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Abstract.Nowadays, the US dollar exchange rate is still very influential on the exchange 
rate stability of many countries, including Indonesia. The effect of the US Dollar 
exchange rate has caused the fluctuation of Rupiah exchange rate. That is one of the 

cases that can be modeled with the Hidden Markov Model (HMM) as the development of 
a Markov chain in which its state is not able to be observed directly (hidden), but it is 
only able to be observed through a set of other observations. In this paper, Exponentially 
Weighted Moving Average (EWMA) control chart will be used to determine the state of 
HMM. Based on the EWMA control chart, there are three states which are increase, 
decrease, and constant. The probability of the changes of exchange rate will be predicted 
in 2019 with the Baum Welch Algorithm on HMM. By using 240 exchange rate data of 
US Dollar to Rupiah in 2018, it is predicted the changes of exchange rate in 2019 are 

increased with a probability of 0.57. The results of HMM have connected to the EWMA 
control chart where they have eight uncontrolled data with two states increase and six 
states decrease. Thus, the existence of uncontrolled data implies the probability of 
increasing of the exchange rate in 2019. 

Keywords: exchange rate, exponentially weighted moving average, hidden Markov 
model 

1   Introduction 

Exchange rates define the rate or ratio of which one of these currencies can be exchanged 

for any other at any given point in time. The fluctuation of the exchange rate is always 

influenced by many factors, such as the diversity of the inflation and the interest rate between 
two countries, the trade balance,public debt, the ratio of export prices and import prices, with 

political and economic stability [1]. 

In analyzing the fluctuations of the future exchange rate, it can be attributed to the 

stochastic problem, where the problem is related to the probability of occurrence in the future 

cannot be predicted certainly. Because it forms Markov chain, then Markov chain is 

supposedly unobserved such that the problem of exchange rate fluctuations can be modeled by 

Hidden Markov Models.  

Hidden Markov Model (HMM) is a Markov chain that the sequence of states is 

unobserved. In Hidden Markov Models, there are three fundamental problems to be solved 

that are evaluations problem, decoding problems, and learning problems. Based on previous 

research, number of creatures of a species found within a river using negative binomial hidden 

Markov models as discussed in [2]. According to research in [3], [4], and [5], hidden Markov 
model is also related to Bayesian Analysis. In time series cases, there are many researches 
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which studied about hidden Markov model. One of them discussed robust classification of 

multivariate time series as explained in [6], categorical time series which introduced in [7], 
and time series modeling for risk also obtained in [8]. Moreover, to predict a trend in financial 

time series using hidden Markov model was also as discussed in [9]. Based on the research in 

[10], the technique to build a model by using financial data can be used Autoregressive 

Fractionally Integrated Moving Average (ARFIMA). Furthermore, by using financial data will 

be determined the model of the most efficient optimal portfolio selection also explained in 

[11], and cluster analysis was proved to see a homogeneous of the financial performance 

which is described in [12].  

Therefore, this research will present Graphics Controller Exponentially Weighted Moving 

Average (EWMA) that determines the state of exchange rate which the data are used to predict 

the probability of increasing the exchange rate for the period of the next day using a Hidden 

Markov Model with evaluation, decoding and learning problem. EWMA control chart has 
related to exponential distribution where the characterization of exponential distribution is 

explained in term of convolution and characteristic function such as described in [13], [14], 

[15], and [16]. The result gives simplicity to take decisions in investment. 

2 Graphics Controller Exponentially Weighted Moving Average (EWMA) 

with Hidden Markov Model 

Exponentially Weighted Moving Average (EWMA) control chart is one of the statistical 

quality control techniques are used to monitor the quality of the products of a production 

process. In this case, the EWMA control chart will be used to detect the state of a data 

exchange rate in 2018 that taken from the difference between the current exchange rate value 

and the previous one. The following EWMA control charts exchange rate.  

 

 
 

Fig. 1.EWMA Control Charts Exchange Rate 

  

 Consider on Fig. 1, it shows that there is a transition state of the current exchange rate 
value, namely increase, decrease, and constant. This state will be set as a condition to identify 

the exchange rate value in 2019 by using the Hidden Markov Model. The set of ordered data 
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with number 110, 116, 204, 205, 206, 207, 213, and 235 indicate that the data are not well 

controlled. On the data to 110, its state is increasing, meaning that the value of the exchange 
rate at the previous data is lower than the value of the exchange rate at the data afterwards. 

While the state on the data to 116 and 204 are increasing, and to 205, 206, 207, 213, and 235 

are decrease. Thus, there are uncontrolled data then it will affect the probability for increasing 

the exchange rate in 2019. 

3 Hidden Markov Model (HMM) 

The stochastic process is a sequence of events that qualifiers the laws of probability where 

every value changed againts time in random manner. A stochastic process which predicted 

future traits depending on the properties of a present-day variable based on its characteristics 

in the past is called the Markov chain [17]. A stochastic process nX has Markov properties, if  

)1()|(),...,,|( 100111 iXjXPiXiXiXjXP nnnnnn    

for a time ,...1,0n  and for every 011,...,,, iiiij n . 

Hidden Markov Model (HMM) is a stochastic model where the system is assumed to be a 

Markov Process with hidden states.If ,...},{ 21 XXX   is a Markov process, and 

,...},{ 21 OOO  is a function of X , X it is a Hidden Markov Model which can be observed 

through O , or can be written to a function f . Parameter X denotes a state process that is 

hidden, while parameter O  denotes an observation space that can be observed. The elements 

of the Hidden Markov Model are:  

1. The number of hidden state elements (hidden state) represented by N  as the number of 

states which the probability of a denoted state space },...,,{ 21 NSSSS   and the state at the 

time tdenoted by TtX t ,...,2,1,   

2. The number of observations (observation) of each state represented by M , where 

probability every state represented by },....,,{ 21 Mvvvv  and space observation represented 

by },...,,{ 21 TOOOO  , which T  is the length of the observation data. 

3. Transition probability matrix,  ijaA   Where ija  is element of A which is the conditional 

probability of the state at the time 1t , given the stateXat the time t, that is 

)2()|( 1 iXjXPa ttij    

for Nji  ,1  

4. Observation probability distribution at the time t, at state j, commonly known as emission 

matrix 

  )3(ikbB   

where 

)4(),|( iXvOPb tktik   

for TtNj  1,1 and Mk 1  

5. The initial state distribution represented by )(i  

where: 

 51),()( 1 NiiXPi   



 

 

 

 

Thus, HMM can be written in the form ),,(  BA  which is A  denotes transition 

probability matrix, B denotes matrix of observation probability and also known as emission 

matrix, and   is the distribution of the initial state.There are three special problems that can 

be solved by Hidden Markov Model methods, then  

a) Evaluation Problem  

To calculate the probability of the observation sequence )\( OP   needed the forward 

algorithms and the backward algorithm [17]. This algorithm is an iterative process that is 

based on the calculation of conditional probability through properties on probability [18]. 

First, calculate the probability of observation using the forward algorithm )(it . Generally 

it consists of the following 3 steps: 

i. Initialization   

In this initialization stage, the initial observation probability )(1 i  will be determined, as 

follows 

 6)()()( 11 Obii i   

Ni 1for  

ii. Induction      

In this stage, the total probabilities for observation at 1t  will be calculated as follow 

 7)(})({)(
1

11  
 

N

i
tjijtt Obaij   

 TtNj ...,,2,1,...,,2,1for      

iii. Terminations  

This step is to sum all the probabilities for the observation sequence as follow 

 8)()|(
1 


N

i
T iOP 

 

Second, calculate the probability of observation using the backward algorithm )(it . 

Generally it consists of the following 3 steps: 

i. Initialization   

At this stage, the probability for observation is stated as equal to one, because it is assumed 

i  to be the final state and is zero for i  the others as follows 

 9 1)( it  

 for Ni 1    

ii. Induction   

In this stage, the total probabilities for observation will be calculated at 1t as follows 

 10)()()(
1

11 


N

j
ttjijt jObai   

NiTTt ...,,2,1 and 1...,,2,1for 
 

iii. Terminations  
This step is to sum all the probabilities for the observation sequence as follows 

 11)()1()1()|(
1

1 


N

i
i ibOP   

b) Decoding Problem 

Decoding problemis to find the best state sequence (optimal) associated with the 

observation O of the models   that are also known. The probability of the most optimal 

sequence for this observation sequence is denoted by )(it . While )(1 j  saving the previous 



 

 

 

 

state which will form the most optimal state sequences. This problem can be solved by the 

Viterbi Algorithm which consists of four stages [17], as follows 
i. Initialization   

This initial stage will determine the sequence of hidden conditions at 1t , as follows 

 12)()()( 11 iObi i    

 131for ,0)(1 Nii   

 

ii. Recursion   

The next stage is to determine the sequence of the hidden conditions at 2t , as follows 

 14)(})({max)( 1
1

tjijt
Ni

t Obaij 


   

NjTt  1 and,2for  

 15})({maxarg)( 1
1

1 ijt
Ni

aij 


   

NjTt  1 and,2for  

iii. Terminations  

In this stage, the greatest probabilities along t will be calculated for the last observation, as 

follows 

 16)}({max
1

* iP T
Ni





 

 17)}({maxarg
1

* iX T
Ni

T 


  

iv. Backtracking  

In the last stages, the best state sequences will be determined, as follows 

 181...,,2,1),( *
11

*   TTtXX ttt   

c) Learning problems 

This problem is estimating the best model that can represents a sequence of observations 

which is the changing parameters of HMM, ),,(  BA  that )|( OP to be maximum. 

In the Baum-Welch algorithm, also defined four variables, that are: Forward variable, 

Backward variable, variable ),( jit , and variable )(it .Forward and backward variables will 

be used in the calculation of the variable ),( jit and variable )(it . The Variable ),( jit is the 

probability of the process in the state i at the time t  and in the state j at the time 1t . While 

the variable )(it is the total of ),( jit .So that the estimation formula learning problem as 

follows: 

 191,1,
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),(
ˆ
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4 Methods 

4.1 Data 

In this research, the exchange rate US Dollar to Rupiah data used only one year that is in 

2018, from January 1, 2018 to December 31, 2018. The data are provided at http://bi.go.id 

with number of data is 240. 

 

4.2 Analysis methods 

This research uses Hidden Markov Model. That will be analyzed is exchange rate data 

with predictions of probability exchange rate on the next year, as follows: 

1. Take exchange ratedata by a period of one day. The number of data must be 240 data. 
2. Determine transition probability matrix neededexchange rate by using the following 

formula as a probability.  

 20
)(

)(
)(

Sn

An
AP   

where )(An  is the number of elements in A  and )(Sn is the total number of elements in S 

[18]. 

3. Determine elements of Hidden Markov Model. 

4. Analyze the elements of Hidden Markov Models that have been able to use three problems 

in the Hidden Markov Model is calculate the probability of an observation by using 

Forward-Backward algorithm, determines the sequences state of hidden by using the 

Viterbi algorithm, and predicting the HMM parameters using the Baum-Welch algorithm. 

5. Make the interpretations or conclusions from results that have been obtained. 

5 Results and Discussion 

Hidden Markov Models (HMM) are based on the well-known theories of Markov chains, 

where the states are assumed hidden. HMM is also been utilized on financial data such as 
exchange rate.  To predict the probability of the changes of exchange rate in 2019 by using 

HMM as following steps: 

1. The elements of the Hidden Markov Model 

a. Suppose N , denoted by the number of hidden state, with state space }...,,,{ 21 NSSSS   

and the state at the time t  denoted by tX . In this case of exchange rate, hidden state is 

increase, decrease, and constant. So in this case 3N   or be written by PS 1  

(increase), PS 2  (decrease), PS 3 (constant). For example, 1tX   that is states 

which are in an increasing state. 

b. Suppose M , that is the number of observations of each state, the observation space 

)....,,,( 21 TOOOO  and probability of each state observation represents by

}...,,,{ 21 Mvvvv  , in this research 1M exchange rate as )( 1v . 

c. Suppose )|( 1 iXjXPaA ttij    is probability of the exchange rate in the range 

to i in week 1t  if it is known in the week to be in the range of values to that 

probability matrix formed by: 



 

 

 

 

 


















333231

232221

131211

aaa

aaa

aaa

aA ij

 
 

Transition Probability Matrix exchange rate data 

 


















17.033.05.0

049.051.0

04.044.052.0

ijaA  

d.  ikbB   is conditional observation probability matrix 𝑣𝑘if the process at state 𝑗, the 

observation matrix for the exchange rate is asfollows: 

 


















02.0

46.0

52.0

ikbB  

e. Suppose )(i is the initial state distribution, in case of the exchange rate is assumed by: 

(constant))3(,(decrease))2(,(increase))1( PPP    

Initial matrix for the exchange rate is as follows: 



















34.0

33.0

33.0

  

2. Evaluation Problem Forward and Backward Algorithm  
For the first problem of the Hidden Markov Model, it will be calculated the probability 

model ),,(  BA  that represented by )|( OP or the probability of the observation 

sequences }{ 11 vOO  . This probability can be determined by using the Forward and 

Backward algorithms. 

1585.0
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 Based on the results of the backward algorithm, the probability of this algorithm is equal to 

the probability of the forward algorithm that is 0.1585. 

3. Decoding Problem with the Viterbi Algorithm 

Decoding problem is how to determine the optimal hidden state sequence as follows 

increase, decrease, or constant of exchange rate, compatible with a sequence of 

observations that have been assumed. Viterbi algorithm consists of two steps, including the 

following: 
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It means that the most suitable sequence of the increased, decreased, or constant exchange 

ratesequences in 2019 is the increase sequence. 
4. Learning problems with Algorithm Baum Welch 

To calculate the parameters of HMM prediction using Baum Welch algorithm can be 

defined a new variable ),( jit , that probability process in state j at the time 1t . It 

following 





































0177.0

4697.0

5126.0

)3(

)2(

)1(

ˆ

1

1

1







  

The value )(it  for 1t  is to estimate of the initial probability. That means the value

)|()ˆ|(  OPOP  is complete, then theprobability process in state of  exchange rate will 

increase by 0.5126, probability of the exchange rate will decreaseby 0.4697 and the 

estimated initial probability processof exchange rate will constant by 0.0177. 

Meanwhile, a state prediction 𝑎 𝑖𝑗  of the transition probability matrix 𝑎𝑖𝑗 is a comparison 

between the number of transition probability from statei to state j with the displacement 

probability in the statei, its following: 

𝑎 𝑖𝑗 =

 
 
 
 
 
 
 
 𝜉𝑡 1,1 𝑇

𝑡=1

 𝛾𝑡 1 𝑇
𝑡=1

 𝜉𝑡 1,2 𝑇
𝑡=1

 𝛾𝑡  1 𝑇
𝑡=1

 𝜉𝑡 1,3 𝑇
𝑡=1

 𝛾𝑡  1 𝑇
𝑡=1

 𝜉𝑡 2,1 𝑇
𝑡=1

 𝛾𝑡 2 𝑇
𝑡=1

 𝜉𝑡 2,2 𝑇
𝑡=1

 𝛾𝑡  2 𝑇
𝑡=1

 𝜉𝑡 2,3 𝑇
𝑡=1

 𝛾𝑡  2 𝑇
𝑡=1

 𝜉𝑡 3,1 𝑇
𝑡=1

 𝛾𝑡 3 𝑇
𝑡=1

 𝜉𝑡 3,2 𝑇
𝑡=1

 𝛾𝑡  3 𝑇
𝑡=1

 𝜉𝑡 3,3 𝑇
𝑡=1

 𝛾𝑡  3 𝑇
𝑡=1  

 
 
 
 
 
 

 

 

=

 
 
 
 
 
 
 
0,2927

0,5126

0,2191

0,5126

8,67. 10−4

0,5126
0,2539

0,4697

0,2158

0,4697

0

0,4697
0,0111

0,0177

6,51. 10−3

0,0177

1,46. 10−4

0,0177  
 
 
 
 
 
 

 

 

=  
0,57 0,42 0,01
0,54 0,46 0
0,62 0,36 0,02

  

 

Matrix 𝑎 𝑖𝑗 is an estimator for the transition matrix𝑎𝑖𝑗 . The matrix 𝑎 𝑖𝑗  showed that to 

achieve the value 𝑃(𝑂|𝜆 ) ≥ 𝑃(𝑂|𝜆) then the transition probability of exchange rate are 

"increase" to "increase" is 0.57, from "increase" to "decrease" at 0.42, from "increase" to 

"constant" is 0.01, and from "decrease" to "increase" at 0.54, from "decrease" to "decrease" 

0.46, from "decrease" to "constant" is 0, and from "constant" to "increase" by 0.62, from 

"constant" to "decrease" at 0.36 , from "constant" to "constant" by 0.02. 



 

 

 

 

Thus the probability of increase in exchange rate in 2019 is 0.57. Whereas, the 

probability of decrease is 0.42 and constant is 0.01. It means 2019 might be probability for 
the exchange rate will be more increase. It means that if the exchange rate become 

increasing so many aspects especially economic sectors will be changes.  

5 Conclusion 

Hidden Markov model with the Viterbi algorithm shows that 2019 might be probability for 

the exchange rate will be more increasing that are equal to 0.57. Relations with EWMA chart, 

the graph showsthe transition state ofexchange rate data in 2018 and also there are some data 

uncontrollably. If more data are uncontrolled,the probability ofthe increase exchange rate is 

become greater. It means that the increase exchange rate will give negative impact to 

economic sector in Indonesia, such as the import products become more expensive, spurring 

inflation growth, foreign investors suffered losses, and increasing debt burden of government. 
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