias value, 

that the type of spatial interaction (positive or negative) does not significantly influence the 

estimated parameter bias value. In addition, it can be seen that the pattern of value distribution 

to types of spatial interactions has asymmetric shape and low diversity for each type of spatial 

interaction (ρ). 
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Fig. 3. Comparison of the bias values of 𝜌 for GMMand ML method at 

𝑛 = 30in matrix [a] CW and [b] SGI 

 

 Figure 4.is presented a comparison of estimated bias values of GMM and MLE 

parameters at the number of observations n = 90 in the [a]CW matrix and [b]SGI matrix. The 

bias value at the number of observations n = 90 is smaller than at the number of observations n 
= 30.The bias of the CW matrix is smaller than SGI matrix.  

 Based on Figure 4.the GMM gives an estimated parameter bias value smaller than MLE. 

The CW matrix gives a smaller bias value than the SGI matrix. The consistency of GMM can 

be seen from the smaller variance compared to the MLE method. Figure 4. [a] the difference 

in spatial interactions (ρ) does not significantly affect the bias value, that the type of spatial 

interaction (positive or negative) does not significantly affect the estimated value of the 

parameter estimate. whereasFigure 4. [b] the difference in spatial interactions (ρ) significantly 

influences the alleged bias value when ρ = 0.2 (positive and negative). 
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Fig. 4. Comparison of the bias values of 𝜌 for GMM and ML method at   𝑛 = 90in the matrix  

[a] CW and [b] SGI 

 

 Figure 5.is presented the simulation results at the number of observationsn = 900 for 

the estimator ρ. The bias value at the number of observations n = 900 is smaller than at the 

number of observations n = 30 and n = 90.The CW matrix gives a smaller bias value than the 

SGI matrix.On the CW matrix, the GMM provides smaller bias values than MLE. Whereas on 
the SGI matrix, the bias value of the GMM is smaller than the MLE method. The difference in 

spatial interactions (ρ) does not significantly influence the estimated bias value. The shape of 

the bias value is symmetric.  
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Fig. 5. Comparison of the bias values of 𝜌 for GMMand MLE method at 𝑛 = 900in the matrix 

[a] CW and [b] SGI 

 

Parameter β1 

 Figure 6.is presented the bias values for the estimated  β1 parameter at the number of 

observations n=30. The SGI matrix gives a smaller bias value than the CW matrix.On the CW 

matrix, the different types of spatial autocorrelations do not affect the estimated bias value of 

the β1 parameter. However, on the SGI matrix, the highest bias value is the GMM and MLE 

method when there is no spatial autocorrelation (ρ = 0). The bias value in the CW matrix is 

not different results for each spatial autocorrelation. These results are different for simulations 

with the SGI matrix. The GMM and MLE have a mean of around 0 and symmetric in shape. 
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Fig. 6. Comparison of the bias values of 𝛽1 for GMMand MLE method at 

𝑛 = 30in the matrix [a] CW and [b] SGI 

 

 Figure 7.is presented the β1 bias at the number of observations n = 90.The bias value at 

the number of observations n = 90 is smaller than at the number of observations n = 30.The 

bias of the SGI matrix is smaller than CW matrix. The GMM provides smaller bias values 
than the MLE. Consistency can be seen from the smaller variance compared to the MLE 

method. The bias values is the same for each spatial autocorrelation. The different types of 

spatial autocorrelations do not affect the bias value β1. 
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Fig. 7. Comparison of the bias values of β1 for GMM and MLE method at 

n = 90 in matrix (a) CW and (b) SGI 

 

 Figure 8. is presented a comparison of the estimated bias value of  β1at the number of 

observations n = 900 in matrix [a] CW and [b] SGI. The bias value at the number of 

observations n = 90 is smallest than at the number of observations n = 30 and n=90. The bias 
of the SGI matrix is smaller than CW matrix.The GMM provides smaller bias values than the 

MLE. This shows that GMM is more consistent.The difference in spatial interactions (ρ) does 

not significantly affect the bias value, that the type of spatial interaction (positive or negative) 

does not significantly affect the alleged bias value of the  β1 parameter. The two matrices do 

not give very different results, havesymmetrical shapes with an average of around 0 and small 

variations. 
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Fig. 8.Comparison of the bias values of 𝛽1 for GMM and MLE method at 

𝑛 = 900 in the matrix [a] CW and [b] SGI 

 

Parameter β2 

 Figure 9is presented the bias values for the estimated  β2 parameter at the number of 
observations n=30. The SGI matrix gives a smaller bias value than the CW matrix.On CW 

mtatrix, the bias of GMM and MLE is quite high, meaning that the variation of the bias is 

quite large.Wheres on SGI matrix, the bias of the GMM provides a smlles than the MLE. Both 

methods have a mean of around 0 and symmetric shape. 
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Fig. 9. Comparison of the bias values of 𝛽2 for GMM and MLE method at 

𝑛 = 30 in matrixin matrix [a] CW and [b] SGI 

 

 Figure 10.is presented the β2 bias at the number of observations n = 90.The bias value 

at the number of observations n = 90 is smaller than at the number of observations n = 30.The 

bias of the SGI matrix is smaller than CW matrix. The GMM provides smaller bias values 

than the MLE. Consistency can be seen from the smaller variance compared to the MLE 

method. The different types of spatial autocorrelations do not affect the bias value β2. 
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Fig. 10. Comparison of the bias values of 𝛽2 for GMM and MLE method at 𝑛 = 90 in the 

matrix(a) CW and (b) SGI 

 

 
 

 Figure11.is presented a comparison of the estimated bias value of  β2 at the number of 

observations n = 900 in matrix [a] CW and [b] SGI. The bias value at the number of 

observations n = 90 is smallest than at the number of observations n = 30 and n=90. The bias 

of the SGI matrix is smaller than CW matrix.The GMM provides smaller bias values than the 

MLE. This shows that GMM is more consistent.The difference in spatial interactions (ρ) does 

not significantly affect the bias value, that the type of spatial interaction (positive or negative) 

does not significantly affect the alleged bias value of the  β2 parameter. The two matrices do 

not give very different results, havesymmetrical shapes with an average of around 0 and small 

variations. 
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Fig. 11. Comparison of the bias values of 𝛽2 for GMM and MLE method at 

𝑛 = 900 in the matrix(a) CW and (b) SGI 

 

 

 Based on the type of matrix, the CW matrix gives the result that the bias value of the β1 

and  β2is large, but the bias value of the ρ parameter is small. The SGI matrix gives a bias 

value of the β1 and  β2is small, but the bias value of each parameter ρ is large.Based on these 

results, the CW matrix is better used to estimate the parameter ρ, but the SGI matrix is better 

used to estimate the β1 and  β2. 

 The overall simulation results show that the greater the number of observations, the 

smaller the bias value for each method. GMM gives the bias value of each parameter which is 

estimated to be ρ, β1 and  β2 smaller than MLE. Doǧan and Taşpinar [7] state that 

theoretically, MLE is not consistent with heteroscedastic problems, and has been proven by 

Liu et al. [8] so that the GMM method is more appropriate to be used in estimating parameters 

when heteroscedastic occurs. 

4Conclusion 

 GMM can be used in data that is known to be autoregressive in the response variable and 

also heteroscedastic. Based on the results of simulation data that GMM provides a smaller bias 

value than MLE. Heteroscedastic conditions in spatial units as well as in the form of 

interactions of groups of spatial units provide consistent predictor results. Different types of 

spatial interactions do not affect the estimated value of the bias of the parameters. This data is 

very appropriate to apply the estimation of the SAR model with GMM. 
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5 Appendix 

1. Suppose that Ω is a matrix of moment functions consisting of variance and covariance that 

are linear and quadratic in ε. For a G quadrilateral matrix, set Diag G =(g11,…,𝑔nn)′'is a 

vector of diagonal matrix elements G. 

 

Ω =var(gn θ0)  

 =E[gn
𝟐 θ0 ]-(E[gn θ0 ])2 

  =E[gn θ0 gn
′ θ0 ]-0 

  =E[gn θ0 gn
′ θ0 ] 

 

2. Let Xn, Yn and Zn be nxn matrices.Xn and Yn have zero diagonal elements, and Zn has 

uniformly bounded row and column sums in absolute value. Assume 𝜮=diag (σ1
2,….,σn

2).  
 

a. E(ε'nX'nε'n.ε'nY'nε'n) =  Σi=1
n Σj=1

n 𝐱n,ij(𝐲n,ij + 𝐱n,ji)𝛔ni
2 𝛔nj

2 = tr (𝚺n𝐗n(𝐘′
n𝚺n + 𝐘n𝚺n)) 

 

b. E(εn𝚺nε)2 = Σi=1
n 𝐳n,ii

2  E εni
2  − 3 𝛔ni

4  + (Σi=1
n 𝐳n,ii

2 𝛔ni
2 )+ Σi=1

n Σj=1
n 𝐜n,ij

2 (𝐳n,ij𝐳n,ji )𝛔ni
2 𝛔nj

2  

 = Σi=1
n 𝐳n,ii

2  E εni
4  − 3 𝛔ni

4  + tr2 Σn𝐙n + tr  𝚺nZn𝐙′n𝚺n + 𝚺n𝐙n𝚺n𝐙n  
 

c. Var εn𝐙nε =Σi=1
n 𝐳n,ii

2 [ E εni
4  − 3 𝛔ni

4   +Σi=1
n Σj=1

n 𝐳n,ij(𝐳n,ij𝐳n,ji )𝛔ni
2 𝛔nj

2  

 =Σi=1
n 𝐳n,ii

2  E εni
4  − 3 𝛔ni

4   +tr  𝚺n𝐙n𝐙′n𝚺n + 𝚺n𝐙n𝚺n𝐙n  
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