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Abstract.This study focuses on the  number of claims data in an insurance company in 
Indonesia in 35 locations. The approach taken is a linear Poisson mixed model with two 
random effects.  The response variable is number of claims, the fixed variable is 

deductibles and random effects are the area and the month of occurrence which is 
assumed to follow the first-order autoregressive process. Fixed and random component 
estimation is carried out based on MPQL while estimating component variance is using  

REML which the initial values are 𝛽0 =  0,𝛽1 =  0, 𝜎𝑣
2 =  0.5,  and 𝜎𝑢

2 =  1. Modeling is 

carried out on training data which is 75% of observations and predictions carried out with 
testing data which is 25% of the observations. Modeling on training and testing data 
produces accurate models in almost all regions included in the model. This are indicated 
by the MAPE values which are less than 20% in all regions. 

Keywords: autoregressive process, MAPE, number of claims, Poisson mixed 
models. 

1   Introduction 

To pay obligations to its customers, insurance companies must be able to predict how 

much the obligation. Insurance companies must be able to predict the amount of claims and 

the number of claims. The amount of claims or claim severity is a measure of how much the 

claim has occurred. Whereas number of claims or claim frequencies is a measure of how many 

claims occur. If the size of the claim is approached as a continuous variable, number of claims 

constitute data on counts. The distribution approach used usually is Poisson distribution. 

 This study focuses on number of claims data in an insurance company in Indonesia in 

several regions in Indonesia. Number of claims was observed in these areas of events for one 

year. The approach taken is the Generalized Linear Mixed Model approach (GLMM). The 

GLMM is an extension of the linear mixed model with the variable response including the 

exponential family, in other words GLMM is an extension of the Generalized Linear Model 
(GLM) but has a fixed and random effects.  Poisson regression and binomial-logit models are 

the generalized linear models used for count data [3]. In this model the assumption of linearity 

is changed to the existence of a link function that connects the expected value of observation 
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with the covariate variable. The assumption of normality is also changed to an exponential 

family distribution. In [2] some of the applications of the generalized linear mixed models in 
the insurance sector are explained, especially in the model of credibility and ratemaking in 

general insurance. Previously on [1] used a mixed lognormal model to estimate the reported 

reserves of claims with periods of events and periods of delays as fixed effects and calendar 

periods as random effects. 

 Meanwhile, a longitudinal response data analysis method was explained with 

correlations between observations on the same subject [10]. To analyze longitudinal count 

data, Poisson linear mixed models are commonly used [12]. [4] used Poisson mixed model 

with one of its random effects is the time that follows the first-order autoregressive process. 

The solution was made by using the moment method. The linear Poisson mixed model with 

random variables approached by the ARMA process is then used [6]. 

[7] used linear mixed model with the random effect of area and time following the first-order 
autoregressive process with application in the unemployment rate which is assumed to be a 

normal distribution. While the iterative approach is used to obtain estimators of parameters in 

the generalized mixed linear mixed models [5]. The approach as done by [5] and [7] will be 

used in this study to model number of claims. 

 Besides that, deductibles and area codes are shown in [9] as variables that significantly 

influence the size of claims. Suppose that these variables also influence number of claims, the 

research question arises how to get predictions of number of claims using the linear Poisson 

mixed model approach with variable occurrences of events as a random effect and event 

periods as a random effect of time which are considered to follow the first-order 

autoregressive process? Next, how to get a prediction of the total number of claims in a 

particular event? Thus, the purpose of this study is to obtain a prediction of the total number of 

claims of an insurance company in Indonesia in a particular area of incidence using a linear 
Poisson mixed model approach. The data used is sourced from motor vehicle insurance risk 

and loss profile report data for a general insurance company in Indonesia. 

2   Material and Methods 

2.1 Material 
 

The material used comes from the Financial Services Authority (OJK), which is a one year 
report on the risk and loss profile of motor vehicle insurance in a general insurance company 

in Indonesia. Reported claims data are all claims that occur in the reported calendar year with 

due regard to the date of claim and date claim agreement. The data is then extracted so that it 

contains the code of the area of occurrence, the month of occurrence, the size of the 

deductible, and the number of claims. Area code is a standard code that indicates the location 

of the claim or the address of the nearest police station in the area of the claim. The code is 

divided based on 35 observation areas in Indonesia. 

 The event period is the month, from month 1 to month 12, and hereinafter referred to as 

the month of occurrence. The month is the month of the accident and not the month the claim 

is approved or paid. Deductible is the amount of rupiah that is borne by the vehicle owner 

applied to the claim, whereas number of claims are calculated from how many of the same 
policy number make claims in the month of events and regions of a particular event. 



 

 

 

 

 The number of claims becomes the variable of the observed response, the deductible 

becomes a fixed effect  and the area code of the incident and the month of occurrence become 
random effect with the month of the incident considered to follow the first-order 

autoregressive process. For the purposes of this study data was taken in part through simple 

random sampling from actual data of 175,000 items. In each region and for every month the 

sample is taken as much as 5. The initial value are 𝛽0 =  0, 𝛽1 =  0 , 𝜎𝑣
2  =  0.5, and 𝜎𝑢

2 =
 1 which refer to the research of [5] and assuming the value of  𝜌 =  0.5. Of the 35 registered 

incident areas, there are no occurrences of claims in the codes for events 12 and 28 for all 

months. While in certain areas of the incident, the occurrence of claims only occurred in a few 

months. This happens, for example, in the areas of events 9, 10, 11, 15, 17, 18, 23, 29, 30, and 

35. Data in the occurrence areas are not included in the modeling. 

 Further modeling was carried out in part on observations with simple random sampling 

of 5 in each area of the incident and the month of occurrence. Then the data is divided in two 

based on the month of occurrence. Observations on month 1 to month 9 become training data 
and observations on the 10th month until the 12th month becomes testing data. Modeling is 

done on training data and applied to testing data. 

 

2.2Methods 

 

 The number of claims are count data which are assumed to have Poisson distribution, so 

the proposed model is 

𝐸 𝑦𝑖𝑡𝑗 |𝑣𝑖 , 𝑢𝑖𝑡 = 𝜇𝑖𝑡𝑗  

where 𝜂𝑖𝑡𝑗 = 𝑥𝑖𝑡𝑗
′𝜷 + 𝑣𝑖 + 𝑢𝑖𝑡 ,  𝑢𝑖𝑡 = 𝜌 𝑢𝑖,𝑡−1, 𝜌 < 1, 

and log 𝜇𝑖𝑡𝑗 = 𝜂𝑖𝑡𝑗         (1 ) 

 

with 𝒚 =   𝑦𝑖𝑡𝑗   is a vector of observations from random variable 𝑌 with i =  1,2, . . . , 𝑚, 𝑡 =

 1,2, . . . , 𝑇 and , 𝑗 =  1,2, . . . , 𝑛𝑖𝑡 , respectively is the region of occurrence , period of events, 

and unit of observation. Therefore 𝑦𝑖𝑡𝑗  is assumed to be Poisson (𝜇𝑖𝑡𝑗 ), or 𝐸 (𝑦𝑖𝑡𝑗 | 𝑣𝑖 , 𝑢𝑖𝑡 )  =

 𝜇𝑖𝑡𝑗 , 

then the probability density function of 𝑦𝑖𝑡𝑗 with the terms 𝑣𝑖and 𝑢𝑖𝑡 is 

 

 𝑓 𝑦𝑖𝑡𝑗 |𝑣𝑖 , 𝑢𝑖𝑡  =  
1

𝑦𝑖𝑡𝑗 !
exp 𝑦𝑖𝑡𝑗 log 𝜇𝑖𝑡𝑗  − 𝜇𝑖𝑡𝑗     (2) 

 

with 𝑣𝑖  ~ 𝑖𝑖𝑑 𝑁 0, 𝜎𝑣
2 is the random effect of the event region 𝑖, and the component 

𝑢𝑖𝑡 ~ 𝑖𝑖𝑑 𝑁  0, 𝜎𝑢
2  is the random influence of region-time assumed to follow the first-order 

autoregressive process. The random effects 𝑣𝑖 and 𝑢𝑖𝑡  are assumed to be mutually 

independent. 

Suppose there is one covariate variable, then for each region 𝑖 at time 𝑡 equation (1) can be 

denoted in the form of the following matrix: 

 

 

log 𝜇𝑖𝑡1

log 𝜇𝑖𝑡2

⋮
log 𝜇𝑖𝑡𝑛𝑖𝑡

 =  

1
1

𝑥𝑖𝑡1

𝑥𝑖𝑡2

⋮
1

⋮
𝑥𝑖𝑡𝑛𝑖𝑡

  
𝛽0

𝛽1
 + 𝑣𝑖  

1
1
⋮
1

 + 𝑢𝑖𝑡  

1
1
⋮
1

  



 

 

 

 

 

𝜂𝑖𝑡1

𝜂𝑖𝑡2

⋮
𝜂𝑖𝑡𝑛𝑖𝑡

 =  

1
1

𝑥𝑖𝑡1

𝑥𝑖𝑡2

⋮
1

⋮
𝑥𝑖𝑡𝑛𝑖𝑡

  
𝛽0

𝛽1
 + 𝑣𝑖  

1
1
⋮
1

 + 𝑢𝑖𝑡  

1
1
⋮
1

 . 

For each region 𝑖,  Equation (1) can be denoted in the form of the following matrix 

 

𝜼𝑖1

𝜼𝑖2

⋮
𝜼𝑖𝑇

 =  

𝑿𝑖1

𝑿𝑖2

⋮
𝑿𝑖𝑇

  
𝛽0

𝛽1
 + 𝑣𝑖

 
 
 
 
𝟏𝑛𝑖1

𝟏𝑛𝑖2

⋮
𝟏𝑛𝑖𝑇  

 
 
 

+

 
 
 
 
𝟏𝑛 𝑖1

𝟎𝑛 𝑖2

𝟎𝑛𝑖1

𝟏𝑛𝑖2

⋮
𝟎𝑛 𝑖𝑇

⋮
𝟎𝑛𝑖𝑇

⋯
⋯
⋱
⋯

𝟎𝑛𝑖1

𝟎𝑛𝑖2
⋯

𝟏𝑛𝑖𝑇  
 
 
 

 

𝑢𝑖1

𝑢𝑖2

⋮
𝑢𝐼𝑇

  

Or 

 

𝜼𝑖 = 𝑿𝑖𝜷 + 𝑣𝑖𝟏𝑛𝑖
+  𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝟏≤𝒕≤𝑻𝟏𝒏𝒊𝒕

 𝒖𝑖 ,     (3) 

 

where 𝜼𝑖 =  𝜼𝑖1
′ , 𝜼𝑖2

′ , … , 𝜼𝑖𝑇
′  , 𝜼𝑖𝑡 =  𝜂𝑖𝑡1 , … , 𝜂𝑖𝑡𝑛𝑖𝑡

 
′
, 𝑿𝑖 =  𝑿𝑖1 , 𝑿𝑖2 , … ,𝑿𝑖𝑇 

′ , 𝑿𝑖𝑡 =

 1, 𝑥𝑖𝑡𝑗  
′
,  𝒖𝑖 =  𝑢𝑖1 , 𝑢𝑖2 , … , 𝑢𝑖𝑇 

′ ,  and  𝑛𝑖 =   𝑛𝑖𝑡
𝑇
𝑡=1 . Component 𝟏𝑛𝑖

 dan 𝟏𝑛𝑖𝑡
respectively 

are vector of  size 𝑛𝑖  and 𝑛𝑖𝑡which all  element are 1.  

For the case of the number of balanced observations in each event area at time 𝑡 or 𝑛𝑖1 =
𝑛𝑖2 = ⋯ = 𝑛𝑖𝑇 , model (1) becomes 
 

𝜼𝑖 = 𝑿𝑖𝜷 + 𝑣𝑖𝟏𝑛𝑖
+  𝑰𝑻 ⨂ 𝟏𝒏𝒊𝒕

 𝒖𝑖     (4) 

 

with𝑰𝑻 is an identity matrix measuring 𝑇 ×  𝑇 and ⨂ is a kronecker product. 

 If defined 𝒁1𝑖 = 𝟏𝑛𝑖
 and 𝒁2𝑖 = 𝑰𝑻 ⨂ 𝟏𝒏𝒊𝒕

 then the model (4) above becomes 

 

𝜼𝑖 = 𝑿𝑖𝜷 + 𝒁1𝑖𝑣𝑖 + 𝒁2𝑖𝒖𝑖.       (5) 

 

Model for all regions to be 

 

 

 

𝜼1

𝜼2

⋮
𝜼𝑚

 =  

𝑿1

𝑿2

⋮
𝑿𝑚

  
𝛽0

𝛽1
 +  

𝒁11

0

0
𝒁12

⋮
0

⋮
0

⋯
⋯
⋱
⋯

0
0
⋯

𝒁1𝑚

  

𝑣1

𝑣2

⋮
𝑣𝑚

 +  

𝒁21

0

0
𝒁22

⋮
0

⋮
0

⋯
⋯
⋱
⋯

0
0
⋯

𝒁2𝑚

  

𝒖1

𝒖2

⋮
𝒖𝑚

  

or         

 

𝜼 = 𝑿𝜷 + 𝒁1𝒗 + 𝒁𝟐𝒖        (6) 

where 𝒁1 = 𝑰𝑚⨂𝒁1𝑖, 𝒁𝟐 = 𝑰𝑚⨂𝒁21, 𝜼 =  𝜼1
′ , 𝜼2

′ , …𝜼𝑚
′  ′ , 𝑿 =  𝑿1 , 𝑿2 , … , 𝑿𝑚  ′  , 𝒗 =

 𝒗1 , 𝒗2 , … , 𝒗𝑚  ′  , 𝒖 =  𝒖1
′ , 𝒖2

′ , … 𝒖𝑚
′  ′ , and𝑰𝑚 is identity matrix size 𝑚 × 𝑚.  

On model (1) assumed 𝑣𝑖 ~𝑖𝑖𝑑 𝑁 0, 𝜎𝑣
2 , so the expected value and covariance matrix of 

vector 𝒗 =  𝑣1 , … , 𝑣𝑚  ′  are 𝐸 𝒗 = 𝟎 dan 𝐶𝑜𝑣 𝒗 = 𝑮𝟏 = 𝜎𝑣
2𝑰𝑚 . 

On  model (5) 𝒖𝑖 is assumed  independent so the expected value and covariance matrix of 

vector 𝒖 =  𝒖1
′ , … , 𝒖𝑚

′  ′  are 𝐸 𝒖 = 𝟎 dan 𝐶𝑜𝑣 𝒖 = 𝑮𝟐 = 𝑰𝑚⨂𝜎𝑢
2𝚪. With  𝚪is symmetrical 

matrix size 𝑇 × 𝑇 which element  𝑡, 𝑡′ is 
𝜌  𝑡−𝑡′  

 1−𝜌2 
 , 𝑡 = 1,… , 𝑇 and  𝑡′ = 1,… , 𝑇.  



 

 

 

 

The form of matrix 𝚪is  𝚪 =
1

 1−𝜌2 
 

1
𝜌
⋮

𝜌𝑇−1

𝜌
⋱
⋮
⋯

⋯
⋯
⋱
𝜌

𝜌𝑇−1

⋮
𝜌
1

 . 

 

 Suppose 𝒚 =  𝑦𝑖𝑡𝑗   is a vector of observations from random variable 𝒀 with𝑖 =

1,2,… , 𝑚, 𝑡 = 1,2,… , 𝑇 , and 𝑗 = 1,2, … , 𝑛𝑖𝑡 .. Let 𝑓1 𝒚|𝒗, 𝒖 , the probability density function 

of 𝒚 with the conditions  𝒗, 𝒖 , 𝑓2 𝒗  the probability density function 𝒗, and 𝑓3 𝒖  ,the 

probability density function 𝒖. 𝒚𝑖 , 𝑖 = 1,… ,𝑚, have Poisson distribution while 𝑓2 𝒗  and 

𝑓3 𝒖 each have normal distribution with zero mean and variance 𝑮1 = 𝜎𝑣
2𝑰𝑚  and 𝑮2 =

𝑰𝑚⨂𝜎𝜀
2𝚪.  The log-likelihood function of 𝑓1 𝒚|𝒗, 𝒖 , 𝑓2 𝒗  dan 𝑓3 𝒖 , is 

𝑙1 = ln 𝑓1 𝒚|𝒗, 𝒖 = 𝐶𝑜𝑛𝑠𝑡 +    𝒚𝑖𝜼𝑖 − exp 𝜼𝑖  
𝑚
𝑖=1        (7)  

𝑙2 = ln 𝑓2 𝒗 = 𝐶𝑜𝑛𝑠𝑡 −
1

2
 ln 𝑮1 + 𝒗𝑇𝐺1

−1𝒗    

𝑙3 = ln 𝑓3 𝒖 = 𝐶𝑜𝑛𝑠𝑡 −
1

2
 ln 𝑮2 + 𝒖𝑇𝐺2

−1𝒖 . 

 

 For 𝑮1 and 𝑮2 which are fixed, 𝜷,𝒗, dan𝒖which maximize the value of 𝑙 = 𝑙1 + 𝑙2 +
𝑙3are referred to as the maximum penalized quasi likelihood (MPQL) estimators. Entering the 

MPQL estimator value into Equation (4) produces an estimate of 𝜼. 

If 𝜎𝑣
2 , 𝜎𝑢

2, and 𝜌 are known,  for instance 𝜎𝑣
2 =  0.5, 𝜎𝑢

2 =  1, 𝜌 = 0.5 and the iterative 

procedure to obtain MPQL estimators from𝜷, 𝒗, dan𝒖is as follows: 

1. Iteration initialization.Starting from 𝑘 = 0 and the initial values 𝜷 =  𝟎. 

2. Get𝚪 =
1

 1−𝜌2 
 

1
𝜌
⋮

𝜌𝑇−1

𝜌
⋱
⋮
⋯

⋯
⋯
⋱
𝜌

𝜌𝑇−1

⋮
𝜌
1

 , 𝑮𝟏 = 𝜎𝑣
2𝑰𝑚 , and 𝑮𝟐 = 𝑰𝑚⨂𝜎𝑢

2𝚪. 

3. Get the initial value𝒗~ 𝑁 𝟎,  𝑮𝟏 , and 𝒖~𝑁 𝟎, 𝑮𝟐 . 
4. Update the values𝜷,𝒗, and𝒖with 

 
𝜷𝑘+1

𝒗𝑘+1

𝒖𝑘+1

 =  
𝜷𝑘

𝒗𝑘

𝒖𝑘

 +  𝑽𝑘
−1  

𝑿′
𝒁𝟏

′

𝒁𝟐
′
 
𝑑𝑙1
𝑑𝜼𝑘

− 𝑽𝑘
−1  

0
𝑮1

−1𝒗𝑘

𝑮2
−1𝒖𝑘

  

 

where 

 

𝑉𝑘 = − 
𝑿′
𝒁𝟏

′

𝒁𝟐
′
  

𝑑2𝑙1
𝑑𝜼𝑘𝑑𝜼𝑘

′  𝑿′ 𝒁𝟏
′ 𝒁𝟐

′  +  

𝟎 𝟎 𝟎
𝟎 𝑮1

−1 0

𝟎 𝟎 𝑮2
−1

  

and  
𝑑𝑙1

𝑑𝜼𝑘
, 

𝑑2𝑙1

𝑑𝜼 𝑘𝑑𝜂𝑘
′  are the first and second derivative  ℓ1 of 𝜂 evaluated on 𝑘 

 
𝑑𝑙1

𝑑𝜂𝑘
=   𝒚𝑖 − exp 𝜼𝑖  𝑘

𝑚
𝑖=1 =   𝒚𝑖 − exp 𝑿𝑖𝜷 + 𝒁1𝑣𝑖 + 𝒁𝟐𝒖𝑖  

𝑚
𝑖=1 𝑘

 

𝑑2𝑙1

𝑑𝜂𝑘𝑑𝜂𝑘
′ =    − exp 𝜼𝑖  𝑘 

𝑚
𝑖=1 =   − exp 𝑿𝑖𝜷 + 𝒁1𝑣𝑖 + 𝒁𝟐𝒖𝑖  

𝑚
𝑖=1 𝑘

.  

5. Do step 2 until you get the values 𝜷, 𝒗,and𝒖that are convergent. 

6. The values of 𝜷, 𝒗,and 𝒖that are convergent are the values estimating 𝜷, 𝒗, dan 

𝒖with known𝜎𝑣
2 and 𝜎𝑢

2.  



 

 

 

 

 Suppose that 𝜷 , 𝒗 ,and 𝒖 are obtained from the above iterations, to get the estimator of the 

component variance 𝜎𝑢
2 and 𝜎𝜀

2, the REML method will be used. As was done in [5] who 
followed [11] defining the adjusted variable 

𝒚∗ = 𝑔 𝒚 ≅ 𝑔 𝝁 +  𝒚 − 𝝁 𝑔′ 𝝁 = 𝜼 + 𝒆  
𝑑𝜼

𝑑𝝁
 = 𝜼 + 𝒆∗ 

where  𝒆∗ = 𝒆 
𝑑𝜼

𝑑𝝁
  so  

𝒚∗ =  𝑿𝜷 + 𝒁1𝒗 + 𝒁𝟐𝒖 + 𝒆∗.       

 (8) 

Variable 𝒆∗ =  𝑒𝑖
∗ is adjusted error term with variance  𝑉𝑎𝑟 𝒆∗ = 𝜏 Σ𝑒

∗ = Σ𝑒
∗  since 𝜏 = 1 is 

dispersion parameter in  Poisson model and  Σ𝑒
∗−1 = 𝑑𝑖𝑎𝑔  𝑉 𝜇𝑖 

−1  
𝑑𝑔−1 𝜂𝑖 

2

𝑑𝜂𝑖
  . 

Model (8) above is linear mixed models with   

𝑉𝑎𝑟 𝒚∗ = 𝐶𝑜𝑣 𝒁1𝒗 + 𝐶𝑜𝑣  𝒁𝟐𝒖 + 𝐶𝑜𝑣  𝒆∗ = 𝒁1𝑮1𝒁1
′ + 𝒁2𝑮2𝒁2

′ + 𝚺𝑒
∗.  

 

Supposed  𝑒𝑖
∗ is assumed independent  so the expectation value and structure of the 

covariance matrix of 𝒆∗ =  𝑒1
∗′ , 𝑒2

∗′  , … , 𝑒𝑚
∗′  are  

𝐸 𝒆∗ = 𝟎 and 𝐶𝑜𝑣 𝒆∗ = 𝚺𝒆
∗ = 𝑰𝑚⨂𝜎𝑒∗

2 𝑰𝑛𝑖
= 𝜎𝑒∗

2 𝑰𝑛 . 

With assumption  𝒗, 𝒖, and  𝒆∗aremutually independent, covariance matrix of  𝒚∗ : 

𝑽∗ = 𝑉𝑎𝑟 𝒚∗ = 𝐶𝑜𝑣 𝒁1𝒗 + 𝐶𝑜𝑣  𝒁𝟐𝒖 + 𝐶𝑜𝑣  𝒆∗  

                               = 𝑍1𝐆1𝑍1
′ + 𝒁𝟐𝐆2𝒁𝟐

′ + 𝚺𝑒
∗ 

                               =  𝑰𝑚⨂𝒁1𝑖 𝜎𝑣
2𝑰𝑚 𝑰𝑚⨂𝒁1𝑖 

′ +  𝑰𝑚⨂𝒁2𝑖 𝜎𝑢
2𝚪 𝑰𝑚⨂𝒁2𝑖 

′ + 𝚺𝑒
∗ 

                               = 𝜎𝑣
2 𝑰𝑚⨂𝒁1𝑖𝒁1𝑖

′  + 𝜎𝑢
2𝚪 𝑰𝑚⨂𝒁2𝑖  𝑰𝑚⨂𝚪𝒁2𝑖 

′ +  𝜎𝑒
2∗𝑰𝑛  

                                  = 𝜎𝑣
2 𝑰𝑚⨂𝒁1𝑖𝒁1𝑖

′  + 𝜎𝑢
2 𝑰𝑚⨂𝒁2𝑖𝚪𝒁2𝑖

′  +  𝑰𝑚⨂𝚺𝑒𝑖  
∗   

= 𝑰𝑚⨂ 𝜎𝑣
2

𝒁 1𝑖

𝒁1𝑖
′ + 𝜎𝑢

2𝒁2𝑖𝚪𝒁2𝑖
′ + 𝚺𝑒𝑖  

∗   

                                 = 𝑰𝑚⨂ 𝜎𝑣
2𝑱𝑛𝑖 + 𝜎𝑢

2 𝚪⨂𝑱𝑛𝑖𝑡  + 𝜎𝑒
2∗𝑰𝑛𝑖  . 

The steps to get variance component estimators are as follows: 

1. Set the initial values for each variance component 

For instance  𝜎𝑣 0 
2 = 0.5, 𝜎𝑢 0 

2 = 1, and  𝜎𝑒 0 
2 = 0.5, then arrange the initial value as 

a vector measuring 3 × 1, Ω0 =  𝜎𝑣 0 
2 , 𝜎𝑢 0 

2 , 𝜎𝑒 0 
2  

′
 

Make a matrix  Γ which is symmetrical matrix  

𝑇 × 𝑇 with   𝑡, 𝑡 ′s element is  
𝜌  𝑡−𝑡′  

 1−𝜌2 
 , 𝑡 = 1, … , 𝑇  and 𝑡′ = 1,… , 𝑇.  

2. Calculate  

𝑽0 = 𝑰𝑚⨂ 𝜎𝑣(0)
2 𝑱𝑛𝑖 + 𝜎𝑢(0)

2  𝚪⨂𝑱𝑛𝑖𝑡  + 𝜎𝑒(0)
2∗ 𝑰𝑛𝑖  . 

Then calculate  𝑽0
−1. 

3. Calculate  𝑸0
−1 =  𝑿′𝑽0

−1𝑿 −1. 

4. Calculate  𝑷0 = 𝑽0
−1 − 𝑽0

−1𝑿𝑸0
−1 𝑿′𝑽0

−1
 . 

5. Calculate  𝑷0𝒚
∗with 𝒚∗ is in (8) 

6. Calculate  

𝑠1 0 =  −
1

2
 𝑡𝑟𝑎𝑐𝑒 𝑷0 𝑰𝑚⨂𝑱𝑛𝑖   +

1

2
𝒚∗′𝑷0 𝑰𝑚⨂𝑱𝑛𝑖  𝑷0𝒚

∗ 



 

 

 

 

𝑠2 0 =  −
1

2
 𝑡𝑟𝑎𝑐𝑒  𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡    +

1

2
𝒚∗′𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡   𝑷0𝒚

∗ 

𝑠3 0 =  −
1

2
 𝑡𝑟𝑎𝑐𝑒 𝑷0𝑰𝑛  +

1

2
𝒚∗′ 𝑷0𝑰𝑛𝑷0𝒚

∗. 

Then arrange as vector 3 × 1, 𝒔0 =  𝑠1 0 , 𝑠2 0 , 𝑠3 0  
′
. 

7. Make  Fisher Information matrix 𝑭0 of 3 × 3 with  each element  are 

𝑭11 =
1

2
𝑡𝑟𝑎𝑐𝑒 𝑷0 𝑰𝑚⨂𝑱𝑛𝑖  𝑷0 𝑰𝑚⨂𝑱𝑛𝑖   

𝑭12 = 𝑭21 =
1

2
𝑡𝑟𝑎𝑐𝑒  𝑷0 𝑰𝑚⨂𝑱𝑛𝑖  𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡     

𝑭13 = 𝑭31  =
1

2
𝑡𝑟𝑎𝑐𝑒 𝑷0 𝑰𝑚⨂𝑱𝑛𝑖  𝑷0𝑰𝑛   

𝑭22  =
1

2
𝑡𝑟𝑎𝑐𝑒  𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡   𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡     

𝑭23 = 𝑭32  =
1

2
𝑡𝑟𝑎𝑐𝑒 𝑷0 𝑰𝑚⨂ 𝚪⨂𝑱𝑛𝑖𝑡   𝑷0𝑰𝑛  

𝑭33 =
1

2
𝑡𝑟𝑎𝑐𝑒 𝑷0𝑰𝑛𝑷0𝑰𝑛  . 

And make  𝑭0 =  
𝑭11 𝑭12 𝑭13 

𝑭21 𝑭22 𝑭23

𝑭31 𝑭32 𝑭33 

 . 

8. Calculate 𝑭0
−1. 

9. Calculate  

Ω1 = Ω0 + 𝑭0
−1𝒔0. 

10. Do it all until Ω1convergence.  

11. The value of Ω1that is convergent are the value estimating 𝛀andthe estimates𝜎𝑣
2 and  

𝜎𝑢
2 are the component 1 and 2 of vector 𝛀. 

Use 𝜎 𝑣
2 and  𝜎 𝑢

2 from the REML procedure above as initial value of MPQL iteration to get 

the new 𝜷 , 𝒗 ,and 𝒖 .  And now the steps as follows : 

1. Update value  𝜼 = 𝑿𝜷 + 𝒁1𝒗 + 𝒁𝟐𝒖using 𝜷 , 𝒗 ,and 𝒖 from the latest MPQL iteration 

𝜂𝑖𝑡𝑗 = 𝛽0 + 𝑥𝑖𝑡𝑗
′𝛽𝟏 + 𝑣𝑖 + 𝑢𝑖𝑡  

2. 𝐸 𝑦𝑖𝑡𝑗 |𝑣𝑖 , 𝑢𝑖𝑡 = 𝜇𝑖𝑡𝑗 = exp 𝜂𝑖𝑡𝑗  .  

3. 𝐸 𝒚𝑖𝑡 |𝑣𝑖 , 𝑢𝑖𝑡  =  𝐸 𝑦𝑖𝑡𝑗 |𝑣𝑖 , 𝑢𝑖𝑡 
𝑛𝑖𝑡
𝑗=1 . 

4. 𝐸 𝒚𝒊|𝑣𝑖 , 𝑢𝑖𝑡  =  𝐸 𝑦𝑖𝑡 |𝑣𝑖 , 𝑢𝑖𝑡  
𝑇
𝑡=1  

 

3Result and Discussion 

As explained earlier, modeling is done on training data. The variable that is of concern 𝑦𝑖𝑡𝑗  is 

number of claims to 𝑗 from the region of events to 𝑖 and the month of events to 𝑡 with 𝑖 =
 1,2, . . . , 35, 𝑡 =  1,2, . . . , 10  and 𝑗 =  1,2, . . . , 5. 𝑦𝑖𝑡𝑗  is assumed to follow  Poisson 

distribution with 𝐸 (𝑦𝑖𝑡𝑗 | 𝑣𝑖 , 𝑢𝑖𝑡 )  =  𝜇𝑖𝑡𝑗  with the proposed model is 

log 𝜇𝑖𝑡𝑗 = 𝜂𝑖𝑡𝑗 = 𝑥𝑖𝑡𝑗
′𝜷 + 𝑣𝑖 + 𝑢𝑖𝑡  



 

 

 

 

𝑢𝑖𝑡 = 𝜌𝑢𝑖,𝑡−1, 𝜌 < 1, 

 

with 𝑥𝑖𝑡𝑗  is the size of the deductible on the claim to 𝑗 from the region of occurrence to 𝑖 and 

the month of occurrence to 𝑡, and 𝜌 is the autoregressive coefficient specified,  

𝑣𝑖~ 𝑖𝑖𝑑 𝑁  0, 𝜎𝑣
2  is the random effect of the event region 𝑖 and the component 𝜌 =

0.5. 𝑢𝑖𝑡 ~ 𝑖𝑖𝑑 𝑁  0, 𝜎𝑢
2  is the random effect of region-time which is assumed to follow the 

first-order autoregressive process. The random effects 𝑣𝑖 and 𝑢𝑖𝑡  are assumed to be mutually 

independent. The initial value are 𝛽0 =  0, 𝛽1 =  0, 𝜎𝑣
2 =  0.5,  and 𝜎𝑢

2 =  1 which refers to the 
research of [5]. 

In Table 1, there is an estimator of the fixed effect coefficient of the model using the MPQL 

algorithm. In Table 2, the estimation of variance from random influences is used using the 

REML method. 

Table 1  Fixed Effect Coefficient Estimator 

 
 Estimate 

𝛽0 1.33e-01 

𝛽1 -1.24e-07 

 

Table 2  Estimates of variance from random effects 

 
 Estimate 

Variance  𝑣 0.002 

Variance  𝑢 0.001 

 

The parameter estimation results in Table 1 and Table 2 are then used to find the estimation of 

number of  claims to 𝑗 in the month of occurrence 𝑡 and the region of occurrence 𝑖, 𝑦 𝑖𝑡𝑗 . Then 

the estimator 𝑦 𝑖𝑡  is obtained by summing 𝑦 𝑖𝑡𝑗 for all 𝑗.  

 

 To measure the accuracy of the estimates used MAPE. According to [8] the calculation 

of mean absolute percentage error (MAPE) is done with the following formula: 

𝑀𝐴𝑃𝐸 =  
1

𝑛 
 

 𝑦 𝑡 − 𝑦𝑡  

𝑦𝑡

𝑛

𝑡=1

× 100 

with  𝑛number of observation, 𝑦 𝑡 prediction value at time  𝑡, dan 𝑦𝑡 observation at  time 𝑡.  
 

 On Table 3 the calculation of MAPE’s values is given in each region with training data. 

According to Palmer et al. (2013), MAPE’s values that are less than 10% show highly 

accurate predictive values, MAPE values ranging from 10 to 20% show good predictive 

values, MAPE’s values between 20 and 50% show fairly good predictions, and MAPE’s 
values that are more than 50% shows inaccurate predictions. In Table 3, it can be seen that the 

MAPE’s values in all regions of the event in training data is less than 20%. This shows that in 

all occurrences the model predictive value is good. Even in the 18 regions of the model 

showed very accurate predictive values. Only 5 regions have MAPE’s values between 10 and 

20%. 

 

  



 

 

 

 

Table 3 MAPE’s  value on each region using training data 

 

Area code MAPE (%) Area code MAPE (%) 

01 10.3 20 11.75 

02 7.56 21 16.31 

03 7.25 22 8.44 

04 8.59 24 9.71 

05 8.66 25 7.56 

06 8.76 26 7.53 

07 8.34 27 10.48 

08 11.89 31 8.65 

13 10.01 32 7.78 

14 9.17 33 8.59 

16 9.79 34 7.76 

19 8.13     

 

Table 4 explainMAPE’s value on each region using testing data. As similar to training data, 

theMAPE’s value in the testing data also appears to be less than 20%. Even the MAPE value 

of testing data is generally smaller than the MAPE’s value in the training data. Table 3 and 

Table 4 show us that the model showed very accurate to predict the number of claim in some 

region and time of occurrence.  

 

Table 4 MAPE’s value on each region using testing data 

. 

Area Code 

MAPE 

(%) Area Code  

MAPE 

(%) 

01 10.68 20 8.72 

02 6.39 21 13.18 

03 6.92 22 9.52 

04 7.37 24 6.73 

05 8.58 25 6.10 

06 9.78 26 8.72 

07 9.70 27 8.04 

08 5.79 31 8.03 

13 6.02 32 7.6 

14 9.44 33 9.39 

16 4.55 34 6.65  

19 7.48     

 

 



 

 

 

 

4Conclusion 

 Generalized linear mixed models can be used to predict the number of claims that occur 

in a particular area of events and time events. Assuming the number of claim is following a 

Poisson distribution and the timing of events following the first-order autoregressive process, 

it can be generated number of claim  models with estimators of fixed effect parameters 

𝛽0 =  1.33𝑒 − 01 and 𝛽1 =  −1.24𝑒 − 07 and, estimator component variance 𝑣 =  0.02 and 

component variance 𝑢 =  0.001. Modeling on training data produces accurate models in 

almost all regions included in the model. Similarly, the testing data produced accurate models 

in all regions. This are indicated by the MAPE values which are less than 20% in all regions 

on both training and testing data.  
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