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Abstract: Global warming and the climate problems it causes have become a common 
challenge faced by human beings all over the world, especially true for China, which has 
achieved great development results in recent years and thus brought serious environmental 
problems. China urgently needs to achieve low-carbon development and reach a peak in 
carbon emissions in 2030. Owing to China's East-West unbalanced model of development 
and the background of regional industrial transfer, the carbon emissions of provinces with 
different development levels are greatly different, and the carbon peak time of each 
province based on social and economic indicators and carbon emissions is also 
different.Based on this, this paper divides the 30 provinces in China into the group that 
carbon dioxide emissions peak ahead of 2030 and the group that carbon dioxide emissions 
peak in 2030 and select the total population, per capita GDP, amount of foreign direct 
investment, urbanization rate, energy intensity, and secondary industry structure to explore 
the difference in the impact of different variables on the total carbon emissions of different 
groups. Then, predicting whether China can successfully reach carbon emissions peak in 
2030 under three different scenarios based on the STIRPAT model. 

Keywords: carbon emissions; STIRPAT model; Dual fixed effects model; Regression of 
ridge.  

1. INTRODUCTION 

The challenge of global warming has reached a critical point for both the survival of humanity 
and sustainable development. To tackle the issue of climate change on a global scale and to 
achieve sustainable, circular and green development, it is crucial to promote low-carbon 
emissions reduction measures[1, 2]. After a series of international treaties were adopted, such 
as The Kyoto Protocol and The Paris Agreement, many countries achieved results on emission 
reduction commitments[3]. 
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According to The Paris Agreement of 2015, the nationally determined contributions made by 
countries may not be sufficient to achieve the goal of limiting global temperature rise[4]. Even 
though all ratifying parties of that agreement fulfill their climate commitments, Global 
temperature will still warmer than pre-industrial times, in the range of 3°C degrees or more[5]. 
Given the dire circumstance, greenhouse gases will be severely restricted for a long time to 
come[6]. 

Meanwhile, 124 countries have made net-zero emissions pledges ahead of the World Climate 
Summit to be held in Glasgow (UK) in November 2020[7]. As a responsible country with great 
potential for development, China is expected to reach peak carbon emissions in 2030 and 
achieve carbon neutrality in 2060. 

China is the world's largest CO2 emitter (Fig. 1) . The significant increase in carbon dioxide 
emissions has brought tremendous pressure to Chinese government. As one of the largest 
victims of global climate, China has committed to taking a series of actions to contribute to 
reducing carbon dioxide emissions. There are countless factors that affect carbon emissions. 
Currently, academic research mainly focuses on exploring the relationship between population 
size[8, 9], per capita GDP[10], urbanization level[11], total energy consumption[12, 13], and 
energy intensity with carbon emissions[14]. There are differences in CO2 emissions between the 
eastern and western regions of China, where approximately 50%, 35%, and 15% of CO2 Total 
emissions are calculated by region, all provinces in China are divided into eastern, central and 
western Region[15]. Eastern region has the advantage of being developed first, concentrates 
most of the economic output. The western and central regions are far less industrialized and 
urbanized than the eastern regions. Therefore, it is not easy for countries to reduce high levels 
of CO2 emissions. [16]. 

 
Fig. 1 Accumulated carbon emissions of different provinces from 2005 to 2019 (excluding Macao, 

Taiwan, Tibet and Hong Kong ) 



The primary factor behind the divergence in carbon peak policies between China's eastern and 
western provinces is the unevenness in regional economic development[17]. The reform and 
opening-up policy has brought a great impact, the eastern region gained an early advantage in 
development by leveraging its favorable geographical location and policy incentives. State led 
infrastructure investment, coupled with a sharp increase in foreign investment, has once again 
made coastal areas the growth center of urban development in China[18]. Compared with 
underdeveloped provinces, these regions have higher economic value[19], and the carbon 
emission efficiency of affluent coastal provinces in the eastern region is higher[20]. So, different 
policies in turn lead impact on carbon emissions between regions. 

In summary, the carbon emissions and socio-economic development level of different provinces 
affect the formulation of carbon peaking policies, and the carbon peaking policies of each 
province will further affect the future carbon emissions of different provinces. Therefore, it is 
crucial to conduct differentiated research on provinces with different carbon peak policies. 

Furthermore, the transfer of industries has played a significant role in creating disparities in 
carbon peak policies between China's eastern and western provinces. Imbalance in industrial 
development remains the main cause of economic imbalance among China's three major 
regions[21]. The different stages of industrial transfer in China have brought about changes in 
the inter-regional economic landscape[22]. Industrial transfer has promoted the economic 
growth of the transferred provinces, but it also poses significant challenges to carbon reduction 
and environmental protection in these regions. Based on statistics, the western region had the 
highest increase in per capita carbon emissions (1.83 times) from 2005 to 2015, whereas the 
eastern region had the lowest increase (1.56 times) [23]. 

At present, China is confronted with a significant challenge of reducing carbon emissions in an 
efficient manner without compromising its long-term stable economic growth. In fact, the issue 
of "energy economy environment" is not only a concern for governments of various countries, 
but also a focus of academic attention[24]. In terms of calculating carbon emissions, the current 
academic community mainly uses the IPAT model and its improved STIRPAT model. Some 
articles have used this model to analyze the future carbon emission peaking in Hebei province 
as a study [25], while others have studied the environmental impact of population and affluence 
[26]. Nonetheless, while utilizing the STIRPAT model, Although the secondary sector is the 
main output sector of carbon emissions, but it is a common mistake to use this data as the value 
of total carbon emissions. 

To sum up, this study classifies 30 provinces in China (excluding Macao and Taiwan, Tibet and 
Hong Kong ), and divides them into 18 provinces that will reach CPA and 12 provinces that will 
reach CPI according to their different emssion peak targets. Then, the extended STIRPAT 
model was adopted to obtain the equation of the relationship between carbon emissions and 
other elements in the two groups. The dual fixed effect model was applied to optimize the model 
and conduct robustness check. Three scenarios were set, and the carbon emissions of the two 
groups in the three scenarios were predicted respectively, so as to explore the path of realizing 
CPA in China. 



2. MATERIALS AND METHODS 

2.1. Study area and Data sources 

The data applied are from the following sections: Carbon emissions data for 30 Chinese 
provinces for each year from 2005 to 2019, number of resident population, GDP, secondary 
industry GDP, and total energy consumption data. The China Accounting Database provides 
data on carbon emissions (https://www.ceads.net.cn/) , other required data from the China 
Statistical Yearbook, China Annual Statistical Bulletin and provincial statistical yearbooks. 

2.2. Data selecting and processing 

Table 1 shows the variables selected for the study. 

An important part of the increase in carbon emissions is due to the growth in population size[27]. 

The improvement of urbanization is often accompanied by high carbon emissions and low 
emission reduction rates, so the changes in urbanization rates profoundly affect the changes in 
carbon emissions[28]. 

The level of economic development is the main factor affecting CO2 emissions, and there are 
significant discrepancy in carbon emissions generated by regional development and residents' 
lives under different levels of economic development[29]. 

As a driving force for global trade and investment, FDI contributes significantly to China's CO2 
emissions by acting on the industrial structure[30]. 

Reducing carbon emissions can be achieved by reducing energy consumption and using 
renewable energy sources. An increase in energy intensity will be followed by a decrease in 
carbon emissions [31]. 

The proportion of secondary industry has a non-negligible impact on the total carbon 
emissions[32]. 

Table 1 Description of selected variables 

Variable 
names Variable explanations unit use 

CE Total CO2 emissions Million tons CO2 Into model 
POP Total population ten thousand people Into model 
URB Urbanization rate % Into model 
GDP gross domestic product Billion yuan Into model 

(GDP)2 Quadratic term of  gross 
domestic product (Billion yuan)2 Into model 

EI energy consumption 
/GDP 

Ton of standard coal 
/ million yuan Into model 

ST GDP of secondary 
industry /GDP % Into model 

FDI Foreign direct investment Billion yuan Into model 



EC total energy consumption million tons of 
standard coal 

Calculate 
secondary 
variable 

IND GDP of secondary 
industry Billion yuan 

Calculate 
secondary 
variable 

The industrial structure is also very different，because there are differences in resource 
endowment and development stages among China's provinces[33], and the carbon transfer that 
accompanies China's industrial transfer is accelerating[34], so it is necessary to make a 
distinction when analyzing carbon emissions. According to the carbon dioxide emissions peak 
policies formulated by different provincial government agencies, 30 provinces are divided into 
the first group: carbon dioxide emissions peak before 2030(CPB) and carbon dioxide emissions 
peak in 2030(CPI) (Table 2). 

Table 2 The province included in the CPB group and the CPI group 

Group:carbon dioxide emissions peak before 
2030(CPB) 

Group:carbon dioxide emissions peak in 
2030(CPI) 

Anhui Shandong Shanghai Beijing Shanxi Liaoning 

Jiangsu Jiangxi Jilin Henan Guangxi 
Zhuang A.R Sichuan 

Hunan Guangdong Guizhou Yunnan Hebei Fujian 
Chongqing Tianjin Shaanxi Zhejiang Hubei Gansu 

Heilongjiang Hainan Qinghai    
Inner Mongolia 

A.R 
Xinjiang 

Uygur A.R 
Ningxia Hui 

A.R    

2.3. STIRPAT extension model 

The debate between Ehrlich and Holdren (1971) and Commoner (1972) on the main causes of 
environmental impact ultimately led to the concept of the IPAT equation, which corresponds to 
"environmental impact", "population", "affluence", and "technology", respectively[35, 36]. 

The IPAT model can be summarized as: I =  P × A × T    (1) 
In the above equation, I refers to the environmental impact, P stands for population, A stands 
for affluence, and T stands for technology level. 

The disadvantage of traditional IPAT is that the rate of change between the driver and the 
environmental pressure is consistent. When any driving factor increases or decreases by 1%, the 
environmental pressure will undergo an accurate 1% change[37]. To address these shortcomings, 
Dietz and Rosa set a the STIRPAT model based on the IPAT constancy equation[38]. The 
STIRPAT model can estimate each coefficient as a parameter and decompose each driving factor 
appropriately. This means that new driving factors can be added to the STIRPAT model 
according to research needs to statistically model the non proportional impact of variables on 
the environment.[39, 40] 

The STIRPAT model can be summarized as: 𝐼𝑛𝐼௜௧ = 𝑎 + 𝑏(𝐼𝑛𝑃௜௧) + 𝑐(𝐼𝑛𝐴௜௧) + 𝑑(𝐼𝑛𝑇௜௧) + 𝑒௜    (2) 



Among them, P represents population, A represents economic level, T represents technological 
level, it represents each year, a, b, c, d represents coefficients of each variable, and e represents 
a random disturbance term. 

On the basis of the selected indicators in this study, the model has been improved and the 
extended model obtained is as follows: 𝐼𝑛𝐶𝐸 = 𝑎 + 𝑏(𝐼𝑛𝑃𝑂𝑃) + 𝑐(𝐼𝑛𝐺𝐷𝑃) + 𝑑(𝐼𝑛𝐸𝐼) + 𝑒(𝐼𝑛𝑆𝑇) + 𝑓((𝐼𝑛𝐺𝐷𝑃)ଶ) + 𝑒௜    (3) 

CE stands for carbon emissions, POP stands for population, GDP stands for per capita GNP, EI 
stands for energy intensity, ST stands for the proportion of secondary industrial structure, a, b, 
c, d stands for the coefficient of each variable, and e stands for a random disturbance term. Due 
to the possible inverted U-shaped relationship between economic level and carbon emissions, a 
variables of quadratic terms containing the GDP quadratic term was added to verify the 
existence of EKC[41]. 

3. RESULTS 

3.1 Ridge regression estimation 

From 2005 to 2019, China's population was still expanding, the economy was growing at a high 
speed, and a large amount of energy was consumed. 

Table 3 Value of variables in CPB group and CPI in 2005-2019 
Year CE POP GDP EI ST 

 CPB CPI CPB CPI CPB CPI CPB CPI CPB CPI 

2005 3054.587975 2512.417396 68854 59470 15848.215064 13405.195897 1.299318 1.526262 0.501761 0.468126 

2006 3404.400330 2793.489759 69433 59805 18387.078190 15554.067386 1.227321 1.438941 0.510327 0.476886 

2007 3724.754199 3097.515403 70011 60093 22210.238391 19109.896327 1.108801 1.276250 0.507071 0.478483 

2008 3993.585610 3211.637439 70617 60525 26152.470368 22325.254027 0.995777 1.138268 0.508908 0.487409 

2009 4240.285014 3415.579567 71169 60978 28456.687603 24097.576175 0.966348 1.099276 0.498208 0.479740 

2010 4691.839025 3906.849918 71890 61195 33348.908054 28516.757905 0.890998 1.007958 0.505682 0.494857 

2011 5287.641493 4216.589633 72715 61663 38954.892388 33658.320224 0.820237 0.915288 0.505251 0.499987 

2012 5472.721131 4269.979496 73327 62062 42668.689569 36975.331120 0.783609 0.859747 0.494428 0.491487 

2013 5481.631869 4297.321159 73808 62371 46866.328853 40282.422921 0.683722 0.760145 0.476616 0.472143 

2014 5597.171345 4310.675985 74323 62769 50628.674838 43186.461470 0.650067 0.720581 0.468168 0.464112 

2015 5660.976402 4170.583442 74664 63103 54238.066538 45581.969162 0.610428 0.672899 0.446514 0.436248 

2016 5758.429955 4160.027855 75196 63467 58371.814990 48978.508516 0.576615 0.629303 0.431840 0.420101 

2017 5937.208149 4234.009568 75626 63804 64028.561606 54310.858253 0.535105 0.578305 0.426000 0.410533 

2018 6091.316327 4437.99804 75901 64055 69476.923888 60140.863321 0.507120 0.535454 0.402219 0.392096 

2019 6375.540163 4488.869559 76137 64307 74195.686723 64645.994993 0.490438 0.510626 0.394159 0.386917 

The commitment to achieve a gradually increasing trend in the annual total carbon emissions of 
provinces aiming to peak carbon emissions before 2030 has resulted in a downward trend in 
total carbon emissions from 2015 to 2017, contrary to the initial pledge to peak carbon emissions 
in 2030. Due to the significant interannual fluctuations in foreign direct investment, it was not 
included in the process of establishing the prediction model (Table 3) . 



The VIF values are much larger than 100, so ridge regression is selected. Ridge adopts a 
regularized loss function to compress the linear regression coefficients resulting in reduced 
variance. 

For the CPB group, when the k value of the model is 0.15, the square of R is 0.979, and the p-
value is 0.000. For the CPI group, when the k value of the model is 0.205, the square of R is 
0.96, and the p-value is 0.000. The two sets of models show a significant regression relationship, 
which is stable and can be used for predictive analysis. For each variable in each group, all 
variables have significant regression analysis with the dependent variable, and all variables can 
enter the regression prediction equation (Table 4) . 

Table 4 Empirical analysis results in Ridge Regression 

Group variable Beta t value 

CPB 

lnPOP (1.791)*** 12.611 
lnGDP (0.144)*** 13.967 

ln(GDP)2 (0.007)*** 14.871 
lnEI (-0.139)*** -11.660 
lnST (0.373)** 2.658 

Constant (-13.569)*** -8.377 

CPI 

lnPOP (1.563)*** 10.331 
lnGDP (0.122)*** 13.071 

ln(GDP)2 (0.006)*** 13.323 
lnEI (-0.118)*** -12.405 
lnST (0.662)*** 4.740 

Constant (-10.397)*** -6.050 
Note: *,**,*** means significant at 10%, 5%, and 1% confidence level. 

Based on the results of Tikhonov regularization analysis, the equation for the factors of carbon 
emissions in the CPB group can be obtained： 𝐼𝑛𝐶𝐸 = 1.791 × 𝐼𝑛𝑃𝑂𝑃 + 0.144 × 𝐼𝑛𝐺𝐷𝑃 − 0.139 × 𝐼𝑛𝐸𝐼 + 0.373 × 𝐼𝑛𝑆𝑇+ 0.007 × (𝐼𝑛𝐺𝐷𝑃)ଶ − 13.569    (4) 
Equation of Factors Influencing Carbon Emissions in CPI Group： 𝐼𝑛𝐶𝐸 = 1.563 × 𝐼𝑛𝑃𝑂𝑃 + 0.122 × 𝐼𝑛𝐺𝐷𝑃 − 0.118 × 𝐼𝑛𝐸𝐼 + 0.662 × 𝑙𝑛𝑆𝑇+ 0.006 × (𝐼𝑛𝐺𝐷𝑃)ଶ − 10.397    (5) 

3.2 Model optimization and robustness testing 

The study selects data from different provinces in different years, and panel regression analysis 
can also be conducted to determine the impact of various influencing factors on carbon 
emissions by using a dual fixed effects model After removing the indicators with severe 
collinearity. Foreign direct investment, which is widely believed to have a significant impact on 
carbon emissions, was included in the inspection. And the total population was replaced by the 
urbanization rate, and the test results were obtained. 

 

 

 



Table 5 Empirical analysis results in dual fixed effects model 

variable Beta variable Beta 
CPB CPI 

lnURB (0.382)*** lnURB (0.623)*** 
lnFDI (0.009) lnFDI (-0.034)*** 
lnGDP (0.814)*** lnGDP (0.216)* 
lnEI (0.993)*** lnEI (0.723)*** 
lnST (0.062) lnST (0.514)*** 

After grouping all provinces, it was found that the impact of foreign direct investment on carbon 
emissions is not entirely significant, the fact that certain considerations should not be directly 
included in predictive models indicates the rationality of model construction (Table 5) . 

3.3 Scenario setting 

In the application of IPAT equation, Scenario Analysis has been widely used in emission 
forecasting in recent years [42]. In order to explore the differences in carbon emissions between 
the two groups of provinces in China with different levels of socioeconomic development and 
environmental protection and whether they can reach the peak according to their respective 
requirements, three different scenarios are set up, namely, the maintenance of the existing policy 
scenario (MEP) , the extreme environmental protection scenario (EEP) and the extreme 
economic development scenario (EED). We make different provisions on the inter-annual 
growth rates of different variables from 2020 to 2030 to predict the total carbon emissions of 
the two groups of provinces from 2020 to 2030 (fig. 2-5) .  

      

      

Fig. 2-5 Comparison of growth rate changes among various indices in the CPB group, the CPI group and 
the group of all provinces from 2006 to 2019 



3.3.1 MEP Scenario 

The future growth rates of each variable in this scenario are set in accordance with the clear 
future plans made by the Chinese government for each indicator. 

China's State Council predicts the population will peak in 2030 at 1.45 billion people. To meet 
the government's development targets, population growth should be 0.3 per cent between 2020 
and 2025 and 0.2 per cent between 2026 and 2030 (Table 6) . 

Table 6 The MEP scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
the growth rate of the total population from 2020 to 2030 

Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
Group 
CPB 

0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 

All 
Province 

0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 

Group 
CPI 

0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 

The GDP growth rate is set according to the forecasts of the World Bank and the Development 
Research Center of The State Council in China in 2030 (Table 7) . 

Table 7 The MEP scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
the growth rate of gross domestic product from 2020 to 2030. 

Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
Group 
CPB 

6.0% 5.4% 5.4% 5.2% 5.0% 5.0% 4.8% 4.8% 4.8% 4.6% 4.6% 

All 
Province 

6.5% 5.9% 5.9% 5.7% 5.5% 5.5% 5.3% 5.3% 5.3% 5.1% 5.1% 

Group 
CPI 

7.0% 6.4% 6.4% 6.2% 6.0% 6.0% 5.8% 5.8% 5.8% 5.6% 5.6% 

China National Petroleum Institute of Economics and Technology predicts that China's total 
energy consumption is expected to reach 6.03 billion tons of standard coal in 2030. According 
to this target, the growth rate of China's total energy consumption is designed (Table 8) . 

Table 8 The MEP scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
the growth rate of total energy consumption from 2020 to 2030. 

Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
Group 
CPB 3.3% 3.3% 3.3% 2.3% 2.3% 2.3% 1.3% 1.3% 1.3% 1.3% 1.3% 

All 
Province 3% 3% 3% 2% 2% 2% 1% 1% 1% 1% 1% 

Group 
CPI 2.7% 2.7% 2.7% 1.7% 1.7% 1.7% 0.7% 0.7% 0.7% 0.7% 0.7% 

The Economic Forecasting Department of the China Information Center predicts that the 
proportion of China's secondary industry structure will decrease by about 0.5% year by year 
during the 14th Five-Year Plan period. According to this goal, the growth rate of China's 
secondary industry structure is designed (Table 9). 

 

 

 



Table 9 The MEP scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
the growth rate of the proportion of the secondary industry structure from 2020 to 2030. 

Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
Group 
CPB 

4.7% 4.7% 4.2% 4.2% 4.2% 3.7% 3.7% 3.7% 3.2% 3.2% 3.2% 

Group 
CPI 

5.5% 5.5% 5.0% 5.0% 5.0% 4.5% 4.5% 4.5% 4.0% 4.0% 4.0% 

Per capita GDP, energy intensity and secondary industry structure are all calculated from the 
above indicators, and the changing trend of gross population, per capita GDP, energy intensity 
and secondary industry structure of the two groups of provinces from 2020 to 2030 can be 
obtained under this scenario. The remaining scenarios are calculated in the same way. 

3.3.2. EEP Scenario 

In this scenario, the Chinese government attaches great importance to environmental protection, 
in which the indicators remain at low or even negative growth rates while the transformation of 
industrial structure is accelerating (Table 10) . 

Table 10 The EEP scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
growth rates for various indicators from 2020 to 2030 

 Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

POP 

Group 
CGA 

0.15% 0.15% 0.15% 0.05% 0.05% 0.05% -
0.05% 

-
0.05% 

-
0.05% 

-
0.15% 

-
0.15% 

Group 
CGO 

0.15% 0.15% 0.15% 0.05% 0.05% 0.05% -
0.05% 

-
0.05% 

-
0.05% 

-
0.15% 

-
0.15% 

GDP 

Group 
CGA 

3.0% 2.4% 2.4% 2.2% 2.0% 2.0% 1.8% 1.8% 1.8% 1.6% 1.6% 

Group 
CGO 

4.0% 3.4% 3.4% 3.2% 3.0% 3.0% 2.8% 2.8% 2.8% 2.6% 2.6% 

EC 

Group 
CGA 

1.8% 1.8% 1.8% 0.8% 0.8% 0.8% -0.2% -0.2% -0.2% -0.2% -0.2% 

Group 
CGO 

1.2% 1.2% 1.2% 0.2% 0.2% 0.2% -0.8% -0.8% -0.8% -0.8% -0.8% 

IND 

Group 
CGA 

1.7% 1.7% 1.2% 1.2% 1.2% 0.7% 0.7% 0.7% 0.2% 0.2% 0.2% 

Group 
CGO 

2.5% 2.5% 2.0% 2.0% 2.0% 1.5% 1.5% 1.5% 1.0% 1.0% 1.0% 

3.3.3. EED Scenario 

In this scenario, the Chinese government hopes to sacrifice environmental protection before 
2030 to seek greater social development and economic benefits. All the indicators maintained a 
higher growth rate than the actual, while the speed of industrial structure transformation slowed 
down. Moreover, the provinces that promised to peak before 2030 also ignored the target, 
allowing the growth rate of each indicator to be in line with the provinces that promised to peak 
in 2030 (Table 11) . 

Table 11 The EED scenario contained groups of all provinces, CPB groups and CPI groups' prediction of 
growth rates for various indicators from 2020 to 2030. 

 Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

POP 

Group 
CGA 

0.6% 0.6% 0.6% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 0.3% 0.3% 

Group 
CGO 

0.6% 0.6% 0.6% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 0.3% 0.3% 

GDP Group 8.0% 7.4% 7.4% 7.2% 7.0% 7.0% 6.8% 6.8% 6.8% 6.6% 6.6% 



CGA 

Group 
CGO 

8.0% 7.4% 7.4% 7.2% 7.0% 7.0% 6.8% 6.8% 6.8% 6.6% 6.6% 

EC 

Group 
CGA 

4.3% 4.3% 4.3% 3.3% 3.3% 3.3% 2.3% 2.3% 2.3% 2.3% 2.3% 

Group 
CGO 

4.3% 4.3% 4.3% 3.3% 3.3% 3.3% 2.3% 2.3% 2.3% 2.3% 2.3% 

IND 

Group 
CGA 

6.5% 6.5% 6.0% 6.0% 6.0% 5.5% 5.5% 5.5% 5.0% 5.0% 5.0% 

Group 
CGO 

6.5% 6.5% 6.0% 6.0% 6.0% 5.5% 5.5% 5.5% 5.0% 5.0% 5.0% 

4. DISCUSSION 

4.1. Carbon emission projections for two groups and all provinces in MEP Scenario 

China's emissions will not peak by 2030 if indicators follow Chinese government goal. For the 
two different groups, neither CPB nor CPI has peaked. Obviously, if China wants to achieve 
social development and environmental protection goals such as population growth, economic 
development, industrial structure transformation, green technology progress and resource 
conservation, it will not be able to reach the peak in 2030 as promised (fig. 6-8) . 

 
Fig. 6-8 Carbon emission projections for the group CPB, group CPI and group containing all provinces 

in 2020-2030 in MEP Scenario 

4.2. Carbon emission projections for two groups and all provinces in EEP Scenario 

If the Chinese government implements strict environmental protection policies, limits 
population growth, accelerates industrial transformation, even willing to sacrifice GDP growth 
for environmental protection, so as to fulfill the solemn commitment of emission peak in 2030. 
Then China will reach the peak carbon emissions in 2028. Among them, the provinces that 
promised to peak in 2030 will peak their carbon emissions in 2028, while those that promised 
to peak in 2030 will peak their carbon emissions in 2027. This shows that if the use of 
environmental protection policies to excessively restrict the development of each province, 
rather than taking measures to adapt to local conditions, it is likely to harm the social and 
economic development of some provinces (fig. 9-11) . 



 
Fig. 9-11 Carbon emission projections for the group CPB, group CPI and group containing all provinces 

in 2020-2030 in EEP Scenario 

4.3. Carbon emission projections for two groups and all provinces in EED Scenario 

If the Chinese government wants to achieve a more successful phase of development before 
reaching emission peak, it will have to adopt policies that allow the growth rate of indicators to 
be much higher than previously planned. Since China is still in an immature stage of 
development and has not yet reached the inflection point of the EKC curve. Rapid 
socioeconomic development will only lead to a surge in carbon emissions, rather than an 
inverted U-shaped trend due to advances in environmental protection technology. This is also 
the same as previous studies (fig. 12-14) . 

 
Fig. 12-14 Carbon emission projections for the group CPB, group CPI and group containing all 

provinces in 2020-2030 in EED Scenario 

5. CONCLUSIONS 

Based on the STIRPAT model, this article uses ridge regression to build a prediction model for 
China's future carbon emissions, and uses the double fixed effect model to verify the robustness 
of the model. The results indicate that only under the EEP Scenario can China achieve carbon 
peaking in 2030, but this will come at a heavy cost of sacrificing social and economic 
development and exacerbating imbalanced development among different provinces. According 
to China's current policies, achieving carbon peak in 2030 is very difficult. The model shows 
that controlling the population growth rate, making the expected population peak earlier than 
the carbon emission peak, and promoting the use of clean energy to reduce energy consumption 
intensity are feasible and effective policy measures. 
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