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Abstract.Structural equation modeling (SEM) has widely used in many disciplines, such 
as economic, politic or health. Nonlinear structural equation modeling, as part of SEM, 

also has been developing analytically but still limited. In this method, the parameter 
models are estimated using conjugate prior in Bayesian approach. In nonlinear SEM, the 
models are specified including quadratic forms and/or interactions of latent variables. 
Posterior mean and posterior variance of the parameters are estimated using iteration 
approach since it is difficult to estimate those parameters model using analytical 
approach. The iteration approach used here is Markov Chain Monte Carlo (MCMC) 
method with Gibbs sampling. The simulation study is done to illustrate the proposed 
estimation methods for nonlinear model. A group of 300 data are generated to 

demonstrate the implementation of the proposed method. This study resulted that the 
proposed nonlinear SEM model could be accepted based on criteria of goodness of fit 
model. 

Keywords: Bayesian analysis, nonlinear SEM, simulation study, structural 
equation modeling. 

1   Introduction 

Structural equation modeling (SEM) is a common and powerful tool  in psychological, 

behavioral and social research. Traditionally, the latent variables in the structural equation 

model are assummed to have linear relations to each others[1], [2]. But recently, it has been 

recognized that nonlinear terms of independent latent variable for assessing dependent latent 

variables are useful in developing meaningful and more correct structural equation.  

The estimation of nonlinear latent variables in the structural equation modeling (SEM) 

approach has increasing attention now adays. Several research scientists in social science, 

education and else often would like to consider models which contain interaction and/or 

quadratic terms in the latent variables. The simple quadratic model relating to this problem 
could be presented by following equation [3] 

 = 𝛽0 + 𝛽1𝜉 + 𝛽2𝜉
2 + 𝜁,                (1) 

where 𝜁~𝒩 0, 𝜓  is a error term which is uncorrelated with the unobserved random  variables 

or exogeneous latent variables 𝜉~𝒩 0, Ф . Regression coefficients are symbolled by 𝛽0 , 𝛽1 

and 𝛽2. Endogenous latent variable or is assumed conditionally normal distribution given 𝜉 

with ~𝒩 𝛽0 + 𝛽1𝜉 + 𝛽2𝜉
2 , 𝜓 [4]. 
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Due to the complex distributions associated with the nonlinear latent variables, 

methods for analyzing such this structural equation modeling are become more difficult [5]. 
Several methods for the analysis of nonlinear SEM have been published, such as distribution 

analytic approaches [6], the product indicator approaches [7], moment based approaches [8] 

and Bayesian approaches [9]. More recently, methods that used the LISREL program have 

been proposed to analyzed some nonlinear structural equation models with interaction terms 

of latent variables. 

This article presents a Bayesian approach to analyze nonlinear SEM with ordered 

categorical data. The purpose of this study is to model the nonlinear based on SEM model 

including the problem of nonnormal data as well as with the problem of small sample sizes. 

To estimate the posterior distribution of the parameters model, we do iteration approach by 

using Markov Chain Monte Carlo methods such as Gibbs sampler [10], [11], [12]. 

2   Materials and Methods 

In structural equation model, the latent variable is unobserved variable that is measured 

by several observed variables or indicator variables. To construct the nonlinear in structural 

equation model, we assume to formulate an interaction in structural equation modeling 

between an endogenous latent variable, denoted by 𝜂 with two exogeneous latent variables, 

symbolized by 𝜉1 and 𝜉2. Let an endogenous latent variable 𝜂 that is measured by one 

observed variable 𝑦, meanwhile exogeneous latent variables are measured by two observed 

variables each, denoted by 𝑥1 , 𝑥2 and 𝑥3 , 𝑥4.Basically, the measurement equation models could 

be given by these following equations [13], [14] 

𝑥1 = 𝜆1𝜉1 + 𝜖1, 𝑥2 = 𝜆2𝜉1 + 𝜖2, 𝑥3 = 𝜆3𝜉2 + 𝜖3, 𝑥4 = 𝜆4𝜉2 + 𝜖4, (2) 

and  

𝑦 = 𝜆5𝜂 + 𝜖5.         (3) 

Parameter 𝜆𝑗 , for 𝑗 = 1,2, … ,5 are unknown loading factors that describe the relationships 

between exogeneous and endogeneous latent variables with observed variables. It is assumed 

that 𝝃 =  𝜉1 , 𝜉2 
𝑇 is distributed as 𝑁 0, 𝚽 , where the covariance matrix 𝚽contains unknown 

parameters 𝜙11 , 𝜙21  and 𝜙22 , whereas 𝝐 =  𝜖1 ,𝜖2 , 𝜖3 ,𝜖4 
𝑇  is distributed as 𝛮 0, 𝚿𝜖 , where 

𝚿𝜖  is a diagonal covariance matrix with elements 𝜓𝜖 𝑖, 𝑖 , 𝑖 = 1, … ,4. The vectors 𝝃and 𝝐  are 

assumed to be uncorrelated.  

Meanwhile the formula for  structural equation model is assumed by following several  

different models of nonlinear latent variables in the structural equation modeling.  

𝑀1 ∶  𝜂 = 𝛾1𝜉1 + 𝛾2𝜉2 + 𝛾3𝜉1𝜉2+𝜁,  

𝑀2 ∶  𝜂 = 𝛾1𝜉1 + 𝛾2𝜉2 + 𝛾3𝜉1
2 + 𝛾4𝜉2

2
+𝜁,      (4) 

𝑀3 ∶  𝜂 = 𝛾1𝜉1 + 𝛾2𝜉2 + 𝛾3𝜉1𝜉2+𝛾4𝜉1
2 + 𝛾5𝜉2

2 + 𝜁,  

where 𝛾𝑘 , for 𝑘 = 1, … ,5 are unknown regression coefficients between exogeneous latent 

variables 𝜉𝑠 to the endogenous latent variables 𝜂.  Variable 𝜁 is error term distributed as 

𝛮 0, 𝚿𝜁  and is uncorrelated with the 𝜉𝑠. The model M1 involves marginal and interaction 

effects of the latent variables. The model M2 involves marginal and quadratic effects for each 

exogeneous latent variable. Meanwhile the model M3 is more complicate since it involves 

marginal, interaction effect and quadratic effect. 

The best model will be considered in our simulation study based on the smallest value 

of DIC (Deviance Information Criteria) with the formula denoted by [15], [16]: 



 

 

 

 

𝐷𝐼𝐶 = −2𝑙𝑜𝑔 𝑝 𝑿|𝜃  + 2𝑝,      (5) 

with p is the number of parameters to be estimated. 

Let the parameter vector 𝜽contains all unknown parameters to be estimated. The 

Bayesian estimation method is used to estimate mean and standard error of  all unknown 

parameters in 𝜽.  The Bayesian approach is well recognized as the attractive approach to 

analyze a wide variety of models [17]. In a Bayesian approach, unknown parameter 𝜽 =
 𝝀, 𝚽, 𝚿𝜖 , 𝚿𝜁 is considered as random variable which has prior probability density 𝑝(𝜽) that 

is ekuivalen with probability density function. In this study we use conjugate prior for all 

parameter estimated which then be used to construct posterior density[5]. 

𝚿𝜖 , 𝚿𝜁 ∼ 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 ,       

 𝛬 |𝜓−1 ∼ 𝑁(𝛬, 𝜓𝐇),       (6) 

𝜱−1~𝑊𝑞 𝑅0, 𝜌0 . 

Let the observed data matrices be 𝑿 =  𝒙𝟏, … , 𝒙𝒏 and the observed data likelihood is 

denoted by 𝑝 𝑿|𝜽 . In Bayesian estimation approach which is based on the posterior density 

function, it incorporates all the available information related to sample, denoted by 𝑝 𝑿|𝜽 , 

and parameter to be estimated, or 𝑝 𝜽 , in the estimation process. This statement is presented 

by following formula [18] 

𝑝(𝜽|𝑿) ~ 𝑝(𝜽) 𝑝 𝑿|𝜽 .       (7) 
For nonlinear SEM analysis, to make work easier, it incorporates Z as the matrix of all 

latent variables in the model  into joint posterior distribution, denoted by𝑝(𝜽, 𝒁|𝑿). This joint 

posterior distribution can be adequately approximated by the empirical distribution of 

  𝜽(𝑚 ), 𝒁(𝑚) ; 𝑚 = 1, … , 𝑀   simulated from 𝑝(𝜽, 𝒁|𝑿). Markov Chain Monte Carlo method 

with Gibbs Sampler  algorithm is used to obtain sample by generating   𝜽(𝑚) , 𝒁(𝑚) ;𝑚 =

1, … , 𝑀  . This sample can be regarded as simulated from the posterior distribution 𝑝(𝜽, 𝒁|𝑿). 

Bayesian estimate of the unknown parameter 𝜽is defined as the posterior mean of 𝑝(𝜽, 𝒁|𝑿). 

Posterior mean represents the central tendency of 𝜽in its posterior distribution, thus  posterior 

mean of 𝜽 is estimated by this formula [19] 

 𝜽 =
 𝜽(𝑚 )𝑀

𝑚 =1

𝑀
        (8) 

The posterior variance is estimated  by 

 𝑉𝑎𝑟 𝜽  𝑿 =
  𝜽(𝑚 )−𝜽   𝜽(𝑚 )−𝜽  

𝑇𝑀
𝑚 =1

𝑀−1
.      (9) 

Where the consistent estimator for standard error estimates of elements in 𝜽  is calculated from 

the square roots of the corresponding diagonal elements of  𝑉𝑎𝑟 𝜽  𝑿 [20] 

 

3    Results and Discussions 

In this study, we do such a literature review and simulation study to examine the 

empirical performances of the estimation approaches for analyzing nonlinear structural 

equation modeling as defined by the measurement equations and structural equation in Section 

2 above.  

 



 

 

 

 

3.1      Bayesian Estimation of Nonlinear SEM with Ordered Categorical Data 

Following is the identification of the nonlinear SEM model with Bayesian approach. In 
this present study, a set of true population values of the unknown parameters were considered. 

We allow that components in observed variables 𝑿 =  𝑥1 , … , 𝑥𝑛   and 𝒁 =  𝑧1 , … , 𝑧𝑛  both are 

ordered categorical. Then, we also let 𝒀 =  𝑦1 , … , 𝑦𝑛   be the latent continous data and 

𝛀 =  𝜔1 , … , 𝜔𝑛   be latent variables.Based on the technique of data augmentation, the 

observed data  𝑿, 𝒁  are then augmented with the latent data  𝒀, 𝛀  in the posterior analysis. 

By implementing Markov Chain Monte Carlo (MCMC) through Gibbs sampler method, the 

unknown parameter 𝜽 will be obtained via this iteration process. At the mth iteration with 

current values 𝜶(𝑚 ), 𝜽(𝑚), 𝛀(𝑚) and 𝒀(𝑚), we do[9] 

Generate 𝛀(𝑚+1) from 𝑝 𝛀|𝜶 𝑚 , 𝜽 𝑚 , 𝒀 𝑚 , 𝑿, 𝒁 ; 

Generate 𝜽 𝑚+1  from  𝑝 𝜽|𝛀(𝑚+1), 𝜶 𝑚 , , 𝒀 𝑚 , 𝑿, 𝒁 ; 

Generate   𝜶 𝑚+1  , 𝒀 𝑚+1   from 𝑝 𝜶, 𝒀|𝜽 𝑚+1 , 𝛀(𝑚+1), 𝑿, 𝒁  

In order to derive the conditional distributions involved in above equations, some 

natural assumptions will be imposed on the prior distributions of 𝜽. Let 𝑆 =  𝑠1 , … , 𝑠𝑛   with 

𝑠𝑖 =  𝑥𝑖 , 𝑦𝑖 . Then let 𝜽∈ be the unknown parameters in 𝝁, 𝝀and 𝚿𝜖  that are associated with 

measurement equation above and let 𝜽𝜔  be the unknown parameters in 𝝀𝝎, 𝚽and 𝚿𝜁  that are 

associated with structural equation above. It is assumed here that prior distribution of 𝜽∈ and 

𝜽𝜔  are independent of each other. Thus, we could assume here that𝑝 𝜽 = 𝑝 𝜽∈ 𝑝 𝜽𝜔  . 
Therefore conditional distribution corresponding to 𝛀, 𝜽and 𝜶, 𝒀are given by 

𝑝 𝛀|𝜽, 𝜶, 𝒀, 𝑿, 𝒁 = 𝑝 𝛀|𝜽, 𝜶, 𝒀, 𝑿 = 𝑝 𝛀|𝜽, 𝑺 , 

            𝑝 𝜽|𝛀, 𝜶, 𝒀, 𝑿, 𝒁  = 𝑝 𝜽∈ , 𝜽𝜔 |𝛀,𝑺 = 𝑝 𝜽∈|𝛀, 𝑺 𝑝 𝜽𝜔 |𝛀, 𝑺 , 

            𝑝 𝜶, 𝒀|𝜽, 𝛀, 𝑿, 𝒁 = 𝑝 𝜶, 𝒀|𝜽, 𝛀, 𝒁 . 

 

Based on equations above, it can be noted that given S, the model with the ordered 

categorical data is the same as the model with the continuous data.  

Conditional distributions involved in  𝑝 𝜽|𝛀, 𝜶, 𝒀, 𝑿, 𝒁   are the Gamma distribution, 

normal dstribution and inverted Wishart distribution. It is not difficult to obtain observations 
by MCMC simulating steps. The same ways then could  be implemented to simulate 

observations from 𝑝 𝛀|𝜽, 𝜶, 𝒀, 𝑿, 𝒁  and 𝑝 𝜶, 𝒀|𝜽, 𝛀, 𝑿, 𝒁 . Bayesian estimated for 𝛀and 

𝜽can be obtained via a sufficiently large number of simulated observations collected by Gibbs 

sampler approach. 

 

3.2 Illustrative Example 

Our illustrative example here is to demonstrate the Bayesian method in modeling 

nonlinear structural equation model using generated data. A group 300 data is generated 

randomly using R package. There are three exogeneous latent variables and one endogenous 

latent variables in the hypothesis model. The first exogenenous latent variable is measured by 
six indicator variables. Meanwhile the second and third exogenenous latent variable are 

measured each by two indicator variables. The endogeneous latent variables is measured by 

three indicator variables. The responses of the respondents are available in five Likers scale 

start from 1 to 5. 



 

 

 

 

Nonlinear structural equation modeling then applied to this data. Following are the 

result from several models which are tested in this study. The choice of the best model is 
based on the smallest value of DIC. Table 1 presents the proposed models nonlinear SEM and 

DIC value for each model. The estimation process is supported by WinBUGS software [2], 

[21], [22]. 

 

Table 1. Several Model Nonlinear SEM 

 

No. Model DIC Value 

1 𝜋 = 𝛾1𝑥1 + 𝛾2𝜉1 + 𝛾3𝜉2 + 𝛾4𝜉3 + 𝛾5𝜉3
2 + 𝛾6𝜉2𝜉3 + 𝜁 7472,740 

2 𝜋 = 𝛾1𝑥1 + 𝛾2𝜉1 + 𝛾3𝜉2 + 𝛾4𝜉3 + 𝛾5𝜉2
2 + 𝜁 7479,930 

3 𝜋 = 𝛾1𝑥1 + 𝛾2𝜉1 + 𝛾3𝜉2 + 𝛾4𝜉3 + 𝛾5𝜉3
2 + 𝜁 7472,090 

4 𝜋 = 𝛾1𝑥1 + 𝛾2𝜉1 + 𝛾3𝜉2 + 𝛾4𝜉3
2 + 𝜁 7476,310 

 

Based on Table 1, the model 3 yield the smallest value of DIC that is 7472,740. Thus 

we prefer to choose model 3 as the best model.  Following are the result for analysis of this 

model. 

The structural equation for the proposed model 3 is denoted by  

𝜋 = −0,074𝑥1 + 1,146𝜉1 − 0,352𝜉2 + 0,143𝜉3 + 0,592𝜉3
2
. 

Meanwhile the values of the unstandardized coefficient of factor loading and the 

associated standard errors for each indicator variable in the measurement equations obtained 

based on nonlinear SEM are presented in Table 2. It is clear from Table 2 that all indicator 

variables that we hypothesized as predictors are significantly related to their respective latent 

variable.  

Table 2. Coefficient Regressions in Measurement Model  

  

Latent Variable Indicator Variable 

Estimate 

Bayesian Nonlinear SEM 

(SE) 

First Exogenenous LV (X11) 1 

(𝝃𝟏) (X21) 0.844 (0.054)* 

 (X31) 0.772 (0.057)* 

 (X41) 1.175 (0.115)* 

 (X51) 1.127 (0.092)* 

 (X61) 0.988 (0.087)* 

   

Second Exogeneous LV (X72) 1 

(𝝃𝟐) (X82) 0.878 (0.073)* 

   

Third Exogeneous LV (X93) 1 

(𝝃𝟑) (X103) 0.945 (0.084)* 

   

Endogeneous LV (X114) 1 

(𝜼) (X124) 0.779 (0.074)* 

 (X134) 0.790 (0.075)* 

*Significant at 5% level 

 



 

 

 

 

We then test the convergence statistics for all parameters of interest by plotting 

sequences of observations corresponding to some parameters generated by three different 
initial values.  All plots indicate that the algorithm converged in less than 30000 iteration. In 

Figure 1, we present several plots for illustrative purposes.  
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Figure 1. Several trace plots of selected parameters 

 

The density plots of all parameter are also checked. Figure 2 presents several selected 

density plots. These figures inform us that all density plots have normal distribution 
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Figure 2. Several density plots of selected parameters 

 

4       Conclusions 

The main purpose of the present study is to demonstrate the value of the Bayesian SEM 

in handling nonlinear and nonnormal data. The strength of SEM is its ability to describe the 

relationship among latent variables as well as between the indicator variables and the 

corresponding latent variable [1]. These relationships could be linear or nonlinear. The 

problem in this study is to construct nonlinear SEM with ordered categorical data using 

Bayesian approach. Generated data is used to illustrate the use of the proposed method. The 

analysis in this study is implemented under WinBUGS version 1.4, a flexible and free 

download tool.  
In this study, the models are put in a Bayesian analysis using conjugate priors. In 

nonlinear SEM, the model are specified including quadratic forms and/or interactions of latent 

variables mean and posterior variance of the parameters are estimated using iteration approach 

since it is difficult to estimate the parameter model using analytical approach. The iteration 

approach used here is Markov Chain Monte Carlo (MCMC) method with Gibbs sampling.This 



 

 

 

 

study resulted that the proposed model could yield acceptable model based on several criteria 

of goodness of fit model.  
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