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Abstract.Statistical downscaling (SD) is one of the techniques used in climate modeling 
by utilizing global scale data using general circulation models (GCM) output data, to 
obtain conclusions on a local scale such as rainfall. Currently, the inference of Bayes 

spatio-temporal regression in SD modeling is still used MCMC method, with 
convergence issue problem and very high demands for computational resources. When 
the spatio-temporal model is complex and designed hierarchically, MCMC computing 
becomes inefficient. Therefore, this paper aims to predict observed and unobserved 
locations, using Bayes spatio-temporal model with efficient, fast, accurate and developed 
inference method, INLA. The response variable is monthly rainfall at 57 locations in 
West Java, Indonesia, observed from 1981-2017 and assumed to have normal 
distribution. The explanatory variables consist of spatial and temporal random effects and 

fixed effects of monthly precipitation GCM with 8x5 dimensions (40 variables) and the 
dimension is reduced with PCA. Our model successfully predicts monthly rainfall for 
observed and unobserved locations using spatial characteristics from nearly locations, 
and primely capture the monthly rainfall trends in annually cyclic behavior. The 
correlations between predict and real rainfall data is about 0.8 (for 0.65, 0.8 quantile) and 
0.7 (for 0.95, 0.975 high quantile) with RMSEP is 151 for low (0.65) quantile. At the end 
of the research results, we present the regional rainfall for the entire West Java region. 
The eastern part near the central Java border has higher rainfall, as well as the west, 

while the north and south have lower rainfall. 

Keywords: Bayes spatio-temporal, INLA (integrated nested Laplace approximation), 
PCA (principal component analysis), statistical downscaling, West Java rainfall region. 

1   Introduction 

Statistical downscaling (SD) is a statistical technique used to conduct future projections 

from responses in the form of local climate data, with explanatory variables using global 

circulation model (GCM) output data. Several recent studies in various countries actively used 

GCM for SD modeling including [12] who studied present and future climate projections in 

China and [2] used SD modeling to achieve projections of precipitation extremes in New 

England. In GCM data, global climate variables are simulated on each grid for each 

atmosphere layer, therefore GCM are in the form of grids, rough spatial resolution, large 
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dimensions and multicollinearity. There are several studies for weather and climate prediction 

by utilizing various techniques to overcome these data problems. [7] used the group lasso 
regularization technique, [11] using lasso and principal component analysis, [10] using 

functional principal component, and [6] using elastic net regularization technique. These 

studies use GCM data to predict the amount of rainfall in several regions of Indramayu 

Regency, West Java, Indonesia. 

Climate modeling is a representation of complex phenomena, which involve spatial, 

temporal, spatial and temporal interactions, regional topography and other influences. The 

Bayes method is one solution in representing these complex phenomena, because the 

complexity of the model can be represented by designing a hierarchical structure for data and 

its parameters. Several studies have focused on Bayes modeling with MCMC inference for 

spatio-temporal data, including [13] analyzed annual minimum temperatures for the past 6 

decades in Mindland, China, and assumed the data to have GEV distribution, data is assumed 
to be stationary and arranged hierarchically. [4] used a dynamic linear model based on GEV 

distribution on monthly maximum wind speed data.  

MCMC methods are extensively used for Bayesian inference, however their limitation 

resides in their computational burden. Moreover, MCMC method in spatio-temporal 

modelling is no longer efficient and may caused non-convergence to the posterior distribution 

[1]. To overcome this issue, the integrated nested Laplace approximations (INLA), a 

deterministic algorithm proposed by [8], has proven capable of providing accurate and fast 

results [8], [9]. [5] used the hierarchical Bayes method with INLA inference to model daily 

precipitation data in Norway. 

Although INLA has been applied to spatio-temporal modeling for weather and climate 

prediction, the application of INLA inference to SD modeling is still rare or even not yet 

available. Therefore, the uniqueness of this paper is to combine SD modeling by involving 
GCM data as a global explanatory variable and spatio-temporal modeling involving local 

responses. Large dimension and multicollinearity of GCM data is overcome by using the 

principal component analysis (PCA), then the selected principal components are used as the 

explanatory variable in the spatio-temporal model whose inferences are obtained by INLA. In 

more detail, using the Bayes spatio-temporal in SD model, this paper aims to predict the local 

response of the observed and unobserved locations by assuming the response has a normal 

distribution. The model is based on linear additive mixed models, where in addition to the 

GCM explanatory variables as a fixed component, there are also spatial and temporal random 

components that can flexibly capture spatial and temporal dependencies. In the remainder of 

this paper, we present the datasets description, the detailed methodology of Bayes spatio-

temporal in SD model with INLA inference, reported results and discussions. Some 
concluding remarks and possible future development are also summarized in the end of this 

paper. 

2   Materials: Data Sources and Descriptions 

2.1 Rainfall as a Local Response and GCM as a Global Fixed Explanatory Variables 

 

Rainfall as a Local Response. The local response dataset, derived from Indonesian National 

Board for Disaster Management (or simply BMKG), consisted of monthly rainfall 

accumulations recorded in milliliters at 57 stations during the period 1981 – 2017. The data 
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were divided into training set (January 1981 – December 2005) which was made available to 

spatio-temporal model, and a validation set (January 2006 – December 2017) which was used 
to assess quantile predictions. In the training period, we have a mixed dataset comprised of 12 

unobserved (poor station) (station 4, 6, 13, 22, 26, 30, 32, 33, 40, 42, 47 and 50) and 45 

observed (rich station) (the rest stations). In validation set, the data varies greatly. Only 1 

station that have full sample size n = 144, while as many 8 stations that have sample sizes n < 

30 with minimum sample size n = 2. The exact coordinates of stations are shown in Figure 1, 

stations location is the location of rainfall observation in West Java, Indonesia. 

 

GCM as a Global Fixed Explanatory Variables.The GCM data used was precipitation, 

which was issued by the National Centers for Environmental Prediction (NCEP) in the form of 

Climate Forecast System Reanalysis (CFSR). In this study the variables used were the average 

precipitation rate taken from the website https://rda.ucar.edu/. The GCM data has a grid type 
and covers all of the West Java, with grid size is 2.5° × 2.5° and 8x5 dimensions (40 

variables). 

 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Map of monitoring locations colored according to the estimated spatial random effect in equation 
(1). 

3Methods 

The PCA is used as a pre-processing technique to obtain latent variables that are 

orthogonal and are linear combinations of the covariates. In this study used a cumulative 

variance proportion ≥ 90% and the eigen value > 1. The scree-plot not shown in this paper, 

https://rda.ucar.edu/


 

 

 

 

but it suggests to take the number of latent orthogonal variables as many as 3 PCs. These first 

three PCs then will used in our proposed Bayes spatio-temporal in SD model (equation (1)).  
 

3.1 Spatio-temporal Bayes in SD Modeling and INLA Inference 
 

Spatio-temporal Bayes in SD Modeling. The proposed model based on linear additive mixed 

property that have high flexibility and interpretability by involving the spatial and temporal 

random effects as explanatory variables. Let𝑌 𝑠, 𝑡 is monthly rainfallin specific spatial 

location 𝑠 = {𝑠1 , 𝑠2 ,… , 𝑠57 } ∈ 𝑆where𝑆 ∈ ℝ2and time𝑡 ∈  1,2,… ,𝑛 . 𝑌 𝑠, 𝑡 is assumed to 

have normal distributionwith mean 𝜂 𝑠, 𝑡 > 0and variance𝜎𝑒
2. To represent location and time 

diversity in spatio-temporal parameters, formulated regression equations are inhaled additives, 

which are summations of spatial and temporal random components which are assumed to be 

separable, as follows: 

𝜂 𝑠, 𝑡 = 𝛽0
Nor + 𝑥Nor  𝑠 +𝑥Nor  𝑡 + 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2 + 𝛽3𝑃𝐶3 , (1) 

where 𝛽0
Nor is the intercept and 𝛽𝑖 , 𝑖 = 1,2,3are coefficients for the selected PCs of GCM data 

as fixed effects, assumed  𝛽1  ,𝛽2 ,𝛽3 ,𝛽0
Nor ~Normal 0, 105 ,𝑥Nor  𝑠  and 𝑥Nor  𝑡  are the 

spatial and temporal random effects respectively. We assume 

log 𝜏 = 1/𝜎𝑒
2 ~ log Gamma 1,0.00005 . 

The spatial random effects are the realization of Gaussian process and the spatial 

dependency follow Matérn covariance function as 

Cov 𝑥 𝑠1 , 𝑥 𝑠2  = 𝜏𝑠
−1

21−𝑣

Γ 𝑣 
 
 2𝑣ℎ

𝜓
 

𝑣

𝐾𝑣  
 2𝑣ℎ

𝜓
 , 

(

(2) 

with𝜎2 = 𝜏𝑠
−1 > 0is the variance of locations𝑠, ℎ =  𝑠1 − 𝑠2 is the Euclidean distance 

between location𝑠1 , 𝑠2 ∈ 𝑺, 𝐾𝑣is the modified Bessel function of order 𝑣, 𝑣 = 1and𝜓 > 0 is a 

range parameter that plays animportant role in the process of spatial smoothing. We perform 

the distance so that the correlation near 0.1 using local regression method and derived 𝜓 is 

about 106 km. 

Random walk (RW) of order 2 generally used to model response functions and is a key 

role in the temporal smoothing process. RW of order 2 with density function as follows: 

𝜋 𝒙 ∝ exp −
1

2
  𝑥𝑖−1 − 2𝑥𝑖 + 𝑥𝑖+1 

2

𝑛−1

𝑖=2

 , (3) 

where𝒙 =  𝑥1 ,𝑥2 ,… ,𝑥𝑛  
𝑻. The temporal effects 𝑥Nor  𝑡  are defined assumed to have a 

normal distribution that follows a random walk of order 2 with mean 0 and precision 𝜏𝑡 > 0 is 
the temporal smoothing parameter, assumed in monthly basis and annually cyclic. 

 

INLAInference. Let𝑦 𝑠𝑖 , 𝑡𝑖 =  𝑦1 ,𝑦2 ,… ,𝑦𝑚  = 𝒚, 𝑖 = 1,2,… ,𝑚 is the observation data 

with the latent Gauss explanatory variable declared as 𝜼 =  𝜂1 ,𝜂2 , . . ,𝜂𝑚  
𝑇then𝜂𝑖 = 𝛽0 +

𝑥 𝑠𝑖 + 𝑥 𝑡𝑖 ,  𝜽𝑦  is a vector for hyperparameters for data distribution y, and vector for 

hyperparameters for spatial and temporal random component is𝜽𝑥 . So that the distribution of 

prior hyperparameters is defined as𝜋 𝜽 with𝜽 =  𝜽𝑦 ,𝜽𝑥 , with Gaussianprobability𝒙can be 

written as𝜋 𝒙 𝜽𝑥 . Let𝜋 𝑦𝑖 𝜂𝑖 ,𝜽𝑦 is alikelihoodfrom𝑦𝑖with condition the explanatory 

variables𝜂𝑖andlikelihoodfrom hyperparameters𝜽𝑦 , then the joint posterior for vector 𝒙and 

hyperparameters𝜽can be determined with Bayesian formulas as follows 

𝜋 𝒙,𝜽 𝒚 ∝ exp  −
1

2
𝒙𝑇𝑄 𝜽𝑥 𝒙 +  log𝜋 𝑦𝑖 𝑥𝑖 ,𝜽𝑦 

𝒊

+ log𝜋 𝜽 + log𝐾 𝜽𝑥   (4) 



 

 

 

 

where𝑄 𝜽𝑥 is a precision matrix (i.e inverse of the covariance matrix), and𝐾 𝜽𝑥 is a 

normalized constant derived from hyperparameters𝜽𝑥 . 

INLA is an analytical Bayes-based inference, which can be applied to the generalized 

additive model that is complex and hierarchical, with the latent Gauss variable as in the 

equation (4). INLA produces an approximation to the two posterior distributions of the 

following single variables: 

𝜋 𝜃𝑘 𝒚 =  𝜋 𝒙,𝜽 𝒚 dx d𝜽−𝑘 , (5) 

𝜋 𝑥𝑖 𝒚 =   𝜋 𝒙,𝜽 𝒚 d𝒙−𝑖d𝜽 =  𝜋 𝑥𝑖 𝜽,𝒚 𝜋 𝜽 𝒚 d𝜽, (6) 

where𝑖 = 1,2,… ,𝑚 with𝑚  is the length of the vector 𝒙. The Laplace approximation is applied 

nestedly, the first approximation is done to determine the posterior distribution of the 

hyperparameter  𝜋 𝜽 𝒚 at equation (5), and the second approximation is done to the posterior 

distribution of parameters 𝜋 𝑥𝑖 𝒚 atequation (6). For more details on INLA estimation 

procedure and its statistical properties can be seen in [3], [9].We perform the model inference 

using the R package R-INLA, which is convenient, easy to use and available free in a highly 

developed website for Bayesian inference with INLA, http://www.r-inla.org/. 

 

 

4Results and Discussions 
 

Results and Discussions. Here, we provide further results, interpretations and discussions for 

Bayes spatio-temporal in SD model as in equation (1). We derived spatial and temporal 

random component as in Figure 2. Black dots and curves denote posterior mean and blue 

segments and curves are 95% pointwise credibility interval.  The spatial random components 
have significant and almost significant for observed locations. As expected, the credible 

interval for poor or unobserved location is quite large compared to those at the rich stations, 

except for station 13, it is because, station 13 is very close to the rich station 14, which 

confirm that the proposed model successfully borrows the strength of rich stations to nearly 

locations. The captured temporal trend of monthly rainfall is clearly visible and very 

significantly different from zero, so it provides very important information for the behavior of 

the annual rainfall cycle. It has significant positive effects in rainy season at the end of the 

year, increase from October to January, and decrease to April. The dry season occurs until the 

beginning of October with significant negative effects.  

The estimated spatial random effects from model in equation (1) is presented in Figure 1. 

The poor stations have unique spatial effects and the model shows that nearly locations have 

the same spatial characteristics. Table 1 presents a summary of estimated posterior of 𝛽0
Nor , 

the regression intercept, and 𝛽𝑖 , 𝑖 = 1, 2, 3 , the coefficients for the selected PCs. Overall, the 

posterior mean of fixed effects has significant effects, except for 𝛽2. The regression intercept 

𝛽0
Nor = 12.39 means that the monthly rainfall is not center at zero, while 𝛽1 and 𝛽3 have 

significant effects, which means that the selected GCM variables have a significant influence 

on monthly rainfall in each spatial location. 
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Fig. 2. Spatial random effects (a) and temporal (monthly) (b) random effects. 

 

Table 1.Estimated posterior of fixed effects. 

Fixed effects Mean Standard Deviation Credibility Interval 

𝛽0
Nor  12.39 0.29 (11.87, 12.97) 

𝛽1 0.52 0.03 (0.47, 0.58) 

𝛽2 -0.01 0.05 (-0.10, 0.09) 

𝛽3 -0.66 0.06 (-0.77, -0.54) 

Our goal is to predict quantile monthly rainfall for observed and unobserved locations 

from derived model parameters. Using validation data as stated in previous section, the results 

are presented in Table 2. The higher the quantile value, the smaller the correlation mean and 

for the opposite for the RMSEP. The estimated rainfall has a highest correlation and the 
lowest RMSEP for low quantile value (quantile 0.65), this show that the assumption of a 

normal rainfall distribution produces good results only for low quantile value. 

We also do an exploration to find out more details about the RMSEP values for rich and 

poor stations status along with terrain types such as lowland with 0-200 meters above sea 

level, medium land (> 200-500) and highland (> 500). The result is presented in Table 3. For 

low quantile (quantile 0.65) and medium quantile (quantile 0.8), there is a considerable 

difference between RMSEP of rich and poor station. Rich station with a sufficient number of 

observations having a much smaller RMSEP value compared to poor stations. For the types of 

terrain, the lowest RMSEP is lowland, this result is related to the variance of rainfall from 

each type of terrain. From local rainfall data, the medium land has the highest variance of 

rainfall, followed by the highlands, and the lowlands have the lowest variance of rainfall. 
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January February March 

April May June 

Table 2.Goodness of estimated quantile monthly rainfall 

Quantile CorrelationMean RMSEP Mean 

0.65 0.81 150.66 

0.80 0.80 199.46 

0.95 0.74 293.76 
0.975 0.71 316.33 

Table 3.RMSEP mean of various stations. 

Quantile Rich Poor 
Terrain types 

Low Medium High 

0.65 148.32 205.87 119.02 226.64 166.06 

0.80 195.35 236.41 161.40 287.17 219.83 

0.95 286.15 284.82 243.79 433.00 308.48 

0.975 308.66 293.81 262.65 469.98 330.10 

 
At the end of the results of this research, from the estimated model values in equation 

(1), we present rainfall zoning for all regions in West Java province, Indonesia, using the 

classical non- parametric method i.e. local regression. Using 0.65 quantile, Figure 3 presents 

the regional rainfall of the entire West Java Province. The eastern part near the central Java 

border has higher rainfall, as well as the west which borders DKI Jakarta and Banten, while 

the north and south have lower rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

July August September 

October November December 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Regional rainfall of West Java, quantile 0.65. 

 

4Conclusions and Possibilities for Future Research 

 
 This paper predicts the amount of monthly rainfall even for locations where no data have 

been recorded. The proposed model use Bayesian approach with linear mixed in SD modeling, 

with additively involve spatial and temporal random component to capture the flexibility in 
hierarchical spatio-temporal data modeling, and fixed effects derived from selected GCM 

precipitation data with dimension reduction and multicollinearity data handling using the 

PCA. The spatial characteristic and annually cyclic temporal trend are derived with significant 

or almost significant for rich stations and a few for poor stations. It means the proposed model 

systematically able to capture spatial and temporal linkages between locations. Generally, the 

selected GCM precipitation data has a significant influence on local rainfall conditions, this 

indicates that the selected GCM variables can also be used for projection of long-term climate 

conditions for the West Java region. The proposed model successfully predicts even for the 

unobserved locations with good correlation mean overall, with RMSEP mean is about 151 

millimeters for low quantile 0.65.  

 For spatio-temporal cases with many unobserved locations and imperfect validation data, 

our predicted quantile is good overall although certain aspects could be improved. The Bayes 
spatio-temporal in SD model could be made more complex if required by the context. We can 

enhance other additional fixed effects like altitude or by including more complex random 



 

 

 

 

effects like space-time interaction. However, the proposed model restricted to the above 

structure, which was flexible enough and provided robust and interpretable results. Dimension 
reduction results are very dependent on the reduction technique used. Other dimensional 

reductions can be used such as lasso [11] or functional principal component because GCM 

data is believed to form a function [10] The resulting regional rainfall of West Java will 

depend on the location of the selected sample points and the non-parametric methods used. 

West Java's topography is very diverse, consisting of low and high land, hilly natural 

conditions and bordering the oceans, making meteorological conditions very varied. This 

means that the processes involved in this area are processes that are not stationary. Estimating 

the non-stationary data is a difficult task, however this work has positively contributed in 

advancing methods in the current literature. 
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