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Abstract.Small area estimation (SAE) is a statistical technique to predict the parameter 
of subpopulation with small or even zero sample size. An area with zero sample size can 
be estimated with the support of cluster information. The area random effect assumed has 

a similarity between region and can be analyzed by clustering the auxiliary variables. In 
SAE, Mean square error (MSE) is used to compare the precision of parameter estimates. 
But, there is no study that discuss the MSE of non-sampled area in SAE. The main idea 
of this research is to modify the existing statistical method by adding the cluster 
information with the assumption that there are similar characteristics of similar areas. 
The new method was evaluated by data simulation and case study to check the 
performance. The data simulation show that all modified methods produce a relatively 
similar MSE of non-sampled area.. 

Keywords: Clustering non sampled area, Mean Square Error, Small Area Estimation. 

1   Introduction 

According to Rao, Small Area Estimation (SAE) is a method to estimate the parameters 

of subpopulation with small sample size9. In this case, small area means an area that cannot be 

directly estimated because it can produce a very large standard error. 

One of the most widely used SAE method is Empirical Best Linear Unbiased Prediction 

(EBLUP). The model was first applied by Fay and Herriot  to estimate per capita income in 

small places based on survey data from American Census Bureau8. The EBLUP estimator 

used by them is a weighted average of the direct estimation and a regression estimation that 

obtained by fitting linear regression equation to the data. fay-herriot combine two main ideas 
of SAE in EBLUP, that is the combination of diversity of target variable can be explained by 

auxiliary variable and the specific area random effect that cannot be explained by auxiliary 

variable. Therefore, Fay-Herriot model is also commonly known as linear mixed model. 

Because of the small sample size, usually there are several areas that do not have sample. 

Because of that, the direct estimation of that area cannot be estimated. Non sampled area can 

be estimated with only synthetic estimation or using cluster information that recently 

introduced by rahma annisa1. Gonzales stated that synthetic estimation is an indirect 

estimation that using variable characteristic of large sample area to estimate the variable of 

small sample size5. Synthetic estimation uses an assumption that an area with small sample 

size have a similar characteristic with large sample size area. However, synthetic estimation 

doesn’t take into account effect of random area. Non sampled area doesn’t have area random 
effect, so there will be bias in the estimation. 
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To overcome the bias in synthetic estimation, rahma annisa uses cluster information of the 

same characteristic with non sampled area to improve the precision of the estimation1. Rahma 
annisa stated that random area effect have a similarity between areas and can be analyzed by 

clustering the auxiliary variable. The cluster information can be added to the model to improve 

the estimatied result of non sampled area estimation. One of the proposed model by Rahma 

annisa is to add the average of random area effect of the sampled area to the non sampled area 

synthetic estimation with the same cluster. By using this technique, the estimation has a 

smaller mse and bias compared to synthetic estimation. 

In research study, error can be very important because it can determine the validity of the 

model. One way to see the precision of the estimator is using Mean square error (MSE)7. MSE 

is the average difference in estimation  and true value. Therefore, low MSE mean the 

estimation is close to true value of the variable. In SAE there are 3 approach that usually used 

to calculed MSE, there are Prasad-Rao Estimator8, Using the Jackknife concept by Jiang and 
Lahiri6 and with Bootstrap approad used in Butar and Lahiri2. The Prasad-Rao estimator is the 

most widely used method because it can be easily applied and usually the fastest to calculate. 

Meanwhile, Jackknife and Bootstrap approach uses resampling method and usually take 

longer to calculate. The resampling method is a nonparametric method in statistic that 

calculate the MSE by looking at the statistical change from the subsample that drawn from the 

sample itself. The most basic difference between bootstrap and jackknife is that bootstrap 

using resampling with replacement and jackknife using resampling without replacement. 

Therefore, the value of MSE from bootstrap tends to change every time a calculation is made. 

However, for a large repetition these change tend to shrink to a certain point. Meanwhile, for 

jackknife approach, the estimated value of MSE will be the same. 

Until now, there is still no research that discussing the estimation of MSE for non-

sampled area in SAE. Whereas, the calculation of MSE is very important in parameter 
estimation, because it can determine the precision of the model and the feasibility of the 

estimation result to be published. Therefore in this study we propose a calculation method to 

estimate the MSE of non sampled area in SAE using cluster information. The estimation of 

MSE will be carried out by utilizing the cluster information using three approach , namely 

Prasad-Rao Estimator, Bootstrap and Jackknife.  

To evaluate the proposed model, we conduct a data simulation based on a reference 

research data that use cluster information to estimate non sampled area in SAE by Rahma 

Annisa1. After that, the developed method will be applied to estimate the average expenditure 

per capita of west java resident at the sub-district level based on data from March 2018 

SUSENAS and 2014 podes that obtained from Badan Pusat Statistik (BPS). 

2   Materials 

We use 2 type of data in this research. The first data are simulation data that generated by 

computer. The generated data is based on the research study by rahma annisa1. But there are 

small modification in generating auxiliary variable for cluster and generating variance of 
direct estimation. For easy instruction in simulation study, you can see the flowchart below. 



 

 

 

 

 
 

Fig. 1.Simulation Study Flowchart. 

The second data is case study from a real world data. The direct estimation of sub-district 

was obtained from March 2018 SUSENAS and only covered a portion of sub-districts in West 

Java. Meanwhile, PODES are used as auxiliary variable and as the basis for clustering 

information analysis. 

 

3Method 

The SAE model that used in this paper is EBLUP area level. This method is the 

development of Best Linear Estimation (BLUP) that introduced by Henderson
3
. This model 

assuming that area-specific random effect and sampling error are identically and independent, 

or we can say that 𝑣𝑖~𝑁(0, 𝜎𝑣
2) and  𝑒𝑖~𝑁(0,𝛹𝑖). 𝜎𝑣

2 is area random effect variance and 𝛹𝑖 is 

direct estimation sampling variance. BLUP model that Henderson (𝜃 𝑖
𝐻) proposed is: 

𝜃 𝑖
𝐻 = 𝑧𝑖

𝑇𝛽 + 𝛾𝑖 𝜃 𝑖 − 𝑧𝑖
𝑇𝛽     (1)  

Or 

𝜃 𝑖
𝐻 = 𝛾𝑖𝜃 𝑖 + (1 − 𝛾𝑖)𝑧𝑖

𝑇𝛽     (2) 



 

 

 

 

Where : 

𝛾𝑖 =
𝜎𝑣

2𝑏𝑖
2

(𝛹𝑖+𝜎𝑣
2𝑏𝑖

2 )
    (3) 

  

𝛽  : is Best Linear Unbiased Estimator (BLUE) from 𝛽 that can be estimated with 

𝛽 = 𝛽  𝜎𝑣
2 =   

𝑧𝑖𝑧𝑖
𝑇

(𝛹𝑖+𝜎𝑣
2𝑏𝑖

2)

𝑚
𝑖=1  

−1

  
𝑧𝑖𝜃 𝑖

(𝛹𝑖+𝜎𝑣
2𝑏𝑖

2)

𝑚
𝑖=1    (4)  

𝜃 𝑖 : direct estimation from area-i 

𝑧𝑖  : area-specific auxiliary variable 

𝑏𝑖 : random effect constants 

𝑣𝑖 : area-specific random effect 

𝛹𝑖 : direct estimation variance 

𝜎𝑣
2 : area random effect 

𝑚  : number of area  

From we can see that 𝜃 𝑖
𝐻 is weighted average of direct estimation and synthetic estimation 

with 𝛾𝑖 as a weight. 𝛾𝑖 indicating how much the model affecting direct estimation. It was 

measured by comparing model variance random effect (𝜎𝑣
2𝑏𝑖

2) and total variance (𝛹𝑖 + 𝜎𝑣
2𝑏𝑖

2).  
BLUP still using the assumption that variance random effect from the area are known. In 

real life data variances random effect is nearly impossible to compute, so we use estimation of 
variance random effect from samples data. By estimating variance random effect component 

from sample, it became Empirical Best Linear Unbiased Prediction (EBLUP). To estimate 𝜎𝑣
2 

there are several method such as Moment, Maximum Likelihood (ML) and Restricted 

Maximum Likelihood (REML). In this study we use REML to estimate the variance of area 

random effect. 

To estimate the estimation of non sampled area in small area estimation we use the first 

model of Rahma Annisa
1
. In this model we add the average area random effect to the synthetic 

estimation of non sampled area of the same cluster. The model is: 

Population model : 

𝑦𝑖𝑗𝑘 = 𝛽𝑥𝑖𝑗𝑘 + 𝑣𝑖 + 𝑒𝑖𝑗𝑘     (5) 

Sampled area model: 

𝑦 𝑖𝑗𝑘 = 𝛽 𝑥𝑖𝑗𝑘 + 𝑣 𝑖     (6) 

Non sampled area model : 



 

 

 

 

𝑦 𝑖𝑗𝑘 = 𝛽 𝑥𝑖𝑗𝑘 + 𝑣  𝑖(𝑘)    (7)

  

where: 

𝑣  𝑖(𝑘) =
 𝑣 𝑙

𝑚
𝑙=1

𝑚𝑘
     (8)

  

with𝑚𝑘 is number of area in cluster k. 

𝛽  : model koefisien 

𝑣 𝑖 : random area effect from sample 

𝑥𝑖𝑗𝑘  : auxiliary variabel 

To estimate the MSE of non sampled area we use three method of MSE estimation. There 

is Prasad-Rao Estimator, Jackknife approach and Bootstrap approach. For each method we 
modify the formula to use cluster information in case there are no data in non sampled area. 

The first and mainly used MSE estimation is Prasad-Rao Estimator8. It was designed 

according to taylor series expansion. The formula for Prasad-Rao Estimator is: 

𝑀𝑆𝐸(𝑦 𝑖
𝐸𝐵𝐿𝑈𝑃 ) = 𝑔1𝑖(𝜎 𝑣

2) + 𝑔2𝑖(𝜎 𝑣
2) + 2𝑔3𝑖(𝜎 𝑣

2)  (9)

  

Where : 

   𝑔1𝑖(𝜎 𝑣
2) =

𝜎 𝑣
2𝜓 𝑖

(𝜓 𝑖+𝜎 𝑣
2)

= 𝛾 𝑖𝜓𝑖     (10) 

 𝑔2𝑖(𝜎 𝑣
2) = (1 − 𝛾 𝑖)

2𝑥𝑖
𝑇[ 𝑚

𝑖=1
𝑥𝑖𝑥𝑖

𝑇

(𝜓 𝑖+𝜎 𝑣
2)

]−1𝑥𝑖   (11) 

 𝑔3𝑖(𝜎 𝑣
2) = 𝜓𝑖

2(𝜓𝑖 + 𝜎 𝑣
2)−3𝑉(𝜎 𝑣

2)    (12) 

  𝑉(𝜎 𝑣
2) = asymptot variance of (𝜎 𝑣

2)= 2𝑚−2  𝑚
𝑖=1 (𝜎 𝑣

2 + 𝜓𝑖)
2 

 (13) 

 

Another approach to estimate MSE is using resampling method. There are 2 method that 

used to estimate MSE using resampling, namely using jackknife and bootstrap. The main 

different between bootstrap and jackknife is how to generate subsample from sample data. 

jackknife generate subsample with replacement, so the number of subsample is finite. 
Meanwhile bootstrap generate subsample without replacement, therefore the number of 

subsample is infinite and can be defined by researcher. 



 

 

 

 

 Jiang, Lahiri and Wan give an explanation on how to estimate MSE using jackknife6. 

To estimate MSE jiang only use g1(.) in Prasad-Rao estimator without g2(.) and g3(.). The 
method to estimate MSE using jackknife is: 

Step 1 : estimate 𝜃 𝑖 and 𝑔1𝑖(𝜎 𝑣
2) from sample data with the same formula from Prasad-

Rao estimator.  

Step 2 : create subsample with taking out one sample and estimate 𝛽 −𝑙  and 𝜎 𝑣,−𝑙
2  from 

every subsample 

Step 3 : estimate 𝜃 𝑖,−𝑙  and 𝑔1𝑖(𝜎 𝑣,−𝑙
2 ) using parameter in step 2. 

Step 4 : estimate 𝑀 1𝑖 to correcting bias in𝑔1𝑖(𝜎 𝑣
2), with 

  𝑀 1𝑖 = 𝑔1𝑖 𝜎 𝑣
2 −

𝑚−1

𝑚
 (𝑔1𝑖(𝜎 𝑣,−𝑙

2 ) − 𝑔1𝑖(𝜎 𝑣
2))2𝑚

𝑙=1   (14) 

Step 5 : estimate 𝑀 2𝑖 with 

  𝑀 2𝑖 =
𝑚−1

𝑚
 (𝜃 𝑖,−𝑙 − 𝜃 𝑖)

2𝑚
𝑙=1     (15) 

Step 6 : estimate jackknife MSE for every area with 

  𝑀𝑆𝐸𝑗  𝜃 𝑖 = 𝑀 1𝑖 + 𝑀 2𝑖     (16) 

Meanwhile, Butar and Lahiri modify jackknife method with bootstrap approach [2]. With 

an assumption asumsi𝑣𝑖 and 𝑒𝑖 are normal and 𝜎 𝑣
2 > 0 , the method to estimate MSE using 

bootstrap is : 

Step 1 : create independent parameter subsample for every area with generating data : 

   𝜃𝑖∗~𝑁(𝑧𝑖
𝑇𝛽 , 𝜎 𝑣

2)     (17) 

Step 2 : generate 𝜃 𝑖∗ as direct estimation of subsample with: 

𝜃 𝑖∗~𝑁(𝜃𝑖∗, 𝜓𝑖)     (18) 
 

Step 3 : estimate 𝜃 𝑖∗
𝐻 using EBLUP with the same auxiliary information (𝑧𝑖

𝑇) and varians 

(𝜓𝑖) 

Step 4 : repeat step 1 – 4. The more repetition, the estimation of MSE are more 

convincing. 

Step 5 : estimate MSE of Bootstrap with : 

 

𝑀𝑆𝐸𝐵 𝜃 𝑖 = 𝐵−1  (𝜃 𝑖∗
𝐻 − 𝜃𝑖∗)2𝐵

𝑏=1     (19) 

4Discussion 

To estimate MSE of non sampled area we modify Prasad-Rao estimator, Jackknife and 

Bootstrap approach to cover non sampled area. For Prasad-Rao estimator we propose using 



 

 

 

 

𝜓𝑖
   

(𝑘)
, 𝑔3𝑖    (𝜎 𝑣

2)(𝑘) and  𝛾 𝑖 (𝑘)
 with cluster information. So the Prasad-Rao estimator to estimate 

non sampled area is: 

𝑀𝑆𝐸𝑝𝑟𝑎𝑠𝑎𝑑 (𝜃 𝑖
𝑛𝑠 ) = 𝑔1𝑖(𝜎 𝑣

2)(𝑘) + 𝑔2𝑖(𝜎 𝑣
2)(𝑘) + 2𝑔3𝑖(𝜎 𝑣

2)          
(𝑘)  (20) 

where: 

𝑔1𝑖(𝜎 𝑣
2)(𝑘) =

𝜎 𝑣
2𝜓 𝑖    

(𝑘)

(𝜓 𝑖    
(𝑘)+𝜎 𝑣

2)
    (21) 

𝑔2𝑖(𝜎 𝑣
2)(𝑘) = (1 − 𝛾 𝑖 (𝑘)

)2𝑥𝑖
𝑇𝑄𝑥𝑖    (22) 

𝜓𝑖
   

(𝑘)
, 𝑔3𝑖(𝜎 𝑣

2)          
(𝑘), 𝛾 𝑖 (𝑘)

 is average from sampled area in the same cluster 

𝑄 : sampled area component ([ 𝑚
𝑖=1

𝑥𝑖𝑥𝑖
𝑇

(𝜓 𝑖+𝜎 𝑣
2)

]−1) 

Meanwhile for Jackknife approach we use 𝛽 −𝑙  and 𝜎 𝑣,−𝑙
2  from sampled area to estimate 

𝜃 𝑖,−𝑙  and 𝑔1𝑖(𝜎 𝑣,−𝑙
2 ) and the rest is the same with sampled area. The estimation of MSE with 

jackknife is: 

𝑀𝑆𝐸𝑗  𝜃 𝑖 = 𝑀 1𝑖 + 𝑀 2𝑖    (23) 

Where: 

𝑀 1𝑖 = 𝑔1𝑖 𝜎 𝑣
2 −

𝑚−1

𝑚
 (𝑔1𝑖(𝜎 𝑣,−𝑙

2 ) − 𝑔1𝑖(𝜎 𝑣
2))𝑚

𝑙=1   (24) 

𝑀 2𝑖 =
𝑚−1

𝑚
 (𝜃 𝑖,−𝑙 − 𝜃 𝑖)

2𝑚
𝑙=1    (25) 

For Bootstrap we modify 𝜓  𝑖(𝑘) so it was the average 𝜓𝑖 of the sampled area. Meanwhile 

we use (𝜎 𝑣
2) with the model from sampled area. To estimate MSE of non sampled area we use: 

 
𝑀𝑆𝐸𝑏 𝜃 𝑖 = 𝐵−1  (𝜃 𝑖∗

𝐻 − 𝜃𝑖∗)2𝐵
𝑏=1     (26) 

Where : 

𝜃𝑖∗~𝑁(𝑥𝑖
𝑇𝛽 , 𝜎 𝑣

2)     (27) 

𝜃 𝑖∗~𝑁(𝜃𝑖∗, 𝜓  𝑖(𝑘))     (28) 

5Result and Conclusion 

5.1 Simulation Study 

From simulation study we see the stability of our model to estimate MSE of non-

sampled area. To see the similarity between each method we see the average of relative root 



 

 

 

 

mean square error (RRMSE). From three generated non sampled domain, the average RRMSE 

are similar. 

Table 1.  Table title. Table captions should always be positioned above the tables. 

No 

Area 

MSE sampled 

EBLUP 

Prasad-Rao 

Estimator 

MSE with 

Jackknife 

MSE with 

Bootstrap 

(1) (2) (3) (4) (5) 

15 1.043413 1.052440288 1.039885707 1.044885773 

30 1.069324 1.077951128 1.064557369 1.069120909 

45 1.166019 1.176403722 1.169906514 1.168643182 

 

To see the similarity in each repetition we can se the plot of MSE. The plot for every 

non sampled MS are as below 

 

Fig. 2.RRMSE plot for Non-Sampled Area 1. 

 

Fig. 3.RRMSE plot for Non-Sampled Area 2. 
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Fig. 4.RRMSE plot for Non-Sampled Area 3. 

 

From every non-sampled area and repetition, every MSE method have a similar plot 

and every line are overlapping. From that graphic we can see that every repetition have a 

similar distribution. To be more convincing, we use a formal statistical test to test the 

similarity of MSE from its variance using one way ANOVA. From that test we get the p-value 

of the three RRMSE of non sampled area as 0.968, 0.914 and 0.922. From that result we can 

conclude that every method to estimate MSE for non sampled area are statistically similar to 
EBLUP MSE estimator if that area are sampled. 

 

5.2Case Study 

We perform case study to see the compatibility of the model with real life data. To 

perform case study we estimate expenditure per capita from March 2018 SUSENAS data in 

subdistrict level in West Java. We choose this data because there are 19 non sampled area and 

607 sampled area in this data. For auxiliary variable we use PODES 2014 data. PODES data is 

in village level, so we aggregate the data to subdistrict level.  

For sampled area, there are 11 auxiliary variable that statistically significant for 

EBLUP model. and the estimation are as below. 

 
 
Table 2.Non Sampled Estimation for Case Study. 

Subdistrict 

code 

Expenditure pre 

capita 

Prasad-Rao 
Estimator 

MSE with 
Jackknife 

MSE with 
Bootstrap Cluster 

3202190  Rp 790,514.35  13395114081 13402255773 13734735710 1 

3211080  Rp 905,511.76  19115033364 19138787226 18951811154 3 

3202070  Rp 794,400.48  19119393348 19147932140 19048797402 3 

3206211  Rp 753,198.95  19120100995 19134702882 18794678264 3 

3204101  Rp 978,417.70  19121461423 19170674159 20205085319 3 

3205111  Rp 851,626.83  19121575338 19153118463 19193686346 3 

3205040  Rp 848,922.69  19122069993 19149418129 19872309725 3 

3202172  Rp 889,735.21  19122696239 19161603845 18976891940 3 
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Table 2.Non Sampled Estimation for Case Study (cont). 

Subdistrict 

code 

Expenditure pre 

capita 

Prasad-Rao 
Estimator 

MSE with 
Jackknife 

MSE with 
Bootstrap Cluster 

3215020  Rp 919,667.35  19123004208 19156091219 20355100030 3 

3210091  Rp 917,150.88  19124542178 19167834947 18462639720 3 

3202250  Rp 897,371.90  19125015909 19170041556 19013331238 3 

3208051  Rp 884,793.36  19125406694 19163300009 17753384709 3 

3205221  Rp 878,086.36  19127021461 19166702806 19312505357 3 

3209191  Rp 976,594.53  19127636480 19179093627 19249803016 3 

3208021  Rp 914,817.75  19127831613 19177453207 19404232539 3 

3212162  Rp 915,476.67  19128116122 19177315367 19646260763 3 

3206161  Rp 729,632.07  19133212871 19157604544 19684617982 3 

3205161  Rp 810,902.42  19133986648 19169120918 20115871057 3 

3214011  Rp 821,765.53  19138126464 19173534692 19257283193 3 
Source: SUSENAS 2018 (Processed) 

 

From that data we can see that the estimation of MSE of non sampled area are stable 

and similar between the tree proposed method. The graphic to see the similarity of MSE can 

be seen as below. 

 

Fig. 5.RRMSE Plot for Non Sampled Area in Case Study. 

To be more convincing, we test the similarity between every RRMSE with one way 

anova. From that test the p-value is 0.833. With that we conclude that the RRMSE of non-

sampled area from every method in case study are similar. 
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5.3Conclusion 

From the discussion we can conclude that the three estimation method can be used to 
estimate MSE of estimator in non sampled area. The three estimation method that used in this 

study (Prasad Rao Estimator, Jackknife approach and Bootstrap approach) produce a similar 

result in simulation study and case study. But, Prasad Rao Estimator has an advantage in 

calculation time because it is not using resampling.  
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