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Abstract. Generally spatial regression considers only one of the spatial effects, 

namely spatial dependence or heteroskedasticity between areas. Spatial 

autoregressive (SAR) models take only into account the dependence on the 

response variable. Most of SAR estimators are valid if there is no violation in the 

error assumption. Estimation of SAR parameters with heteroskedasticity using 

maximum likelihood (ML) method gives bias and inconsistent estimators. An 

alternative method that can be used is Bayesian method. Bayesian method solves 

heteroskedasticity by modeling the structure of variance-covariance matrix. 

Simulation data is used to evaluate the Bayesian method in estimating parameters 

of SAR model with heteroskedasticity. The results indicate that Bayesian method 

provides bias parameter estimates relatively small and consistent compared to the 

ML method. 
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1   Introduction 

Area data is the observations in certain geographical areas. This data is obtained from the 

aggregation of several observation values that correspond to the specified area. Area data has 

spatial effects, namely spatial dependence and heterogeneity [1]. Spatial dependence can be 

described by linear regression, which is autoregressive on the response, error, or combination 

of the two [2] [3]. Models with dependence on response are called spatial autoregressive models 

(SAR), models with dependence on error are called spatial error models (SEM), and the models 

with combination of the two are called the generalized spatial models (GSM). Spatial 

heterogeneity can be modeled by geographically weighted regression (GWR) [4]. 

The estimation of SAR parameters using maximum likelihood (ML) method [5] depends 

on the assumption that errors are normal and homogeneous. Other estimation of SAR, those are 

two-stage least squares (S2SLS) method [3] with the estimators are consistent and normal 

asymptotic and generalized method of moments (GMM) [6] that produces efficient estimators 

with easier computing than ML method. However, these estimators are inconsistent if there is 

heteroskedasticity [7] [8].  



 

 

 

 

Generally, spatial regression only considers one of the spatial effects. In its application, the 

spatial heterogeneity or heteroskedasticity problem often occurs in cross section data. 

Heteroskedasticity can occur in aggregation data because of a process of averaging data with 

many different observations at the time of aggregation [9] [10]. This causes the ML estimator 

to be invalid. This problem can be solved by modifying the GMM method [11] and Bayesian 

approach [12] [1]. Bayesian method solves heteroskedasticity by modeling the structure of 

variance-covariance matrix that allows flexible models for each distribution of spatial data with 

high accuracy [13]. 
This study aims to evaluate the bias of the parameters estimator using SAR model with 

Bayesian method in the condition of heteroskedasticity. The evaluation is based on simulation 

that compared to ML method. The smaller the bias values, the estimation of parameters will be 

better and consistent. 

2   Material and Method 

2.1   SAR Model with Bayesian Approach 

 

The SAR model with heteroskedasticity can be expressed as follows: 

 

y = ρWy + Xβ +ε ;  ε ~N(0,Σ)                                                 (1) 

 

with y is an n×1 vector of response variables, X is an n×p matrix of explanatory variable, β is a 

p×1 vector of coefficient regression parameter, W is an n×n spatial weight matrix , ε is an n×1 

vector of no autocorrelation error,  and ρ is a spatial lag coefficient or spatial autocorrelation. 

Estimation using Bayesian method assumes that Σ=σ0
2 V, with V=diag(v1,v2,…,vn), and 

vi=
σi

2

σ0
2 for i=1,…,n. This assumption indicates that the heteroskedasticity specification has two 

components: (i) the constant component σ0
2, and (ii) a component vi that varies between 

observations [8]. SAR model in equation (1) can be written as: 

 

y=(I-ρW)-1Xβ+ε*                                                        (2) 

 

with ε*=(I-ρW)-1ε, and , ε*~MVN(0,σ0
2V((I-ρW')-1(I-ρW)-1). Let v=(v1,…,vn)' is an n×1 

vector and the likelihood function of this model can be written as: 
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with S(ρ)=(I - ρW) and θ is hyperparameter for ρ and β. The posterior function for the Bayesian 

method with prior distribution assumptions can be stated as: 
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2,v) π(β) π(σ0
2) π(v) π(r) π(ρ) 



 

 

 

 

∝(2π)-
n
2(σ0

2)
-
n
2 ∏ vi

-
1
2|S(ρ

n

i=1

)| 

  ×exp [-
1

2
(S(ρ)y-Xβ)'(σ0

2V)
-1

(S(ρ)y-Xβ)] 

×|T|-
1
2 exp(-

1

2
β'T-1β)) 

×(σ0
2)

-(a+1)
exp (

-b

σ0
2) 

× (
r

2
)

nr

2
[Γ (

r

2
)]

-n
∏ vi

-
r+2

2 exp {-
r

2vi
}n

i=1     

× rm-1 exp {-
r

k
} ×p(ρ)                                                    (4) 

 

 

2.2  Data 

 

This study uses simulation data to evaluate Bayesian method. Simulation data was 

generated by the following processes: 

1. The model is SAR without intercept, y = ρWy+Xβ+ε, with the number of observations 

n=30, 90, 900 and y is n×1 vector of response variable. 

2. Explanatory variables X=(x1, x2) and the coefficients β=(β1, β2)' with β=(1, 2)'. 

Explanatory variables x1 dan x2 are n×1 vector and generated from standard normal 

distribution, N(0, 1). This step is repeated 1000 times. 

3. The autoregressive coefficients on the SAR models are 

ρ = (-0.8, -0.5, -0.2, 0,0.2, 0.5, 0.8) to describe spatial autocorrelation. 

4. Weight matrices W were generated by the following steps: 

a. The first matrix based on circular world matrix [14] with the following steps: 

1) The first n/3 rows (except the first row) all elements are zero except in 

positions (i,i+1) and (i,i-1), for i=2,…,n/3. While for the first row all 

elements are zero except in position (1,2) and (1,n). The number of 

neighbors in these rows are 2. 

2) The second n/3 rows of each element are zero except in positions (j,j±r), 

j=
n

3
+1,…,

2n

3
;  r=1,2,…,5.  The number of neighbors in these rows are 10. 

3) The third n/3 rows (except the last row) all elements are zero except in 

positions (j,j+1) and (j,j-1), for j=2n/3+1,…,n-1. While for the last row all 

elements are zero except in position (n, 1) and (n, n-1). The number of 

neighbors in these rows are 2. 

4) This matrix then is row standardized. 

b. The second matrix is the row standardized spatial weight matrix based on the small 

group interaction [15]. This matrix is a diagonal block matrix which each block 

describes group interaction. Block size comes from uniform distribution, U(3, 20). 

Suppose {g
1
,…,g

G
} as a group with G is the number of group. The group size is 

mi, with i=1,…,G. The block from group i is Bi=
1

mi-1
(lmi

lmi
' -Imi

), with lmi
 is mi×1 

vector of 1. The weight matrix is Wn=diag(B1,…,BG). 

5. The heteroskedastic pattern is generated using the number of neighboring units [14]. 



 

 

 

 

Suppose hi is the number of neighbors from the i unit, then the error ε with element εi  

is generated by the following technique: 

 

εi=σiφi                                                        (5) 

σi=0.5
hi

∑ hj/nn
j=1

 with φi~N(0,1)                                      (6) 

 

 

2.3  Steps of Analysis 

 

The steps of analysis in this study are as follows: 

1. Generating simulation data 

2. Estimating parameters with Bayesian method, which is defining the distribution of 

priors for each hyperparameter then finding the posterior distribution using Markov 

chain Monte Carlo (MCMC). The assumptions of the priors in the SAR model are [16]: 

 βi from normal distribution βi~N(c,T), for i=1,…,n, with T is a large value of 

variance. 

 σ0
2~IG(a,b) where IG(a,b) is the inverse gamma distribution with shape a>0 and 

scale b>0. 

 
r

vi
~ χ2(r), for i=1,…,n, with degree of freedom r is from gamma distribution, 

r~G(m,k). 

 ρ~U(
1

λmin
,

1

λmax
) with U(.) is uniform distribution where λmin and λmax are 

minimum and maximum eigen values of W.  

3. Evaluating the bias (β̂) of the Bayesian method compared to the ML method. 

 

Bias (β̂i) = E(β̂i)-βi                                                     (7) 

 

with βi is the parameter coefficient β of ith simulation, β̂i is the value of the estimated 

coefficient β of ith simulation. 

3   Result and Discussion 

The Bayesian and maximum likelihood method are evaluated based on bias values of the 

parameter estimator. Each bias values for the Bayesian method and maximum likelihood (ML) 

are presented in the form of boxplots in Figure 1 to Figure 9 for the circular world / CW (a) 

matrix and small group interaction / SGI (b). The bias values of the Bayesian method are 

compared with the ML method. Boxplot of the bias values for Bayesian method is presented 

next to the ML method bias values for easy comparison. The gray boxplot is a representation of 

the bias values for the Bayesian method. While the white boxplot  is a representation of the bias 

values for the ML method. A small bias value indicates a good estimate of the parameter, while 

a small bias variation indicates consistent parameter estimate. 
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3.1   The result for β1 estimator 

Figure 1 shows the simulation results at n = 30 for the β1 estimator. Bayesian method in the 

results of the simulation with the CW matrix at n = 30 gives the bias values and bias variations 

of the estimator β1 smaller than the ML method. The bias values in the first matrix do not show 

quite different results for each spatial autocorrelation. These results are different for simulations 

with the SGI matrix. The Bayesian method in the SGI matrix gives greater bias values than the 

ML method but have mean of around 0, while the ML method tends to be under estimate. 
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Fig. 1. Comparison of the bias values of the Bayesian and ML method at n = 30 for the β
1
 estimator on 

the (a) CW and (b) SGI matrices. 
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The simulation results at n = 90 for the estimator β1 are shown in Figure 2. The Bayesian 

method at n = 90 gives smaller bias values than the ML method for each matrix. The bias values 

at n = 90 are also smaller than n = 30, this shows that the Bayesian method is more consistent. 

The consistency of the Bayesian method can also be seen from the smaller variances compared 

to the ML method. The bias values for the CW and SGI matrices tend to be the same for each 

spatial autocorrelation. 
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Fig. 2. Comparison of the bias values of the Bayesian and ML method at n = 90 for the β
1
 estimator on 

the (a) CW and (b) SGI matrices. 
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Figure 3 shows the simulation results at n = 900 for the β1 estimator. The simulation results at 

n = 900 show that the greater the number of observations, the smaller the bias values for each 

method. The Bayesian method gives smaller bias values than the ML method on the CW matrix. 

The SGI matrix does not give quite different results, but the Bayesian method has symmetric 

distributions with the mean of around 0 and the variances are quite small while the ML method 

has distribution that extend to the right. That is, the ML method on the SGI matrix tends to 

provide estimates that over estimate. 
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Fig. 3. Comparison of the bias values of the Bayesian and ML method at n = 900 for the β
1
 estimator on 

the (a) CW and (b) SGI matrices. 
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3.2   The result for β2 estimator 

The simulation results at n = 30 for the β2 estimator are presented in Figure 4. Bayesian 

method in the simulation results with the CW matrix on the n = 30 provides smaller β2 estimator 

bias values than the ML method. These results are different for simulations with the SGI matrix. 

The Bayesian method in the SGI matrix gives greater bias than the ML method but has mean of 

around 0 while the ML method tends to under estimate. 
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Fig. 4. Comparison of the bias values of the Bayesian and ML method at n = 30 for the β
2
 estimator on 

the (a) CW and (b) SGI matrices. 
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Figure 5 shows the simulation results at n = 90 for the β2 estimator. The β2 estimator of 

the Bayesian method at n = 90 with the CW and SGI matrices gives smaller bias values than the 

ML method. These bias values are also smaller than at n = 30 with mean of around 0 and smaller 

variance. The distribution patterns for each spatial autocorrelation do not show quite different 

results. 
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Fig. 5. Comparison of the bias values of the Bayesian and ML method at n = 90 for the β
2
 estimator on 

the (a) CW and (b) SGI matrices. 
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Figure 6 shows the simulation results at n = 900 for the β2 estimator that the greater the 

number of observations, the smaller the bias values for each method. The Bayesian method 

gives smaller bias values compared to the ML method on both the CW matrix and the SGI 

matrix. On the CW matrix, the Bayesian method has symmetric patterns that have mean of 

around 0 with small variances except that ρ = 0.8 tends to provide over-estimating estimators. 

The bias values in the SGI matrix do not show different results for each method and spatial 

autocorrelation. 
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Fig. 6. Comparison of the bias values of the Bayesian and ML method at n = 900 for the β
2
 estimator on 

the (a) CW and (b) SGI matrices. 
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3.2   The result for ρ estimator 

The Bayesian method at n = 30 for ρ estimator is shown in Figure 7. The simulation results 

show that the CW matrix gives smaller bias values compared to the ML method. The bias values 

decrease with the amount of spatial autocorrelation (either negative or positive). In the SGI 

matrix, the bias values of the Bayesian method are greater than the ML method and tend to 

under estimate except at ρ = -0.8 which is over estimate. The bias values on the SGI matrix 

show better results when spatial autocorrelation is positive and get smaller with the magnitude 

of negative spatial autocorrelation. 
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Fig. 7. Comparison of the bias values of the Bayesian and ML method at n = 30 for the ρ estimator on 

the (a) CW and (b) SGI matrices. 
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The simulation results at n = 90 for ρ estimator are shown in Figure 8. Based on Figure 8 on 

the CW matrix shows the same pattern at n = 30 (Figure 7) but with smaller bias values. The 

Bayesian method gives smaller bias values compared to the ML method. The bias values 

decrease with the amount of spatial autocorrelation (either negative or positive). On the SGI 

matrix, the bias values of the Bayesian method tend to be the same as the ML method but will 

get smaller as the magnitude of the positive spatial autocorrelation. 
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Fig. 8. Comparison of the bias values of the Bayesian and ML method at n = 90 for the ρ estimator on 

the (a) CW and (b) SGI matrices. 
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Figure 9 shows the simulation results at n = 900 for ρ estimator. The simulation results at n = 

900 for ρ estimator indicate that the greater the number of observations, the smaller the bias 

values will be for each method. The Bayesian method give smaller bias values compared to the 

ML method on the CW matrix. The bias values decrease with the amount of spatial 

autocorrelation (either negative or positive). In the SGI matrix, the bias values of the Bayesian 

method are smaller than the ML method. These values decrease with the amount of positive 

spatial autocorrelation. 
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Fig. 9. Comparison of the bias values of the Bayesian and ML method at n = 900 for the ρ estimator on 

the (a) CW and (b) SGI matrices. 
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Based on the simulation results each number of observations for the two matrices shows 

that overall the Bayesian method gives the bias values of the estimated parameters for β1, β2,   

and ρ are smaller than the ML method with symmetric distribution patterns with mean around 

0 and small variances. In the SGI matrix with n = 30 the Bayesian method has greater bias values 

than the ML method for each parameter estimator. However, the bias values of the Bayesian 

method are smaller than the ML method at 90 and 900 observations. This can occur because the 

heteroskedasticity pattern in the SGI matrix is not sufficiently visible for small observations. 

This shows that the Bayesian method is more consistent than the ML method. Theoretically the 

ML method is inconsistent with heteroskedastic problems [8].  

4   Conclusion 

 The Bayesian method can be used for SAR modeling containing heteroskedasticity. 

Evaluations on the Bayesian method give smaller bias values and smaller bias variances 

compared to the maximum likelihood method, indicating the consistency of the Bayesian 

method. The bias values for the estimated regression coefficient parameter decrease as the 

number of observations increases, while the estimator of the spatial autocorrelation parameter 

is most consistent with Bayesian on both large and small numbers of observations. 
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