
Improved Deep Reinforcement Learning Algorithms
and Applications in Quantitative Trading in Extreme

Stock Markets

Deguan Cui1*, Ailin Deng2, Zhengxun Xia3, Liqi Zeng1

{deguan.cui, ailin.deng, zhengxun.xia, liqi.zeng}@transwarp.io

1Data Intelligence Department,Transwarp Technology(shanghai) Co.,ltd., Guangzhou,510665, China

2Data Intelligence Department,Transwarp Technology(shanghai) Co.,ltd., Shanghai,200233, China

3 Big Data Research Institute,Transwarp Technology(shanghai) Co.,ltd., Nanjing,210000, China

Abstract: Aiming at the issue that existing deep reinforcement learning algorithms
cannot achieve satisfactory returns in the quantitative trading process, particularly during
extreme stock market conditions such as sharp declines, we propose an improved TD
algorithm based on immediate reward 𝑅௧, which we name as RTD. We further extend
RTD to multi-step conditions (MRTD) and apply it to enhance algorithms such as DQN
and DDPG. We then utilize these two improved algorithms in the stock quantitative
trading process. Experimental results demonstrate that our proposed algorithms can
respond to market changes more efficiently, resulting in improved accuracy of
investment strategies and higher investment return rates, even during extreme market
conditions. For instance, when the market declines by more than 10%, and the two
specified stocks decline by nearly 5.09% and 13.30%, we can still obtain return rates of
2.78% and 4.19% respectively, which confirms the effectiveness of our proposed
algorithms.

Keywords: Deep reinforcement learning, TD algorithm, quantitative trading, extreme
markets

1. INTRODUCTION

Since the beginning of 2022, many stock markets around the world have experienced sharp
declines or violent fluctuations. Taking the Chinese stock market as an example, the A-share
Shanghai Composite Index dropped from around 3,651 in early January to a low of 3,252 at
the end of March, resulting in a drop of more than 10% in just three months, with a maximum
drawdown of more than 17%, particularly in early March to mid-April. Similar conditions are
prevalent in other stock markets, resulting in heavy losses for investors. To help people avoid
such losses in extreme markets, quantitative trading is one of the key and promising means to
solve the problem [1-3]. However, currently, there are few relevant studies on how to develop
a quantitative trading model that can effectively handle such conditions [4-7].

Quantitative trading has always been a hot and challenging topic in financial time series data
research, and in recent years, it has demonstrated satisfactory investment returns in stock
markets [8-12]. With the rapid development of high-performance computing, big data, and

ICIDC 2023, June 02-04, Nanchang, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.2-6-2023.2334605

deep learning technologies over the past few years, reinforcement learning has also gained
wider attention and faster development. The combination of reinforcement learning and deep
learning has led to breakthroughs in the field of deep reinforcement learning, demonstrating
strong learning and decision-making capabilities in various areas [13-18]. As a result, many
researchers have introduced deep reinforcement learning methods into stock quantitative
trading [17-21].

As early as 2000, scholars began applying reinforcement learning algorithms to quantitative
stock trading[22-25]. Relevant research in recent years includes: In 2019, NN.Y.Vo et al.[26]
proposed a Deep Response Portfolio (DRIP) model, which contains a multivariate
bidirectional long-term short-term memory neural network for predicting stock returns. In the
same year, Tianxin Liang et al.[27] reviewed the current researches of reinforcement learning
models commonly used in the financial field, and analyzed the difficulties and challenges in
the application of reinforcement learning technology in the financial field. Also in 2019,
Yuefeng Cen et al.[28] introduced an near-end reinforcement learning method (PPO) into the
stock price forecasting process. By 2020, Brando.I.V. et al.[29] proposed a DRL-based
decision support framework for stock market, which identifies trades by learning trading rules.
In the same year, Huang G et al.[30] proposed a portfolio optimization framework with a
short-selling mechanism in the continuous action space. By adding a short-selling mechanism
and designing an arbitrage mechanism, the existing depth of the reinforcement learning
portfolio model has been improve. In 2021, Zhidong Liu et al.[31] first used a clustering
algorithm to extract market state features in different time periods, and then used the Almgren-
Chriss optimal transaction execution framework article to construct optimal transaction
execution. The reinforcement learning model incorporates the market state feature vector into
the input variable, and solves it through the Deep Deterministic Policy Gradient (DDPG) in
reinforcement learning.

The literature shows that the main focus in recent years has been on building a suitable deep
reinforcement learning framework to achieve quantitative trading. However, there is still a
lack of effective research on how to improve investment returns and reduce losses in extreme
stock market conditions. Addressing the problem of building a deep reinforcement learning
framework and method that can avoid risks in sharp market declines, and provide stability and
anti-risk abilities to the model, is a pressing issue that requires urgent attention. Additionally,
existing reinforcement learning-based models lack a timely response mechanism for predicting
stock market volatility during market turbulence. Therefore, improving the response efficiency
of the models to market changes is another critical area that needs to be studied in-depth.

Therefore, this paper proposes a deep reinforcement learning framework for quantitative stock
trading. Firstly, we introduce an improved TD algorithm and use it to enhance classic
reinforcement learning algorithms such as DQN and DDPG. Subsequently, we utilize the
improved DQN algorithm and the improved DDPG algorithm to guide the quantitative trading
process. Experimental results show that the improved algorithm proposed in this paper can
generate positive returns even in periods of stock market crashes, providing valuable insights
for quantitative investment transactions.

2. TD ALGORITHM AND SERIES IMPROVED ALGORITHMS

In order to improve the return or reduce the loss of quantitative trading in extreme stock
markets, this paper proposes a series improved algorithms and applies them to quantitative
trading.

2.1 Improvement TD algorithm(RTD)

The TD algorithm is a basic algorithm in reinforcement learning. It enables the model to
update the cumulative expected return in the current state using the results of one or several
steps during the training process and guide the update of model parameters. The TD algorithm
integrates Monte Carlo sampling and the idea of Bootstrapping in dynamic programming,
which uses the value function of the next state to estimate the current value function. This
integration allows for parameter updates in a single step and greatly improves training speed,
thereby expanding the application scenarios of reinforcement learning. Many well-known
reinforcement learning algorithms, such as DQN, AC, A2C, TRPO, PPO, and DDPG, are
either improved or extended based on the TD algorithm.

The calculation formula of TD algorithm is as follows[32]: V(s୲) ← V(s୲) + α(R୲ + γ ∗ V(s୲ାଵ) − V(s୲)) (1)

In the formula: 𝑉(𝑠௧) is the value function of state st , 𝑉(𝑠௧ାଵ) is the value function of the next
state(𝑠௧ାଵ), R୲ is the immediate reward obtained after performing the action in the St state, and γ is the return discount rate. 𝑅௧ + 𝛾 ∗ 𝑉(𝑠௧ାଵ) is TD Target and 𝛿௧ = 𝑅௧ + 𝛾 ∗ 𝑉(𝑠௧ାଵ) −𝑉(𝑠௧) is TD Error.

When performing an action in the state St to get the immediate reward Rt and transform to the
next state 𝑠௧ାଵ, the existing algorithm just uses the information of 𝑠௧ାଵ in the calculation, and
does not make full use of the immediate reward Rt, resulting in possible bias with the actual
value V(𝑠௧ାଵ) larger. Therefore, this paper proposes an improved TD algorithm, which uses
the immediate return Rt in state St to improve the value of V(𝑠௧ାଵ), thereby optimizing the
model parameter update process, making the model training process more stable and more
accurate. The specific calculation process is as follows:

Let 𝑟௧ᇱ be the model predicts of immediate reward from state 𝑆௧ to state 𝑆௧ାଵ . It can be
calculated as: 𝑟௧ᇱ = 𝑉(𝑠௧) − 𝑉(𝑠௧ାଵ) (2)

Then use 𝑟௧ᇱ and rt to calculate the correction coefficient 𝛽௧ , as shown in the following
formula(assume that 𝑟௧ᇱ is not equals to 0, otherwise 𝛽௧ is 1): 𝛽௧ = 𝑟௧/𝑟௧ᇱ (3)

Therefor: 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧)] (4)

As 𝑅௧ is used in the improved TD algorithm, we can named the algorithm as RTD.

2.2 Improved multi-step TD algorithm (MRTD)

Since the transition between the states of each step is a random process, there may be a large
error when just using one-step immediate reward. In order to make the correction value more
robust, multi-step immediate reward needs to be used to correct the , as shown in figure 1.

Figure 1: Actual reward and predicted reward at different steps

By definition, we can get: 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧)] = 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ (𝑅௧ାଵ + 𝛾 ∗ 𝑉(𝑠௧ାଶ)) − 𝑉(𝑠௧)] = 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑅௧ାଵ + 𝛽௧ ∗ 𝛾ଶ ∗ 𝑉(𝑠௧ାଶ))− 𝑉(𝑠௧)] = 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑅௧ାଵ + 𝛽௧ ∗ 𝛾ଶ ∗ (𝑅௧ାଶ + 𝛾∗ 𝑉(𝑠௧ାଷ)) − 𝑉(𝑠௧)] = 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑅௧ାଵ + 𝛽௧ ∗ 𝛾ଶ ∗ 𝑅௧ାଶ + 𝛽௧ ∗ 𝛾ଷ ∗ 𝑉(𝑠௧ାଷ) − 𝑉(𝑠௧)] = 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛽௧ ∗ 𝛾 ∗ 𝑅௧ାଶ
ୀଵ + 𝛽௧ ∗ 𝛾ଶାଵ ∗ 𝑉(𝑠௧ାଶାଵ) − 𝑉(𝑠௧)]

(5)

Similarly, it can be inferred that: 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼 ∗ [𝑅௧ + 𝛽௧
 ∗ 𝛾 ∗ 𝑅௧ା

ୀଵ + 𝛽௧ ∗ 𝛾ାଵ

 ∗ 𝑉(𝑠௧ାାଵ) − 𝑉(𝑠௧)]
(6)

Let t ← t -n, according to the above formula: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି (7)

 +𝛽௧ି 𝛾 ∗ 𝑅௧ିା
ୀଵ

 + 𝛽௧ି ∗ 𝛾ାଵ ∗ 𝑉(𝑠௧ିାାଵ) − 𝑉(𝑠௧ି)]

When m = n, we can get: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି + 𝛽௧ି
 ∗ 𝛾 ∗ 𝑅௧ିା

ୀଵ + 𝛽௧ି ∗ 𝛾ାଵ

 ∗ 𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧ି)] = 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି + ∑ 𝛾 ∗ 𝑅௧ିାୀଵ + (𝛽௧ି − 1) ∗ ∑ 𝛾 ∗ 𝑅௧ିାୀଵ + 𝛽௧ି ∗ 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧ି)]
(8)

In addition, before the improvement, we can get: 𝑉(𝑠௧ି) ← 𝑉(𝑠௧ି) + 𝛼[𝑅௧ି +∑ 𝛾 ∗ 𝑅௧ିାୀଵ + 𝛾ାଵ ∗𝑉(𝑠௧ାଵ) − 𝑉(𝑠௧ି)] (9)

Comparing formula (8) and (9), we can see that if we use the correction coefficient from t-n to
correct the TD error, we also need to correct the cumulative real-time discounted reward from
t-n to t. 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ) ← (𝛽௧ି − 1) ∗∑ 𝛾 ∗ 𝑅௧ିାୀଵ +𝛽௧ି ∗ 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ)

(10)

The value on the left of "←" is the corrected value, and the value on the right side is the state
function value predicted by the model at the state .

When n is large or tends to infinity, the second term of the plus sign on the right side of the
above formula is close to (or tends to) 0. Then, the corrected result is mainly related to the
actual immediate reward of the previous steps and the correction coefficient of each step. Then,
the TD target is:

𝑇𝐷 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅௧ି + 𝛾 ∗ 𝑅௧ିା
ୀଵ+ (𝛽௧ି − 1) ∗ 𝛾 ∗ 𝑅௧ିା

ୀଵ + 𝛽௧ି ∗ 𝛾ାଵ∗ 𝑉(𝑠௧ାଵ)

 ≈ 𝑅௧ି + 𝛾 ∗ 𝑅௧ିା
ୀଵ + (𝛽௧ି − 1) ∗ 𝛾 ∗ 𝑅௧ିା

ୀଵ

 = 𝑅௧ି + 𝛽௧ି ∗∑ 𝛾 ∗ 𝑅௧ିାୀଵ

(11)

It can be seen that the correction of the state value function of n steps in the past history is the
correction coefficient of the corresponding time multiplied by the expectation of the return of
the next state.

From state t-n to state t, the correction values of in the right side of formula (1) are
respectively: 𝑉(𝑠௧ାଵ) ← 𝛽௧ ∗ 𝛾 ∗ 𝑉(𝑠௧ାଵ)/𝛾 = 𝛽௧ ∗ 𝑉(𝑠௧ାଵ)

(12)

 𝑉(𝑠௧ାଵ) ← [(𝛽௧ିଵ − 1) ∗ 𝛾 ∗ 𝑅௧ିଵାଵ
ୀଵ

 +𝛽௧ିଵ ∗ 𝛾ଶ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ଶ = (𝛽௧ିଵ − 1) ∗ 𝑅௧ିଵ/𝛾 + 𝛽௧ିଵ ∗ 𝑉(𝑠௧ାଵ)
(13)

 𝑉(𝑠௧ାଵ) ← [(𝛽௧ିଶ − 1) ∗ 𝛾 ∗ 𝑅௧ିଵାଶ
ୀଵ

 +𝛽௧ିଶ ∗ 𝛾ଷ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ଷ

= (𝛽௧ିଶ − 1) ∗ ∑ 𝛾 ∗ଶୀଵ𝑅௧ିଵା / 𝛾ଷ + 𝛽௧ିଶ ∗ 𝛾ଷ ∗𝑉(𝑠௧ାଵ)
(14)

𝑉(𝑠௧ାଵ) ← [(𝛽௧ି − 1) ∗ 𝛾 ∗ 𝑅௧ିା
ୀଵ

 +𝛽௧ି ∗ 𝛾ାଵ ∗ 𝑉(𝑠௧ାଵ)]/𝛾ାଵ = (𝛽௧ି − 1) ∗ 𝛾 ∗ 𝑅௧ିା
ୀଵ /𝛾ାଵ + 𝛽௧ି ∗ 𝑉(𝑠௧ାଵ)

(15)

Let g୲ି୬ as: 𝑔௧ି = (𝛽௧ି − 1) ∗ 𝛾 ∗ 𝑅௧ିା
ୀଵ /𝛾ାଵ

 +𝛽௧ି ∗ 𝑉(𝑠௧ାଵ)

(16)

We can find that if β୲ି୬，β୲ି୬ାଵ，…，β୲ are used to update V(s୲ାଵ), R୲ି୬，R୲ି୬ାଵ，…，R୲ need to be used at the same time, then:

 𝑉ᇱ(𝑠௧ାଵ) = 𝑔௧
ୀ௧ି /(𝑛 + 1) (17)

Considering that there are different weights of the correction value of continuous multiple
steps, the attenuation factor is added here (the value range is (0,1]), indicating that the farther
away from the current state, the smaller the weight of the correction factor. As shown in the
following. Vᇱ(s୲ାଵ) = (∑ 𝜑୧ ∗ g୧୲୧ୀ୲ି୬)/(∑ 𝜑୧୲୧ୀ୲ି୬) (18)

On this basis, the TD algorithm is improved as follows. 𝑉(𝑠௧) ← 𝑉(𝑠௧) + 𝛼[𝑅௧ + 𝛾 ∗ 𝑉ᇱ(𝑠௧ାଵ) −𝑉(𝑠௧)] (19)

Where n is the step size, and when n = 1, it is the improved single-step TD algorithm(shorted
for SRTD).When n > 1, it is an improved multi-step TD algorithm(shorted for MRTD).

In addition, the TD algorithm is the abbreviation of TD(λ) algorithm. When λ=0, the TD
algorithm is called TD(0) algorithm. Generally, unless otherwise specified, the TD algorithm
refers specifically to TD(0) algorithm. The RTDs in this paper is mainly for TD(0) algorithm,
but the idea is also applicable to scenarios where λ is not 0.

Further more, the RTDs in this paper can not only be used to improve the state value function V(s୲ାଵ),it can also be used to improve the state-action value function Q(𝑠௧ାଵ, 𝑎௧ାଵ) in the
same way.

2.3 Improved DQN algorithm

In reinforcement learning, two typical implementations of TD algorithm are SARSA algorithm
and Q-Learning algorithm. SARSA algorithm is an On-Policy TD algorithm, while the Q-
Learning algorithm is an Off-Policy algorithm. These two algorithms are mainly used in
scenarios where the state space is discrete. When the state space is very large or tends to be
infinite, the problem of dimensional disaster will occur. In response to the problem, scholars
have proposed a method of value function approximation, that is, using a function to
approximate the values in formula (1). Among them, the more classic one is the DQN
algorithm proposed by Deepmind's scientists in 2015[33-34].

The DQN algorithm is an improvement to the Q-learning algorithm, so the RTDs proposed in
this paper can also be used to improve the DQN algorithm. The specific process is shown in
tabel 1.

Table 1: Algorithm 1: Improved DQN algorithm

1. First, for all states 𝑠 ∈ 𝑆 and all actions 𝑎 ∈A(s), initialize the parameters α and γ and
the maximum episode N, construct neural network 𝑄(𝑠, 𝑎; 𝒘) and initialize its
parameters 𝒘.Initialize 𝜑 and steps n in formula (18). Initialize lists buffer list Bs,which is
used to save multi-step correct values 𝛽.

2. For each episode from 1 to N, do:

Initialize the starting state 𝑠 according to the existing strategy, and select action a in
state s according to the ε-greedy strategy;

For each step t in the same episode,do:

①According to the ε-greedy strategy, choose the action in state 𝑠௧ , get the
immediate reward 𝑟௧ and the next state 𝑠௧ାଵ;

②Calculate the estimated value of the action value function in state 𝑠௧ according
to the network parameters: 𝑞௧ = 𝑄(𝑠௧, 𝑎௧; 𝒘௧) （20）

③Use the current network parameters to calculate the estimated value of the
action value function in state 𝑠௧ାଵ:

 𝑞௧ାଵ = 𝑚𝑎𝑥 𝑄(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧) （21）
④Use formula (2) to calculate the predicted value of the immediate reward from

state 𝑠௧ to state st+1 : 𝑟௧ᇱ = 𝑞௧ − 𝑞௧ାଵ （22）
⑤Calculate β୲, and append a transition data (st, at, rt, st+1, βt) to the end of Bs. If

the length of Bs is greater than n，pop the first value of Bs.

⑥Use formula (16) 、(17)、(18) to calculate the predicted value 𝑄∗(𝑠௧ାଵ): 𝑄∗(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧) = 𝛽௧ ∗ 𝑞௧ାଵ （23）

⑦Calculate the value of TD Target: 𝑦௧ = 𝑟௧ + 𝛾 𝑄∗(𝑠௧ାଵ, 𝑎௧ାଵ; 𝒘௧) （24）
⑧Calculate the gradient of the action-value network: 𝒅௧ = డொ(௦,;𝒘)డ𝒘 （25）
⑨Update the parameters of the network according to the gradient descent

method:

 𝒘௧ାଵ = 𝒘௧ − 𝛼 ∗ (𝑞௧ − 𝑦௧) ∗ 𝑑௧ （26）
End loop;

End loop.

2.4 Improved DDPG algorithm

The above improvements to the TD algorithm are implemented within the framework of the
DQN algorithm. Since the DQN algorithm is a Value-Based algorithm, it is generally suitable
for scenarios with limited action space (discrete space). When the action space is very large or
continuous, the method of value function approximation cannot obtain an accurate action
policy. Therefore, scholars propose to directly parameterize the search strategy and express the
strategy as a function of the state, and then the method based on the Policy-Based appears[35-
36]. On the basis of Value-Based and Policy-Based methods, in order to make full use of the
advantages of both, the AC (Actor-Critic) algorithm integrating the two and a series of related
improved algorithms (such as A2C algorithm[37], A3C algorithm[38], etc.) appeared.Under
the framework of the AC algorithm, the policy gradient update formula can be written as: 𝑔 = 𝐸[න 𝐻௧𝛻ఏ𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧)𝑑௧] (27)

In the formula, 𝐻௧ is Value-Based state value function, which is used to evaluate the pros and
cons of the current action and plays the role of Critic. 𝛻ఏ𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧) is Policy-Based policy
function, which is used to guide the choice of strategy and plays the role of Actor. Among
them, there are many different calculation methods of 𝐻௧. According to the calculation method,
the AC algorithm can be divided into the Monte Carlo-based AC algorithm, the advantage
function-based AC algorithm, and the TD-based AC algorithm, and so on. When calculated
with TD error, 𝐻௧ can be written as: 𝐻௧ = 𝑟௧ + 𝛾 ∗ 𝑉గ(𝑠௧ାଵ) − 𝑉గ(𝑠௧) (28)

Here, the AC algorithm is called TD-AC algorithm. For example, drive from Guangzhou to
Wuhan, passing through Changsha City. As shown below.

Figure 2: Example of TD error

Before departure, the model predicts that the entire journey will take 12 hours, but when
arriving in Changsha, it actually took 9 hours. At this point, the model predicts that it will take
another 4 hours from Changsha to Wuhan. In this example, both the 12 hours from Guangzhou
to Wuhan and the 4 hours from Changsha to Wuhan are estimated by the same model. It can
be inferred that using the same model to estimate the time from Guangzhou to Changsha
would take 12-4=8 hours. Therefore, based on this model, it was estimated that it would take a
total of 13 hours from Guangzhou to Wuhan (9+4). Therefor, 𝑉(𝑠௧) is 12 hours, 𝑅௧ is 9 hours,
and 𝑉(𝑠௧ାଵ) is 4 hours. However, in reality, the estimate for 𝑉(𝑠௧ାଵ) should have been
adjusted based on the available information. For example, the time needed from Changsha to
Wuhan should be adjusted proportionally, which would be 9/8*4=4.5 hours. The TD
algorithm update model parameters based on 4 hours, but in reality, updating the model
parameters based on 4.5 hours is more reasonable.

It can also be improved with the RTDs proposed in this paper. However, the outputs of the AC
series algorithms are the probability density functions of the action, not the deterministic
action. They are stochastic policy gradient algorithms. In addition to the AC algorithm and its
variants mentioned, popular stochastic policy gradient algorithms also include TRPO[39],
PPO[40], and so on. The convergence performance of this type of algorithm is relatively good,
but the main problems are, on the one hand, that it needs to sample the action according to the
probability density function of the action, which has a large uncertainty. On the other hand, it
cannot be directly applied to the scene of continuous action space. In response to these
problems, scholars have proposed the DDPG (Deep Deterministic Policy Gradient) algorithm
based on the AC algorithm[41-42]. The output of the DDPG algorithm is a deterministic
action that reduces randomness and errors. The DDPG algorithm has been widely concerned
and applied due to its excellent performance in computational efficiency and accuracy. Since
the DDPG algorithm is an improvement of the Actor-Critic algorithm, it is also composed of
an Actor network and a Critic network. The Actor network output is a deterministic action,
and the Critic network is used to evaluate the Actor's output action.Similarly, the DDPG
algorithm can be improved with the RTDs proposed in this paper, as shown in table 2.

Table 2: Algorithm 2. Improved DDPG algorithm

1. Initialize the Critic network 𝑄(𝑠, 𝑎|𝜽ொ) parameters and Actor network 𝜇(𝑠|𝜽𝝁)
parameters. Initialize the target network parameters as 𝜽ொᇲ = 𝜽ொ and 𝜽ఓᇲ = 𝜽ఓ .
Initialize γ and the maximum training episode number N.Initialize φ and steps n in
formula (18). Initialize lists buffer list Bs,which is used to save the multi-step correct
values 𝛽.

2. For each episode from 1 to N, do:

Initialize the starting state s according to the existing strategy;

For each step t=1..T , do:

①Sampling an action 𝑎୲ according to the Actor network: 𝑎௧ = 𝜇(𝑠௧|𝜽ఓ) + 𝛺௧ （29）
②Perform action 𝑎௧ in state 𝑠௧, get a reward 𝑟௧, and the next state 𝑠௧ାଵ;

③ Using the Critic network 𝑄(𝑠, 𝑎|𝜽ொ) to estimated value of state s୲ 𝑄ᇱ(𝑠௧, 𝜇ᇱ(𝑠௧|𝜽ఓᇲ)|𝜽ொᇲ) , the estimated value of the next state 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽ொᇲ);

④Calculate 𝛽௧, append the transition data (𝑠௧, 𝑎, 𝑟௧, 𝑠௧ାଵ, 𝛽௧)to the end of Bs. If
the length of Bs is greater than n，pop the first value of Bs.

⑤Sampling a mini batch from Bs, use formula (16) 、(17)、(18) to update the
predicted value 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽𝑸ᇲ);.Note that the data in a mini batch can be
Calculated concurrently;

⑥Update the estimated value of the next state-action function and calculate the
value of the Critic target network y୧: 𝑦 = 𝑟 + 𝛽௧ ∗ 𝛾 ∗ 𝑄ᇱ(𝑠௧ାଵ, 𝜇ᇱ(𝑠௧ାଵ|𝜽ఓᇲ)|𝜽ொᇲ) （30）

⑦Update Critic network parameters:

 𝛿௧ = ଵே ∑ (𝑦 − 𝑄(𝑠, 𝑎|𝜽ொ))ே （31） 𝜽ொ௧ାଵ = 𝜽ொ௧ାଵ + 𝛿௧ ∗ 𝛼ொ ∗ 𝛻𝜽ೂ𝑄(𝑠௧, 𝑎௧|𝜽ொ) （32）
⑧Update policy network parameters: 𝛻𝜽ഋ|௦ ≈ ଵே ∑ 𝛻ேୀଵ 𝑄(𝑠, 𝑎|𝜽ொ)|௦ୀ௦,ୀఓ(௦) 𝛻𝜽ഋ𝜇(𝑠|𝜽ఓ)|௦ （33） 𝜽ఓ௧ାଵ = 𝜽ఓ௧ାଵ + 𝛽௧ ∗ 𝛿௧ ∗ 𝛼ఓ ∗ 𝛻𝜽ഋ|௦ （34）
⑨Update the target network parameters:

 𝜽ொᇲ = 𝜏𝜽ொ + (1 − 𝜏) 𝜽ொᇲ （35）
 𝜽ఓᇲ = 𝜏𝜽ఓ + (1 − 𝜏) 𝜽ఓᇲ （36）

End loop;

End loop.

3. EXPERIMENTS AND ANALYSIS

In this paper, the improved DQN algorithm and the improved DDPG algorithm are used in
stock quantitative trading process, and compared with the algorithms before the improvement.
The experiment data originate from www.baostock.com, a free and open source securities data
platform.

3.1 Experimental data

The data used in this paper is the daily exchange data of Chinese stock market since January 1,
2000, of which 22 years of data from January 4, 2000 to December 31, 2021 are used as the
training set (5332 trading days in total), including the daily trading information of all stocks
and indexes of Chinese stock market during this period. The data for a total of 3 months
January 4, 2022, to March 31, 2022,is used as the test set (a total of 58 trading days) . The
dataset includes 13 features，such as exchange date, stock code, opening price today, highest
price, lowest price, closing price today, closing price yesterday, transaction quantity,
transaction amount, turnover rate, resumption status, transaction status, change percentage, etc.
Among them with 9 continuous features and 2 discrete features (re-weight status, transaction
status), except exchange date and stock code.We first use all the stock data to train the model,
and for convenience of description, we take China Merchants Bank(sh.600036) and Lepu
Medical(sz.300003) as examples to illustrate the effects of the models in this paper.The reason
why we choose these two stocks is that one is from the A-share main board and the other is
from the GEM.The volatility of the main board stocks is small, while the volatility of the
GEM stocks is large, representing different risk levels and income levels.

Since the dimensions of the variables in the original data are not uniform, it is first necessary
to convert the continuous variable data into normalized data with a mean of 0 and a standard
deviation of 1. At the same time, discrete features such as month, week, and day (that is, the
number of the month) , which extracted from the exchange date, will be converted to One-hot
type (52 features are obtained), together with the features such as weight restoration status and
transaction status. The above 9+52 feature variables are combined to 61 vectors as
environmental features.

3.2 Markov Decision Process Model

This paper takes stock quantitative trading as an example to build a deep reinforcement
learning model, takes stock investors as the agent, and takes the stock market as the system.
The Markov decision process model (S, A, P, R, γ) is shown in the following.

(1) State space S: The 61 environmental features obtained above, combining the agent’s self
information (including total market value, total assets, available amount, number of shares,
current profit and loss, total profit and loss, total profit and loss ratio, available Amount,
position ratio and other 9 features), a total of 70 features are used as the environmental state
variables of the model.

(2) State transition matrix P: Since the stock market is a large and complex nonlinear system,
its state transition matrix P cannot be obtained. When the agent takes an action, the
environment moves to the next state (including the state of the environment and the state of
the agent). In this experiment, the next state can be obtained through simulated sampling and

calculation, in which the stock price can be uniformly sampled between the highest price and
the lowest price on the second day, and then other environmental variables are calculated in
equal proportions.Agent's own state information can be obtained by corresponding calculation
after taking action.

(3) Action space A: including the three actions of buying, selling and holding. The dimension
of action space is 1-dimensional space. When the value of action a is less than 0, it is a selling
operation, and when it is greater than 0, it is a buying operation, and when it is equal to 0, it is
holding operation.

(4) Reward function R: the reward function of the model is designed as the proportion of the
income brought by the operation (total assets after investment/total assets before investment -
1), and in order to ensure the safety of funds, when losses occur, give a large penalty,
amplifies the loss value by a factor of 10. which is: 𝑟௧ = ൜𝑟௧ , if 𝑟௧ >= 0 10 ∗ 𝑟୲ , if 𝑟௧ < 0 (37)

(5) Discounted rate γ: γ ∈ [0, 1].

3.3 Neural networks

In this paper, two groups of improved models are designed to compare the effectiveness, as
follows.

3.3.1 DQN and improved DQN networks

The improvement of the algorithm in this paper only involves the update process of specific
parameters, not the network structure. In order to compare the effectiveness of algorithms
before and after the improvement, the DQN algorithm and the improved DQN algorithm use
the same network structure. Since the stock data is time series data, its network model mainly
adopts the LSTM layers + MLP layers, as shown in figure 3.

The network includes three LSTM layers, one BatchNormalization(BN) layer, and two fully
connected layers. The input dimension of the network is [30, 71], where 30 indicates the past
30 trading days, 70 is the number of features, and 1 is the action dimension. In order to unify
the network input, the action shape is expanded into a [30,1] tensor, all 1 when the action is
buying, all -1 when the action is selling, and all 0 when the corresponding action is holding.
Each LSTM layer adopts the RELU activation function, and its output is processed by the BN
layer. The normalized data is connect to the fully connected layer. The first fully connected
layer also uses the RELU activation function, and the second fully connected layer is the
output layer and does not require an activation function. In terms of main parameter settings,
the learning rate of the Actor network is 0.0001, the learning rate of the Critic network is
0.0002, and the value of τ is 0.01.

Figure 3: Network of DQN and improved DQN

3.3.2 DDPG and improved DDPG networks

Since the DDPG model includes two networks, Actor and Critic, in order to make multiple
algorithms comparable, both Actor and Critic networks here adopt a structure similar to the
above

Figure 4: DDPG structure and improved DDPG structure

DQN model. The differences are:①Actor network input is 30*70 tensor (without action
input);②Actor network output is a continuous value between -1 and 1, which is expanded to
30*1. After the tensor is combined with the state tensor, a 30*71 tensor is input into the Critic
network.The structure is shown in figure 4.
3.4 Experimental results and discusses

Since reinforcement learning aims to maximize returns rather than predict trends, and
therefore performance cannot be evaluated using traditional metrics such as RMSE, MAE, and
R-square. Instead, this study evaluates model performance based on final returns. We use data
from China Merchants Bank (sh.600036) and Lepu Medical (sz.300003) as examples, with
dates ranging from January 4, 2022 to March 30, 2022, and calculate the cumulative return for
each day. The results are presented in Figure 5.

(a) sh.600036

(b) sz.300003

Figure 5: Comparison of cumulative returns of different models on each trading day

For sh.600036, Fig.4 shows that the DQN model failed to implement an effective investment
strategy to obtain due investment returns in the early stage of the stock rising cycle, and failed
to take effective actions to avoid risks in the later stage of stock price decline. The improved
DQN model can better follow the rising cycle of stocks, significantly improve investment
returns, and can take effective action strategies in the falling cycle of stocks to avoid more

losses, indicating that the improved DQN model is added to the current operation. The
correction of immediate return can effectively improve the return on investment. The DDPG
model can fit the trend of stocks very well, and actively invest in the rising cycle of stocks to
get higher returns, but still take active action strategies in the downward cycle of stocks, and
there is also a large loss. The improved DDPG model can get higher returns in the stock up
cycle, and take the correct action strategy (stop trading) for a longer period of time in the stock
down cycle, avoid investment losses, and thus get higher returns.And we can get similar
conclusion on stock sz.300003.

Further more, the investment return indicators under each model are counted, as shown in
table 3.

For Sh.600036, through historical data query, it can be seen that the stock price was 48.71
RMB before the opening on 2021-1-4, and the closing price on 2022-3-30 was 46.23, a
decrease of 5.09%, and the average daily increase and decrease of 0.06% . It can be seen from
table 3 that the Average daily Cumulative Return of the DQN model is the smallest, the loss
ratio reaches 2.75%, and the return at the end of the test period (2022-3-30) is -3.02%, the
standard deviation of return is 0.0317%. It can be seen that the investment strategy based on
the DQN model can effectively reduce investment losses. The average daily cumulative rate of
return of the improved DQN model is 0.53%, and the final rate of return is 2.19%, which can
obtain a positive rate of return when the stock falls as a whole, which shows the effectiveness
of the improved DNQ model proposed in this paper. The average daily cumulative rate of
return of the DDPG model is 0.24%, and the final rate of return is -5.75%, which shows that
the overall rate of return of the DDPG model is relatively poor. The standard deviation of the
daily cumulative rate of return is 0.0560%, and the maximum drawdown reaches 21.87%. It
can be seen that the model's return is very volatile. The average daily cumulative return of the
improved DDPG model is 1.25%, the final return is 5.09%, the standard deviation of the daily
return is only 0.0242%, and the maximum drawdown ratio is only 12.75%. Both performance
and benefits of improved DDPG model are better than the DDPG model.For sz.300003, we
can find that,the improved DQN model the improved DDPG model are also better than the
model before improvement on each performance index, which also shows the effectiveness of
the improved algorithm.

Further more, to analyze the reasons for the differences in the effectiveness of different
models and the trading characteristics of each model (such as the number of trading days, the
average daily position ratio and its standard deviation, the maximum buying ratio, the
maximum selling ratio, etc.), as shown in Table 4.

Table 3: Statistical comparison of cumulative investment returns

Stock Model

Average of
Daily

Cumulative
Return

Standard
Deviation of

Daily
Cumulative

Return

Cumulative
Return in
the End

Maximum
Drawdown

Sharpe
Ratio

DQN -2.75% 0.0317% -3.02% 11.88% -1.18
Improved

DQN
0.53% 0.0307% 2.19% 13.18% -0.16

Sh.600
036

DDPG 0.24% 0.0560% -5.75% 21.87% -0.14
Improved

DDPG
1.25% 0.0242% 2.78% 12.75% 0.09

Sh.600036 -0.06% 0.0238% -5.09% 25.54% -0.45

Sz.300
003

DQN -3.43% 0.0403% -2.53% 11.59% -1.09
Improved

DQN
5.01% 0.0220% 3.44% 8.42% 1.52

DDPG -2.38% 0.0484% -8.04% 20.77% -0.69
Improved

DDPG
5.74% 0.0310% 4.19% 9.81% 1.82

Sz.300003 -0.13% 0.0369% -13.30% 27.34% -1.32

Table 4: Comparison of transaction characteristics of different models

Stock Model
Exch
ange
Days

Average
Daily

Position
Ratio

Standard
Deviation of

Daily
Position

Ratio

Maximum
Buying
Ratio

Maximum
Selling
Ratio

Days of
More than

95%
position

Ratio

Sh.60
0036

DQN 57 96.52% 4.38% 100.00% 100.00% 52

Improved
DQN 47 75.15% 18.39% 100.00% 100.00% 24

DDPG 55 94.52% 6.44% 100.00% 100.00% 52

Improved
DDPG 42 63.55% 33.46% 100.00% 100.00% 20

Sz.30
0003

DQN 57 96.44% 4.41% 100.00% 100.00% 51
Improved

DQN 50 72.23% 19.22% 100.00% 100.00% 18

DDPG 55 95.02% 6.40% 100.00% 100.00% 52

Improved
DDPG 45 72.61% 21.45% 100.00% 100.00% 19

In table 4, the DQN model and the DDPG model have traded on 57 and 55 trading days
respectively in the 57 trading days for sh.600036, 51 and 52 for sz.300003.However, for
sh.600036, the number of trading days of the improved DQN model and the improved DDPG
model are significantly smaller than those unimproved models, and the number of days of
more than 95% of positions is also less, the same to sz.300003. Combined with the above
figure 5, it can be seen that although the number of transactions in the improved DDPG model
has decreased, the trading accuracy has been greatly improved. And finally, in a falling stock
market, the model can still get better returns.

4. CONCLUSIONS

This paper proposes an improved TD algorithm (RTD) and extends it to multi-step conditions
(MRDT). Based on this, we propose improved versions of the DQN and DDPG algorithms.
We then demonstrate the effectiveness of these algorithms by applying them to the Chinese
stock market under extreme conditions. Experimental results show that our improved
algorithms can significantly improve returns and reduce trading risk in quantitative stock
trading scenarios. In the future, we plan to further extend these algorithms to multi-agent
scenarios and explore their applications in more complex scenarios, such as portfolio
investment strategies.

REFERENCES

[1] Tang L, Wang H, Li L, et al. Quantitative models in emission trading system research: A
literature review[J]. Renewable and Sustainable Energy Reviews, 2020, 132:110052.
[2] Farmer J D, Foley D. The economy needs agent-based modelling[J]. Nature, 2009, 460.
[3] Rosenberger J. Computer Scientists Beat U.S. Stock Market[J]. Communications of the ACM,
2010, 53(8):P.20.
[4] Yanshuang Li, Xintian Zhuang, Jian Wang, Weiping Zhang Community structure and systemic
risk analysis of China's stock market under extreme market [J] Journal of Northeast University
(NATURAL SCIENCE EDITION), 2020,41 (10): 1500-1508.
[5] Gan-Hua Wu, et al. Statistics of extreme events in Chinese stock markets[J]. Chinese Physics B,
2014.
[6] Jca B, Mg B, Hz A. Coherence, extreme risk spillovers, and dynamic linkages between oil and
China's commodity futures markets[J]. Energy, 2021.
[7] T Lyócsa, N Todorova, Vrost T. Predicting risk in energy markets: Low-frequency data still
matter[J]. Applied Energy, 2021.
[8] Cagliero L,Garza P,Attanasio G, et al. Training ensembles of faceted classification models for
quantitative stock trading[J].Computing, 2020(4):1-13.
[9] Staff S. How computers helped stampede the stock market: Many analysts blame automated
program trading for the worldwide plunge — But the machines only did what they were told[J]. IEEE
Spectrum, 2013, 24(12):30-33.
[10] Mu G H , Zhou W X , Chen W , et al. Order flow dynamics around extreme price changes on an
emerging stock market[J]. New Journal of Physics, 2010.
[11] Fengzhao Yang, Yangyong Zhu. An Efficient Method for Similarity Search on Quantitative
Transaction Data[J]. Computer Research and Development, 2004(02):361-368.
[12] Xiaoxu Zhang, Zhentao Gao, Lei Wu, Xin Li, Mingjing Lu. Stock price prediction based on
hybrid quantum classical neural network model[J] Journal of University of Electronic Science and
technology, 2022,51 (01): 16-23.
[13] Volodymyr M , Koray K , David S , et al. Human-level control through deep reinforcement
learning[J]. Nature, 2015, 518(7540):529-33.
[14] Luo B , Wu H N , Huang T , et al. Reinforcement learning solution for HJB equation arising in
constrained optimal control problem[J]. Neural Networks, 2015, 71:150-158.
[15] Ying H, Zheng Z, Yu F R, et al. Deep Reinforcement Learning-based Optimization for Cache-
enabled Opportunistic Interference Alignment Wireless Networks[J]. IEEE Transactions on Vehicular

Technology, 2017, 66(11):10433-10445.
[16] Zhu B, Bedeer E, Nguyen H H, et al. UAV Trajectory Planning in Wireless Sensor Networks
for Energy Consumption Minimization by Deep Reinforcement Learning[J]. IEEE Transactions on
Vehicular Technology, 2021.
[17] Jung S, Yun W J, Shin M, et al. Orchestrated Scheduling and Multi-Agent Deep Reinforcement
Learning for Cloud-Assisted Multi-UAV Charging Systems[J]. IEEE Transactions on Vehicular
Technology, 2021, PP(99):1-1.
[18] Arulkumaran K, Deisenroth M P, Brundage M , et al. A Brief Survey of Deep Reinforcement
Learning[J]. IEEE Signal Processing Magazine, 2017, 34(6).
[19] Shah D ,Campbell W , Zulkernine F H . A Comparative Study of LSTM and DNN for Stock
Market Forecasting[C]// IEEE International Conference on Big Data. IEEE, 2018.
[20] Neeharika C H , Riyazuddin Y M , Vijayalakshmi D . Performance of Stock Price Prediction
using Deep Learning by using AI and Machine Learning Technique[J]. High Technology Letters,
2021.
[21] Moody J, Wu L, Liao Y, et al. Performance functions and reinforcement learning for trading
systems and portfolios[J]. Journal of Forecasting, 1998, 17(5-6):441-470.
[22] Lee J W. Stock price prediction using reinforcement learning[C]// IEEE International
Symposium on Industrial Electronics. IEEE, 2001:690-695.
[23] Huang G, Zhou X, Song Q. Deep reinforcement learning for portfolio management based on the
empirical study of chinese stock market. 2021.
[24] Li H, Dagli C H, D Enke. Dynamic Programming and Reinforcement Learning (ADPRL 2007)
Short-term Stock Market Timing Prediction under Reinforcement Learning Schemes. 2013.
[25] Pendharkar P C, Cusatis P. Trading financial indices with reinforcement learning agents[J].
Expert Systems with Applications, 2018, 103:1-13.
[26] NN Y Vo, He X , Liu S , et al. Deep learning for decision making and the optimization of
socially responsible investments and portfolio[J]. Decision Support Systems, 2019, 124:113097.
[27] Tianxin Liang, Xiaoping Yang, Liang Wang, Zhenyuan Han.Research and development of
financial transaction system based on Reinforcement Learning[J] Journal of software, 2019,30 (03):
845-864 DOI:10.13328/j.cnki. jos. 005689.
[28] Yuefeng Cen, Chenguang Zhang , Gang Cen, Cheng Zhao. Stock price prediction method based
on near end reinforcement learning[J].Control and decision making, 2021,36 (04): 967-973
DOI:10.13195/j.kzyjc. 2019.1245.
[29] Brando I V ,Costa J , Praciano B , et al. Decision support framework for the stock market using
deep reinforcement learning[C]// 2020 Workshop on Communication Networks and Power Systems
(WCNPS). 2020.
[30] Huang G, Zhou X, Song Q. Deep reinforcement learning for portfolio management based on the
empirical study of chinese stock market. 2021.
[31] Zhidong Liu, Zhiyuan Zhao. Clustering of intra day state characteristics and optimizing
transaction execution in China's financial market[J].Systems Science and mathematics, 2021,41 (06):
1648-1668.
[32] Sutton R, Barto A. Reinforcement Learning:An Introduction[M]. MIT Press, 1998.
[33] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning[J].
Computer Science, 2013.
[34] Volodymyr M , Koray K , David S , et al. Human-level control through deep reinforcement
learning[J]. Nature, 2015, 518(7540):529-33.
[35] Pablo, Escandell-Montero, Delia, et al. Online fitted policy iteration based on extreme learning

machines[J]. Knowledge-Based Systems, 2016, 100(May 15):200-211.
[36] MD Awheda, Schwartz H M. Exponential moving average based multiagent reinforcement
learning algorithms[J]. Artificial Intelligence Review, 2016, 45(3).
[37] Vamvoudakis K G, Lewis F L. Online actor critic algorithm to solve the continuous-time infinite
horizon optimal control problem[J]. Automatica, 2010, 46(5):878-888.
[38] Fernando C, D Banarse, Blundell C, et al. PathNet: Evolution Channels Gradient Descent in
Super Neural Networks[J]. 2017.
[39] Schulman J , Levine S , Moritz P, et al. Trust Region Policy Optimization[C]// ICML. 2015.
[40] Schulman J, Wolski F , Dhariwal P, et al. Proximal Policy Optimization Algorithms[J].2017.
[41] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J].
Computer ence, 2015.
[42] Arulkumaran K,Deisenroth M P, Brundage M, et al. A Brief Survey of Deep Reinforcement
Learning[J]. IEEE Signal Processing Magazine, 2017, 34(6).

