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Abstract: Aiming at the issue that existing deep reinforcement learning algorithms 
cannot achieve satisfactory returns in the quantitative trading process, particularly during 
extreme stock market conditions such as sharp declines, we propose an improved TD 
algorithm based on immediate reward 𝑅௧, which we name as RTD. We further extend 
RTD to multi-step conditions (MRTD) and apply it to enhance algorithms such as DQN 
and DDPG. We then utilize these two improved algorithms in the stock quantitative 
trading process. Experimental results demonstrate that our proposed algorithms can 
respond to market changes more efficiently, resulting in improved accuracy of 
investment strategies and higher investment return rates, even during extreme market 
conditions. For instance, when the market declines by more than 10%, and the two 
specified stocks decline by nearly 5.09% and 13.30%, we can still obtain return rates of 
2.78% and 4.19%  respectively, which confirms the effectiveness of our proposed 
algorithms.  

Keywords: Deep reinforcement learning, TD algorithm, quantitative trading, extreme 
markets 

1. INTRODUCTION 

Since the beginning of 2022, many stock markets around the world have experienced sharp 
declines or violent fluctuations. Taking the Chinese stock market as an example, the A-share 
Shanghai Composite Index dropped from around 3,651 in early January to a low of 3,252 at 
the end of March, resulting in a drop of more than 10% in just three months, with a maximum 
drawdown of more than 17%, particularly in early March to mid-April. Similar conditions are 
prevalent in other stock markets, resulting in heavy losses for investors. To help people avoid 
such losses in extreme markets, quantitative trading is one of the key and promising means to 
solve the problem [1-3]. However, currently, there are few relevant studies on how to develop 
a quantitative trading model that can effectively handle such conditions [4-7]. 

Quantitative trading has always been a hot and challenging topic in financial time series data 
research, and in recent years, it has demonstrated satisfactory investment returns in stock 
markets [8-12]. With the rapid development of high-performance computing, big data, and 
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deep learning technologies over the past few years, reinforcement learning has also gained 
wider attention and faster development. The combination of reinforcement learning and deep 
learning has led to breakthroughs in the field of deep reinforcement learning, demonstrating 
strong learning and decision-making capabilities in various areas [13-18]. As a result, many 
researchers have introduced deep reinforcement learning methods into stock quantitative 
trading [17-21]. 

As early as 2000, scholars began applying reinforcement learning algorithms to quantitative 
stock trading[22-25]. Relevant research in recent years includes: In 2019, NN.Y.Vo et al.[26] 
proposed a Deep Response Portfolio (DRIP) model, which contains a multivariate 
bidirectional long-term short-term memory neural network for predicting stock returns. In the 
same year, Tianxin Liang et al.[27] reviewed the current researches of reinforcement learning 
models commonly used in the financial field, and analyzed the difficulties and challenges in 
the application of reinforcement learning technology in the financial field. Also in 2019, 
Yuefeng Cen et al.[28] introduced an near-end reinforcement learning method (PPO) into the 
stock price forecasting process. By 2020, Brando.I.V. et al.[29] proposed a DRL-based 
decision support framework for stock market, which identifies trades by learning trading rules. 
In the same year, Huang G et al.[30] proposed a portfolio optimization framework with a 
short-selling mechanism in the continuous action space. By adding a short-selling mechanism 
and designing an arbitrage mechanism, the existing depth of the reinforcement learning 
portfolio model has been improve. In 2021, Zhidong Liu et al.[31] first used a clustering 
algorithm to extract market state features in different time periods, and then used the Almgren-
Chriss optimal transaction execution framework article to construct optimal transaction 
execution. The reinforcement learning model incorporates the market state feature vector into 
the input variable, and solves it through the Deep Deterministic Policy Gradient (DDPG) in 
reinforcement learning. 

The literature shows that the main focus in recent years has been on building a suitable deep 
reinforcement learning framework to achieve quantitative trading. However, there is still a 
lack of effective research on how to improve investment returns and reduce losses in extreme 
stock market conditions. Addressing the problem of building a deep reinforcement learning 
framework and method that can avoid risks in sharp market declines, and provide stability and 
anti-risk abilities to the model, is a pressing issue that requires urgent attention. Additionally, 
existing reinforcement learning-based models lack a timely response mechanism for predicting 
stock market volatility during market turbulence. Therefore, improving the response efficiency 
of the models to market changes is another critical area that needs to be studied in-depth. 

Therefore, this paper proposes a deep reinforcement learning framework for quantitative stock 
trading. Firstly, we introduce an improved TD algorithm and use it to enhance classic 
reinforcement learning algorithms such as DQN and DDPG. Subsequently, we utilize the 
improved DQN algorithm and the improved DDPG algorithm to guide the quantitative trading 
process. Experimental results show that the improved algorithm proposed in this paper can 
generate positive returns even in periods of stock market crashes, providing valuable insights 
for quantitative investment transactions. 



2. TD ALGORITHM AND SERIES IMPROVED ALGORITHMS 

In order to improve the return or reduce the loss of quantitative trading in extreme stock 
markets, this paper proposes a series improved algorithms and applies them to quantitative 
trading. 

2.1 Improvement TD algorithm(RTD) 

The TD algorithm is a basic algorithm in reinforcement learning. It enables the model to 
update the cumulative expected return in the current state using the results of one or several 
steps during the training process and guide the update of model parameters. The TD algorithm 
integrates Monte Carlo sampling and the idea of Bootstrapping in dynamic programming, 
which uses the value function of the next state to estimate the current value function. This 
integration allows for parameter updates in a single step and greatly improves training speed, 
thereby expanding the application scenarios of reinforcement learning. Many well-known 
reinforcement learning algorithms, such as DQN, AC, A2C, TRPO, PPO, and DDPG, are 
either improved or extended based on the TD algorithm. 

The calculation formula of TD algorithm is as follows[32]: V(s୲) ← V(s୲)  + α(R୲  + γ ∗ V(s୲ାଵ) − V(s୲))  (1) 

In the formula: 𝑉(𝑠௧) is the value function of state st , 𝑉(𝑠௧ାଵ) is the value function of the next 
state(𝑠௧ାଵ), R୲ is the immediate reward obtained after performing the action in the St state, and γ is the return discount rate. 𝑅௧  + 𝛾 ∗ 𝑉(𝑠௧ାଵ) is TD Target and 𝛿௧ = 𝑅௧  + 𝛾 ∗ 𝑉(𝑠௧ାଵ)  −𝑉(𝑠௧) is TD Error. 

When performing an action in the state St to get the immediate reward Rt and transform to the 
next state 𝑠௧ାଵ, the existing algorithm just uses the information of 𝑠௧ାଵ in the calculation, and 
does not make full use of the immediate reward Rt, resulting in possible bias with the actual 
value V(𝑠௧ାଵ) larger. Therefore, this paper proposes an improved TD algorithm, which uses 
the immediate return Rt in state St to improve the value of V(𝑠௧ାଵ), thereby optimizing the 
model parameter update process, making the model training process more stable and more 
accurate. The specific calculation process is as follows: 

Let 𝑟௧ᇱ  be the model predicts of immediate reward from state 𝑆௧  to state 𝑆௧ାଵ . It can be 
calculated as: 𝑟௧ᇱ  =  𝑉(𝑠௧) − 𝑉(𝑠௧ାଵ)   (2) 

Then use 𝑟௧ᇱ  and rt to calculate the correction coefficient 𝛽௧ , as shown in the following 
formula(assume that 𝑟௧ᇱ is not equals to 0, otherwise 𝛽௧ is 1): 𝛽௧ =  𝑟௧/𝑟௧ᇱ  (3) 

Therefor: 𝑉(𝑠௧) ← 𝑉(𝑠௧)  +  𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗  𝑉(𝑠௧ାଵ)  − 𝑉(𝑠௧)]   (4) 

As 𝑅௧ is used in the improved TD algorithm, we can named the algorithm as RTD. 

 



2.2 Improved multi-step TD algorithm (MRTD) 

Since the transition between the states of each step is a random process, there may be a large 
error when just using one-step immediate reward. In order to make the correction value more 
robust, multi-step immediate reward needs to be used to correct the , as shown in figure 1. 

 
Figure 1: Actual reward and predicted reward at different steps 

By definition, we can get: 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗ 𝑉(𝑠௧ାଵ)  − 𝑉(𝑠௧)]             = 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗ (𝑅௧ାଵ  + 𝛾 ∗  𝑉(𝑠௧ାଶ) ) − 𝑉(𝑠௧)]             = 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗ 𝑅௧ାଵ  + 𝛽௧  ∗ 𝛾ଶ ∗  𝑉(𝑠௧ାଶ) )− 𝑉(𝑠௧)]             = 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗ 𝑅௧ାଵ  + 𝛽௧  ∗ 𝛾ଶ ∗  (𝑅௧ାଶ  + 𝛾∗ 𝑉(𝑠௧ାଷ) ) − 𝑉(𝑠௧)]             = 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗ 𝛾 ∗ 𝑅௧ାଵ  + 𝛽௧  ∗ 𝛾ଶ ∗  𝑅௧ାଶ  + 𝛽௧  ∗ 𝛾ଷ ∗ 𝑉(𝑠௧ାଷ)  − 𝑉(𝑠௧)]             = 𝑉(𝑠௧) + 𝛼[𝑅௧  + 𝛽௧  ∗  𝛾 ∗ 𝑅௧ାଶ
ୀଵ  + 𝛽௧  ∗ 𝛾ଶାଵ ∗ 𝑉(𝑠௧ାଶାଵ)  − 𝑉(𝑠௧)]   

(5) 

Similarly, it can be inferred that: 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼 ∗ [𝑅௧  + 𝛽௧  
               ∗   𝛾 ∗ 𝑅௧ା

ୀଵ + 𝛽௧  ∗ 𝛾ାଵ 

               ∗ 𝑉(𝑠௧ାାଵ)  − 𝑉(𝑠௧)]  
(6) 

Let t ← t -n, according to the above formula: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି (7) 



                      +𝛽௧ି  𝛾 ∗ 𝑅௧ିା
ୀଵ  

                     + 𝛽௧ି  ∗ 𝛾ାଵ                       ∗ 𝑉(𝑠௧ିାାଵ)  −  𝑉(𝑠௧ି)] 

When m = n, we can get: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି)  + 𝛼[𝑅௧ି  + 𝛽௧ି  
                    ∗  𝛾 ∗ 𝑅௧ିା

ୀଵ  + 𝛽௧ି  ∗ 𝛾ାଵ 

                    ∗ 𝑉(𝑠௧ାଵ)   − 𝑉(𝑠௧ି)]                = 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି  +                   ∑ 𝛾 ∗ 𝑅௧ିାୀଵ  + ( 𝛽௧ି −                   1)  ∗ ∑ 𝛾 ∗ 𝑅௧ିାୀଵ +                   𝛽௧ି ∗  𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ)  −                   𝑉(𝑠௧ି)]  
(8) 

In addition, before the improvement, we can get: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି)  + 𝛼[𝑅௧ି  +∑ 𝛾 ∗                     𝑅௧ିାୀଵ  + 𝛾ାଵ ∗𝑉(𝑠௧ାଵ)  −                     𝑉(𝑠௧ି)]  (9) 

Comparing formula (8) and (9), we can see that if we use the correction coefficient from t-n to 
correct the TD error, we also need to correct the cumulative real-time discounted reward from 
t-n to t. 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ) ←  ( 𝛽௧ି − 1) ∗∑ 𝛾 ∗                                  𝑅௧ିାୀଵ  +𝛽௧ି  ∗ 𝛾ାଵ ∗                                  𝑉(𝑠௧ାଵ)  

(10) 

The value on the left of "←" is the corrected value, and the value  on the right side is the state 
function value predicted by the model at the state . 

When n is large or tends to infinity, the second term of the plus sign on the right side of the 
above formula is close to (or tends to) 0. Then, the corrected result is mainly related to the 
actual immediate reward of the previous steps and the correction coefficient of each step. Then, 
the TD target is: 



𝑇𝐷 𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑅௧ି +  𝛾 ∗ 𝑅௧ିା
ୀଵ+ ( 𝛽௧ି − 1)  ∗  𝛾 ∗ 𝑅௧ିା

ୀଵ  + 𝛽௧ି  ∗ 𝛾ାଵ∗ 𝑉(𝑠௧ାଵ) 

                       ≈ 𝑅௧ି  +  𝛾 ∗ 𝑅௧ିା
ୀଵ  + ( 𝛽௧ି − 1) ∗  𝛾 ∗ 𝑅௧ିା

ୀଵ  

                       = 𝑅௧ି  + 𝛽௧ି ∗∑ 𝛾 ∗                             𝑅௧ିାୀଵ   

(11) 

It can be seen that the correction of the state value function of n steps in the past history is the 
correction coefficient of the corresponding time multiplied by the expectation of the return of 
the next state. 

From state t-n to state t, the correction values of  in the right side of formula (1) are 
respectively: 𝑉(𝑠௧ାଵ) ←  𝛽௧  ∗ 𝛾 ∗ 𝑉(𝑠௧ାଵ)/𝛾        = 𝛽௧  ∗ 𝑉(𝑠௧ାଵ) 

(12) 

 𝑉(𝑠௧ାଵ) ← [( 𝛽௧ିଵ − 1)  ∗  𝛾 ∗ 𝑅௧ିଵାଵ
ୀଵ   

                    +𝛽௧ିଵ  ∗ 𝛾ଶ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ଶ                 =  ( 𝛽௧ିଵ − 1) ∗ 𝑅௧ିଵ/𝛾 + 𝛽௧ିଵ                      ∗ 𝑉(𝑠௧ାଵ)  
(13) 

 𝑉(𝑠௧ାଵ) ← [( 𝛽௧ିଶ − 1)  ∗  𝛾 ∗ 𝑅௧ିଵାଶ
ୀଵ   

           +𝛽௧ିଶ  ∗ 𝛾ଷ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ଷ 

= ( 𝛽௧ିଶ − 1)  ∗ ∑ 𝛾 ∗ଶୀଵ𝑅௧ିଵା /                     𝛾ଷ  + 𝛽௧ିଶ  ∗ 𝛾ଷ ∗𝑉(𝑠௧ାଵ)   
(14) 

 



𝑉(𝑠௧ାଵ) ← [( 𝛽௧ି − 1)  ∗  𝛾 ∗ 𝑅௧ିା
ୀଵ   

                   +𝛽௧ି  ∗ 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ାଵ         = ( 𝛽௧ି − 1)  ∗  𝛾 ∗ 𝑅௧ିା
ୀଵ /𝛾ାଵ  + 𝛽௧ି  ∗ 𝑉(𝑠௧ାଵ) 

(15) 

Let  g୲ି୬ as:  𝑔௧ି = ( 𝛽௧ି − 1)  ∗  𝛾 ∗ 𝑅௧ିା
ୀଵ /𝛾ାଵ  

              +𝛽௧ି  ∗ 𝑉(𝑠௧ାଵ) 

(16) 

We can find that if β୲ି୬，β୲ି୬ାଵ，…，β୲ are used to update V(s୲ାଵ), R୲ି୬，R୲ି୬ାଵ，…，R୲ need to be used at the same time, then: 

 𝑉ᇱ(𝑠௧ାଵ) =  𝑔௧
ୀ௧ି /(𝑛 + 1) (17) 

Considering that there are different weights of the correction value of continuous multiple 
steps, the attenuation factor is added here (the value range is (0,1]), indicating that the farther 
away from the current state, the smaller the weight of the correction factor. As shown in the 
following. Vᇱ(s୲ାଵ)  =  (∑ 𝜑୧ ∗ g୧୲୧ୀ୲ି୬ )/(∑ 𝜑୧୲୧ୀ୲ି୬ ) (18) 

On this basis, the TD algorithm is improved as follows. 𝑉(𝑠௧) ← 𝑉(𝑠௧)  +  𝛼[𝑅௧  + 𝛾 ∗ 𝑉ᇱ(𝑠௧ାଵ)                  −𝑉(𝑠௧)] (19) 

Where n is the step size, and when n = 1, it is the improved single-step TD algorithm(shorted 
for SRTD).When n > 1, it is an improved multi-step TD algorithm(shorted for MRTD). 

In addition, the TD algorithm is the abbreviation of TD(λ) algorithm. When λ=0, the TD 
algorithm is called TD(0) algorithm. Generally, unless otherwise specified, the TD algorithm 
refers specifically to TD(0) algorithm. The RTDs in this paper is mainly for TD(0) algorithm, 
but the idea is also applicable to scenarios where λ is not 0. 

Further more, the RTDs in this paper can not only be used to improve the state value function V(s୲ାଵ),it can also be used to improve the state-action value function Q(𝑠௧ାଵ, 𝑎௧ାଵ) in the 
same way. 

 



2.3 Improved DQN algorithm 

In reinforcement learning, two typical implementations of TD algorithm are SARSA algorithm 
and Q-Learning algorithm. SARSA algorithm is an On-Policy TD algorithm, while the Q-
Learning algorithm is an Off-Policy algorithm. These two algorithms are mainly used in 
scenarios where the state space is discrete. When the state space is very large or tends to be 
infinite, the problem of dimensional disaster will occur. In response to the problem, scholars 
have proposed a method of value function approximation, that is, using a function to 
approximate the values in formula (1). Among them, the more classic one is the DQN 
algorithm proposed by Deepmind's scientists in 2015[33-34]. 

The DQN algorithm is an improvement to the Q-learning algorithm, so the RTDs proposed in 
this paper can also be used to improve the DQN algorithm. The specific process is shown in 
tabel 1. 

Table 1: Algorithm 1: Improved DQN algorithm 

1. First, for all states 𝑠 ∈ 𝑆 and all actions 𝑎 ∈A(s), initialize the parameters α and γ and 
the maximum episode N, construct neural network 𝑄(𝑠, 𝑎; 𝒘)  and initialize its 
parameters 𝒘.Initialize 𝜑 and steps n in formula (18). Initialize lists buffer list Bs,which is 
used to save multi-step correct values 𝛽. 

2. For each episode from 1 to N, do: 

Initialize the starting state 𝑠 according to the existing strategy, and select action a in 
state s according to the ε-greedy strategy; 

For each step t in the same episode,do: 

①According to the ε-greedy strategy, choose the action in state 𝑠௧ , get the 
immediate reward 𝑟௧ and the next state 𝑠௧ାଵ; 

②Calculate the estimated value of the action value function in state 𝑠௧ according 
to the network parameters: 𝑞௧ = 𝑄(𝑠௧, 𝑎௧; 𝒘௧)                                                                （20） 

③Use the current network parameters to calculate the estimated value of the 
action value function in state 𝑠௧ାଵ: 

 𝑞௧ାଵ = 𝑚𝑎𝑥 𝑄(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧)                                                （21） 
④Use formula (2) to calculate the predicted value of the immediate reward from 

state 𝑠௧ to state st+1 :  𝑟௧ᇱ  =  𝑞௧ − 𝑞௧ାଵ                                                                    （22） 
⑤Calculate β୲, and append a transition data (st, at, rt, st+1, βt) to the end of Bs. If 

the length of Bs is greater than n，pop the first value of Bs. 

⑥Use formula (16) 、(17)、(18) to calculate the predicted value 𝑄∗(𝑠௧ାଵ): 𝑄∗(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧) = 𝛽௧ ∗ 𝑞௧ାଵ                                                                   （23） 



⑦Calculate the value of TD Target:       𝑦௧ = 𝑟௧ + 𝛾  𝑄∗(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧)                                         （24） 
⑧Calculate the gradient of the action-value network: 𝒅௧ = డொ(௦,;𝒘)డ𝒘                                                                    （25） 
⑨Update the parameters of the network according to the gradient descent 

method: 

 𝒘௧ାଵ =  𝒘௧ − 𝛼 ∗ (𝑞௧ − 𝑦௧) ∗ 𝑑௧                                           （26） 
End loop; 

End loop. 

2.4 Improved DDPG algorithm  

The above improvements to the TD algorithm are implemented within the framework of the 
DQN algorithm. Since the DQN algorithm is a Value-Based algorithm, it is generally suitable 
for scenarios with limited action space (discrete space). When the action space is very large or 
continuous, the method of value function approximation cannot obtain an accurate action 
policy. Therefore, scholars propose to directly parameterize the search strategy and express the 
strategy as a function of the state, and then the method based on the Policy-Based appears[35-
36]. On the basis of Value-Based and Policy-Based methods, in order to make full use of the 
advantages of both, the AC (Actor-Critic) algorithm integrating the two and a series of related 
improved algorithms (such as A2C algorithm[37], A3C algorithm[38], etc.) appeared.Under 
the framework of the AC algorithm, the policy gradient update formula can be written as: 𝑔 = 𝐸[න 𝐻௧𝛻ఏ𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧)𝑑௧] (27) 

In the formula, 𝐻௧ is Value-Based state value function, which is used to evaluate the pros and 
cons of the current action and plays the role of Critic. 𝛻ఏ𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧) is Policy-Based policy 
function, which is used to guide the choice of strategy and plays the role of Actor. Among 
them, there are many different calculation methods of 𝐻௧. According to the calculation method, 
the AC algorithm can be divided into the Monte Carlo-based AC algorithm, the advantage 
function-based AC algorithm, and the TD-based AC algorithm, and so on. When calculated 
with TD error, 𝐻௧ can be written as:  𝐻௧ = 𝑟௧  + 𝛾 ∗ 𝑉గ(𝑠௧ାଵ)  − 𝑉గ(𝑠௧) (28) 

Here, the AC algorithm is called TD-AC algorithm. For example, drive from Guangzhou to 
Wuhan, passing through Changsha City. As shown below. 



 
Figure 2:  Example of  TD error 

Before departure, the model predicts that the entire journey will take 12 hours, but when 
arriving in Changsha, it actually took 9 hours. At this point, the model predicts that it will take 
another 4 hours from Changsha to Wuhan. In this example, both the 12 hours from Guangzhou 
to Wuhan and the 4 hours from Changsha to Wuhan are estimated by the same model. It can 
be inferred that using the same model to estimate the time from Guangzhou to Changsha 
would take 12-4=8 hours. Therefore, based on this model, it was estimated that it would take a 
total of 13 hours from Guangzhou to Wuhan (9+4). Therefor, 𝑉(𝑠௧) is 12 hours, 𝑅௧ is 9 hours, 
and 𝑉(𝑠௧ାଵ)  is 4 hours. However, in reality, the estimate for 𝑉(𝑠௧ାଵ)  should have been 
adjusted based on the available information. For example, the time needed from Changsha to 
Wuhan should be adjusted proportionally, which would be 9/8*4=4.5 hours. The TD 
algorithm update model parameters based on 4 hours, but in reality, updating the model 
parameters based on 4.5 hours is more reasonable. 

It can also be improved with the RTDs proposed in this paper. However, the outputs of the AC 
series algorithms are the probability density functions of the action, not the deterministic 
action. They are stochastic policy gradient algorithms. In addition to the AC algorithm and its 
variants mentioned, popular stochastic policy gradient algorithms also include TRPO[39], 
PPO[40], and so on. The convergence performance of this type of algorithm is relatively good, 
but the main problems are, on the one hand, that it needs to sample the action according to the 
probability density function of the action, which has a large uncertainty. On the other hand, it 
cannot be directly applied to the scene of continuous action space. In response to these 
problems, scholars have proposed the DDPG (Deep Deterministic Policy Gradient) algorithm 
based on the AC algorithm[41-42]. The output of the DDPG algorithm is a deterministic 
action that reduces randomness and errors. The DDPG algorithm has been widely concerned 
and applied due to its excellent performance in computational efficiency and accuracy. Since 
the DDPG algorithm is an improvement of the Actor-Critic algorithm, it is also composed of 
an Actor network and a Critic network. The Actor network output is a deterministic action, 
and the Critic network is used to evaluate the Actor's output action.Similarly, the DDPG 
algorithm can be improved with the RTDs proposed in this paper, as shown in table 2. 

 



Table 2: Algorithm 2. Improved DDPG algorithm 

1. Initialize the Critic network 𝑄(𝑠, 𝑎|𝜽ொ)  parameters and Actor network 𝜇(𝑠|𝜽𝝁) 
parameters. Initialize the target network parameters as 𝜽ொᇲ = 𝜽ொ  and 𝜽ఓᇲ = 𝜽ఓ . 
Initialize γ and the maximum training episode number N.Initialize φ and steps n in 
formula (18). Initialize lists buffer list Bs,which is used to save the multi-step correct 
values 𝛽. 

2. For each episode from 1 to N, do: 

Initialize the starting state s according to the existing strategy; 

For each step t=1..T , do: 

①Sampling an action 𝑎୲ according to the Actor network: 𝑎௧ = 𝜇(𝑠௧|𝜽ఓ) + 𝛺௧                                                                        （29） 
②Perform action 𝑎௧ in state 𝑠௧, get a reward 𝑟௧, and the next state 𝑠௧ାଵ; 

③ Using the Critic network 𝑄(𝑠, 𝑎|𝜽ொ)  to estimated value of state s୲ 𝑄ᇱ(𝑠௧, 𝜇ᇱ(𝑠௧|𝜽ఓᇲ)|𝜽ொᇲ) , the estimated value of the next state 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽ொᇲ); 

④Calculate 𝛽௧, append the transition data (𝑠௧, 𝑎, 𝑟௧, 𝑠௧ାଵ, 𝛽௧)to the end of Bs. If 
the length of Bs is greater than n，pop the first value of Bs. 

⑤Sampling a mini batch from Bs, use formula (16) 、(17)、(18) to update the 
predicted value 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽𝑸ᇲ);.Note that the data in a mini batch can be 
Calculated concurrently; 

⑥Update the estimated value of the next state-action function and calculate the 
value of the Critic target network y୧: 𝑦 = 𝑟 + 𝛽௧ ∗ 𝛾 ∗ 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽ொᇲ)                                    （30） 

⑦Update Critic network parameters: 

 𝛿௧ = ଵே ∑ (𝑦 − 𝑄(𝑠, 𝑎|𝜽ொ))ே                                                        （31） 𝜽ொ௧ାଵ  =  𝜽ொ௧ାଵ  + 𝛿௧  ∗  𝛼ொ ∗ 𝛻𝜽ೂ𝑄(𝑠௧, 𝑎௧|𝜽ொ)                                   （32） 
⑧Update policy network parameters: 𝛻𝜽ഋ|௦ ≈ ଵே ∑ 𝛻ேୀଵ 𝑄(𝑠, 𝑎|𝜽ொ)|௦ୀ௦,ୀఓ(௦) 𝛻𝜽ഋ𝜇(𝑠|𝜽ఓ)|௦                    （33） 𝜽ఓ௧ାଵ  =  𝜽ఓ௧ାଵ  + 𝛽௧ ∗ 𝛿௧  ∗  𝛼ఓ ∗ 𝛻𝜽ഋ|௦                                            （34） 
⑨Update the target network parameters: 

              𝜽ொᇲ = 𝜏𝜽ொ + (1 − 𝜏) 𝜽ொᇲ                                                               （35） 
              𝜽ఓᇲ = 𝜏𝜽ఓ + (1 − 𝜏) 𝜽ఓᇲ                                                                （36） 

End loop; 

End loop. 



3. EXPERIMENTS AND ANALYSIS  

In this paper, the improved DQN algorithm and the improved DDPG algorithm are used in 
stock quantitative trading process, and compared with the algorithms before the improvement. 
The experiment data originate from www.baostock.com, a free and open source securities data 
platform. 

3.1 Experimental data 

The data used in this paper is the daily exchange data of Chinese stock market since January 1, 
2000, of which 22 years of data from January 4, 2000 to December 31, 2021 are used as the 
training set (5332 trading days in total), including the daily trading information of all stocks 
and indexes of Chinese stock market during this period. The data for a total of 3 months 
January 4, 2022, to March 31, 2022,is used as the test set (a total of 58 trading days) . The 
dataset includes 13 features，such as exchange date, stock code, opening price today, highest 
price, lowest price, closing price today, closing price yesterday, transaction quantity, 
transaction amount, turnover rate, resumption status, transaction status, change percentage, etc. 
Among them with 9 continuous features and 2 discrete features (re-weight status, transaction 
status),  except exchange date and stock code.We first use all the stock data to train the model, 
and for convenience of description, we take China Merchants Bank(sh.600036) and Lepu 
Medical(sz.300003) as examples to illustrate the effects of the models in this paper.The reason 
why we choose these two stocks is that one is from the A-share main board and the other is 
from the GEM.The volatility of the main board stocks is small, while the volatility of the 
GEM stocks is large, representing different risk levels and income levels. 

Since the dimensions of the variables in the original data are not uniform, it is first necessary 
to convert the continuous variable data into normalized data with a mean of 0 and a standard 
deviation of 1. At the same time, discrete features such as month, week, and day (that is, the 
number of the month) , which extracted from the exchange date, will be converted to One-hot 
type (52 features are obtained), together with the features such as weight restoration status and 
transaction status. The above 9+52 feature variables are combined to 61 vectors as 
environmental features. 

3.2 Markov Decision Process Model 

This paper takes stock quantitative trading as an example to build a deep reinforcement 
learning model, takes stock investors as the agent, and takes the stock market as the system. 
The Markov decision process model (S, A, P, R, γ) is shown in the following. 

(1) State space S: The 61 environmental features obtained above, combining the agent’s self 
information (including total market value, total assets, available amount, number of shares, 
current profit and loss, total profit and loss, total profit and loss ratio, available Amount, 
position ratio and other 9 features), a total of 70 features are used as the environmental state 
variables of the model.  

(2) State transition matrix P: Since the stock market is a large and complex nonlinear system, 
its state transition matrix P cannot be obtained. When the agent takes an action, the 
environment moves to the next state (including the state of the environment and the state of 
the agent). In this experiment, the next state can be obtained through simulated sampling and 



calculation, in which the stock price can be uniformly sampled between the highest price and 
the lowest price on the second day, and then other environmental variables are calculated in 
equal proportions.Agent's own state information can be obtained by corresponding calculation 
after taking action. 

(3) Action space A: including the three actions of buying, selling and holding. The dimension 
of action space is 1-dimensional space. When the value of action a is less than 0, it is a selling 
operation, and when it is greater than 0, it is a buying operation, and when it is equal to 0, it is 
holding operation. 

(4) Reward function R: the reward function of the model is designed as the proportion of the 
income brought by the operation (total assets after investment/total assets before investment -
1), and in order to ensure the safety of funds, when losses occur, give a large penalty, 
amplifies the loss value by a factor of 10. which is: 𝑟௧ = ൜𝑟௧ ,           if  𝑟௧  >= 0 10 ∗ 𝑟୲ ,      if  𝑟௧  < 0 (37) 

(5) Discounted rate γ: γ ∈ [0, 1]. 

3.3 Neural networks 

In this paper, two groups of improved models are designed to compare the effectiveness, as 
follows. 

3.3.1 DQN and improved DQN networks 

The improvement of the algorithm in this paper only involves the update process of specific 
parameters, not the network structure. In order to compare the effectiveness of algorithms 
before and after the improvement, the DQN algorithm and the improved DQN algorithm use 
the same network structure. Since the stock data is time series data, its network model mainly 
adopts the LSTM layers + MLP layers, as shown in figure 3. 

The network includes three LSTM layers, one BatchNormalization(BN) layer, and two fully 
connected layers. The input dimension of the network is [30, 71], where 30 indicates the past 
30 trading days, 70 is the number of features, and 1 is the action dimension. In order to unify 
the network input, the action shape is expanded into a [30,1] tensor, all 1 when the action is 
buying, all -1 when the action is selling, and all 0 when the corresponding action is holding. 
Each LSTM layer adopts the RELU activation function, and its output is processed by the BN 
layer. The normalized data is connect to the fully connected layer. The first fully connected 
layer also uses the RELU activation function, and the second fully connected layer is the 
output layer and does not require an activation function. In terms of main parameter settings, 
the learning rate of the Actor network is 0.0001, the learning rate of the Critic network is 
0.0002, and the value of τ is 0.01. 



 
Figure 3:  Network of DQN and improved DQN 

3.3.2 DDPG and improved DDPG networks 

Since the DDPG model includes two networks, Actor and Critic, in order to make multiple 
algorithms comparable, both Actor and Critic networks here adopt a structure similar to the 
above  

 
Figure 4:  DDPG structure and improved DDPG structure 



DQN model. The differences are:①Actor network input is 30*70 tensor (without action 
input);②Actor network output is a continuous value between -1 and 1, which is expanded to 
30*1. After the tensor is combined with the state tensor, a 30*71 tensor is input into the Critic 
network.The structure is shown in figure 4. 
3.4 Experimental results and discusses 

Since reinforcement learning aims to maximize returns rather than predict trends, and 
therefore performance cannot be evaluated using traditional metrics such as RMSE, MAE, and 
R-square. Instead, this study evaluates model performance based on final returns. We use data 
from China Merchants Bank (sh.600036) and Lepu Medical (sz.300003) as examples, with 
dates ranging from January 4, 2022 to March 30, 2022, and calculate the cumulative return for 
each day. The results are presented in Figure 5. 

 
(a) sh.600036 

 
(b) sz.300003 

Figure 5: Comparison of cumulative returns of different models on each trading day 

For sh.600036, Fig.4 shows that the DQN model failed to implement an effective investment 
strategy to obtain due investment returns in the early stage of the stock rising cycle, and failed 
to take effective actions to avoid risks in the later stage of stock price decline. The improved 
DQN model can better follow the rising cycle of stocks, significantly improve investment 
returns, and can take effective action strategies in the falling cycle of stocks to avoid more 



losses, indicating that the improved DQN model is added to the current operation. The 
correction of immediate return can effectively improve the return on investment. The DDPG 
model can fit the trend of stocks very well, and actively invest in the rising cycle of stocks to 
get higher returns, but still take active action strategies in the downward cycle of stocks, and 
there is also a large loss. The improved DDPG model can get higher returns in the stock up 
cycle, and take the correct action strategy (stop trading) for a longer period of time in the stock 
down cycle, avoid investment losses, and thus get higher returns.And we can get similar 
conclusion on stock sz.300003. 

Further more, the investment return indicators under each model are counted, as shown in 
table 3. 

For Sh.600036, through historical data query, it can be seen that the stock price was 48.71 
RMB before the opening on 2021-1-4, and the closing price on 2022-3-30 was 46.23, a 
decrease of 5.09%, and the average daily increase and decrease of 0.06% . It can be seen from 
table 3 that the Average daily Cumulative Return of the DQN model is the smallest, the loss 
ratio reaches 2.75%, and the return at the end of the test period (2022-3-30) is -3.02%, the 
standard deviation of return is 0.0317%. It can be seen that the investment strategy based on 
the DQN model can effectively reduce investment losses. The average daily cumulative rate of 
return of the improved DQN model is 0.53%, and the final rate of return is 2.19%, which can 
obtain a positive rate of return when the stock falls as a whole, which shows the effectiveness 
of the improved DNQ model proposed in this paper. The average daily cumulative rate of 
return of the DDPG model is 0.24%, and the final rate of return is -5.75%, which shows that 
the overall rate of return of the DDPG model is relatively poor. The standard deviation of the 
daily cumulative rate of return is 0.0560%, and the maximum drawdown reaches 21.87%. It 
can be seen that the model's return is very volatile. The average daily cumulative return of the 
improved DDPG model is 1.25%, the final return is 5.09%, the standard deviation of the daily 
return is only 0.0242%, and the maximum drawdown ratio is only 12.75%. Both performance 
and benefits of improved DDPG model are better than the DDPG model.For sz.300003, we 
can find that,the improved DQN model the improved DDPG model are also better than the 
model before improvement on each performance index, which also shows the effectiveness of 
the improved algorithm. 

Further more, to analyze the reasons for the differences in the effectiveness of different 
models and the trading characteristics of each model (such as the number of trading days, the 
average daily position ratio and its standard deviation, the maximum buying ratio, the 
maximum selling ratio, etc.),  as shown in Table 4. 

Table 3:  Statistical comparison of cumulative investment returns 

Stock Model 

Average of 
Daily 

Cumulative 
Return 

Standard 
Deviation of 

Daily 
Cumulative  

Return 

Cumulative 
Return in 
the End 

Maximum 
Drawdown 

Sharpe 
Ratio 

 
 
 

DQN -2.75% 0.0317% -3.02% 11.88% -1.18 
Improved 

DQN 
0.53% 0.0307% 2.19% 13.18% -0.16 



Sh.600
036 

DDPG 0.24% 0.0560% -5.75% 21.87% -0.14 
Improved 

DDPG 
1.25% 0.0242% 2.78% 12.75% 0.09 

Sh.600036 -0.06% 0.0238% -5.09% 25.54% -0.45 

 
 
 

Sz.300
003 

DQN -3.43% 0.0403% -2.53% 11.59% -1.09 
Improved 

DQN 
5.01% 0.0220% 3.44% 8.42% 1.52 

DDPG -2.38% 0.0484% -8.04% 20.77% -0.69 
Improved 

DDPG 
5.74% 0.0310% 4.19% 9.81% 1.82 

Sz.300003 -0.13% 0.0369% -13.30% 27.34% -1.32 

Table 4: Comparison of transaction characteristics of different models 

Stock Model 
Exch
ange 
Days 

Average 
Daily 

Position 
Ratio 

Standard 
Deviation of 

Daily 
Position 

Ratio 

Maximum 
Buying 
Ratio 

Maximum 
Selling 
Ratio 

Days of 
More than 

95% 
position 

Ratio 

Sh.60
0036 

DQN 57 96.52% 4.38% 100.00% 100.00% 52 

Improved 
DQN 47 75.15% 18.39% 100.00% 100.00% 24 

DDPG 55 94.52% 6.44% 100.00% 100.00% 52 

Improved 
DDPG 42 63.55% 33.46% 100.00% 100.00% 20 

Sz.30
0003 

DQN 57 96.44% 4.41% 100.00% 100.00% 51 
Improved 

DQN 50 72.23% 19.22% 100.00% 100.00% 18 

DDPG 55 95.02% 6.40% 100.00% 100.00% 52 

Improved 
DDPG 45 72.61% 21.45% 100.00% 100.00% 19 

 
In table 4, the DQN model and the DDPG model have traded on 57 and 55 trading days 
respectively in the 57 trading days for sh.600036, 51 and 52 for sz.300003.However, for 
sh.600036, the number of trading days of the improved DQN model and the improved DDPG 
model are significantly smaller than those unimproved models, and the number of days of 
more than 95% of positions is also less, the same to sz.300003. Combined with the above 
figure 5, it can be seen that although the number of transactions in the improved DDPG model 
has decreased, the trading accuracy has been greatly improved. And finally, in a falling stock 
market, the model can still get better returns. 



4. CONCLUSIONS  

This paper proposes an improved TD algorithm (RTD) and extends it to multi-step conditions 
(MRDT). Based on this, we propose improved versions of the DQN and DDPG algorithms. 
We then demonstrate the effectiveness of these algorithms by applying them to the Chinese 
stock market under extreme conditions. Experimental results show that our improved 
algorithms can significantly improve returns and reduce trading risk in quantitative stock 
trading scenarios. In the future, we plan to further extend these algorithms to multi-agent 
scenarios and explore their applications in more complex scenarios, such as portfolio 
investment strategies. 
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