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Abstract. The mathematical model of populations of Macrophages and Cytokines after 

Myocardial Infraction explains the macrophages activation following by cytokines 

secretion in the left ventricle. Those models appears to be a system of six simultaneous non-

linear ordinary differential equations, involving inactivated macrophages ��(�), classical 

activated macrofages ��(�), alternative activated macrophages ��(�), interleukin-10 

��	(�), TNF-
 ��(�) and interleukin-1 ��(�). The method used in this article is numerical 

Runge-Kutta method with computer assistance for obtaining the numerical solution and 

gathering several informations including the crucials of cytokines on the development of 

macrophages. 
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1   Introduction 

 Myocardial infarction is a disease found in the myocardia, this symptom is present in 

myocytes in the process of necrosis (cell death) and acute inflammation due to prolonged 

ischemia (lack of oxygen). Myocardial infarction occurs when the blood flowing to the part of 

the heart muscle is blocked .  

Cardiac macrophages react to myocardial ischemia causing a significant increase in the 

number of macrophages in death. Monocytes are produced in the bone marrow and spleen after 

myocardial infarction and enter the infarct area then differentiate into macrophages [3]. 

Macrophages play the role of innate immune defenses and are involved in tissue remodeling 

and repair. See [4]. 

Activation of macrophages consists of two different sets of Ly-6chigh macrophages or 

classically activated macrophages and Ly-6clow macrophages or alternatively activated 

macrophages. The mathematical model of macrophage activation in the left ventricle 

remodeling after myocardial infarction which was presented in [14] explains that the classically 

activated macrophages secrete proinflammatory cytokines namely IL-1 and TNF-α, whereas 

alternatively activated macrophages produce anti-inflammatory cytokines, IL-10 [14]. The 

model became a reference in this study. 
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2   Material and  Methods 

The mathematical model proposed in [14] is the following : 

 

Table 2. 1   Parameter Values for Mathematical Model (see [14]) 

Parameter Value Units Interpretation 

 0.2  Per day Emigration from macrofages  

�� 0.075  Per day Transition constant from �� to �� 

��� 0.05  per day Transition constant from �� to �� 

�� 0.1  ml/pg/day Activation constant of macrofages �� by �� 

���	 5  pg/ml Effectivity of ��	 

��� 10  pg/ml Constant �� 

�� 1  cell/ml Activation constant of macrofages �� by 

secretion from �� 

� 25  pg/ml Effectivity of ��	 as an inhibitor of �� 

�� 100  pg/ml Effectivity of self-inhibitority of  �� 

�� 0.3  cell/ml Constant of macrofages �� 

�� 5 x 10-

4  

Pg/sel/day Secretion constant of ��	 by �� 

�� 7 x 10-

4  

pg/cell/day Secretion constant from �� and miosit 

�� 5 x 10-

4  

pg/cell/day Secretion constant of �� 

���	 2,5  Per day Decay rate of ��	 

��� 55  Per day Deposition rate of secretion �� 

��� 10,5  Per day Deposition rate of �� 

� 5 x 10-

6  

Pg/ml/cell/day Secretion rate �� by miosit 
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��(0) 2000  Initial value 

��(0) = ��(0) 0  Initial value 

��(0) = ��(0)
= ��(0) 

0.1   Initial value 

 

The system of equations (2.1) is a system of ordinary nonlinear differential equations that 

requires a special method in solving them. One of them is the runge-kutta method. The Runge 

Kutta method was developed by Carl Runge and Wilhelm Kutta in order to mimic the results of 

the Taylor series approach [12]. To get accurate results, a small Δx or h is needed, in the use of 

a small Δx it causes a longer count time. The Runge Kutta method is an alternative to the Taylor 

series method that provides greater accuracy of results and without having to perform 

differential analytics repeatedly [13]. 

The fourth Order Runge Kutta Method is the following 
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In the practical situation, it is often useful to optimize the accuration of calculation of 

numerical Runge-Kutta method by using the better composition in the method via (4,5) explicit 

formula. The Dormand-Prince pair which has been addopted to be an accurate Modified-Runge-

Kutta-based numerical algorithm, called ODE45 algorithm, is a one-step method for calculating 

the completion of   (�*) used one solution at the previous time point,   (�*+�). Due to the bettter 

accuracy, we will use this algorithm along with MATLAB to obtain the desired numerical 

behavior of the system [11]. 

The main objective of this article is, however, to obtain the clues and insight of how 

population of interleukins gives influence to the population of macrofages. The tuning of the 

rate of change of interleukin is hypotesized to give the significant-simultaneous change to to the 

real time rate of change of macrofages. To reach the objective, we first obtain the fixed point 

semi-analitically and numerically. Further, in the following section, we give an interpretation 

and numerical result as the clue to approximate the long-term behavior of the system. 

3   Results and Discussion 

The fixed points of the system (2.1)  is obtained analitically and will be denoted by 

��∗ , ��∗ , ��∗, ��	∗ , �-∗ , and  ��∗. We constrained the solution to satisfy   

Further we have 
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Hence, we obtain the following 

 
By subtituting the parameter values from Table 2.1, and setting the value of ���(evectivity 

constant of �� ) to be 0.5 pg/ml, �� (density of miosit ) to be 10+� cell/ml and the differentiation 

of monosit to be 10000 cell/ml, with computational help of MATLAB, we have the following 

result for fixed point. 

(��∗ , ��∗, ��∗, ��	∗ , ��∗, ��∗) = (15554.76376,
21735.24401, 12079.99222, 2.48047, 0.25166, 0.94158) 

 Using 4th-order Runge-Kutta method we obtain the following numerical result for the 

relatively long time behavior of each variable: 
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Tabel 3. 2  Numerical Solution of the Mathematical Model using 4th-order Runge-Kutta 

Method 

 

 

As the comparison, the result obtained by ODE45 algorithm is the following: 

 

Tabel 3. 3   Numerical Solution of the Mathematical Model using ODE45 Algorithm 

Time (Day) ��(�) ��(�) ��(�) 

� = 0.01 2093.053122763 2.731087883 0.119853320 
� = 0.02 2186.894825080 4.478208005 0.243478402 
� = 0.03 2281.119943114 5.568190065 0.370104197 
� = 0.04 2375.732629731 6.232951441 0.499162945 

⋮ ⋮ ⋮ ⋮ 
� = 90 15554.764065455 21735.245051221 12709.990152284 

Time (Day) ��	(�) ��(�) ��(�) 

� = 0.01 0.097531286 0.057703220 0.090039483 
� = 0.02 0.095124126 0.033308284 0.081082181 
� = 0.03 0.092777017 0.019240813 0.073024274 
� = 0.04 0.090488489 0.011139440 0.065773625 

⋮ ⋮ ⋮ ⋮ 
� = 90 2.480470654 0.25167585240 0.941588583 

 

The initial values for the system are ��(0) = 2 × 10�  cells / ml, ��(0) = 0 cells / ml and 

��(0) = 0 cells / ml. Using this initial condition, inactive macrophages population increases at 

t <10 and decreases at t <20, furthermore, the population of inactive macrophages is constantly 

constant. On the otherhand, the population of classically activated macrophages has increased 

at t <20 and alternative activated macrophages have increased since t <25, as time goes on, the 

populations of both tend to be constant. The 4th-order Runge Kutta method-based graph assisted 

by the program matlab shows that the value of ��(�) tends to be fixed arround 

15554.763527729 cells / ml, ��(�) tends to be fixed arround 21735.245246907 cells / ml, ��(�) 

tends to be fixed arround 12709.990494324 cells / ml. Whereas in the graph the results using 

Time (Day) ��(�) ��(�) ��(�) 

� = 0.01 2093.056813729 2.272394661 0.119855577 
� = 0.02 2186.899948707 4.473082276 0.243480504 
� = 0.03 2281.204731533 5.562888925 0.370104752 
� = 0.04 2375.736830751 6.232096788 0.499160281 

⋮ ⋮ ⋮ ⋮ 
� = 90 15554.763527729 21735.245246907 12709.990494324 

Time (Day) ��	(�) ��(�) ��(�) 

� = 0.01 0.097531286 0.057741975 0.090039515 
� = 0.02 0.095124126 0.033356539 0.081082224 
� = 0.03 0.092777017 0.019285294 0.073024315 
� = 0.04 0.090488488 0.011165999 0.065773645 

⋮ ⋮ ⋮ ⋮ 
� = 90 2.480470719 0.251660894 0.941588383 



 

 

 

 

ODE45, we have ��(�) tends to be fixed arround 15554.764065455 cells / ml ��(�) tends to 

be fixed arround 21735.245051221 cells / ml, and ��(�) tends to be fixed arround 

12709.990152284 cells / ml (see Fig. 1). 

 

Fig. 1. Numerical Solution of ��(�), ��(�), ��(�) on � = 90 

Next, we set ��(0) =  ��	(0) =  ��(0)  =  0.1 pg / ml. Changes in the concentration of IL-

1, IL-10 and TNF-α have increased since t <30 and then the concentration of each cytokine 

tends to be constant. The graph of the results using the 4th-order Runge-Kutta method shows 

values of IL-1, IL-10 and TNF-α, that is ��	(�) is asymptotic towards 2.480470719 pg / ml, ��(t) 

is asymptotic towards 0.251660894 pg / ml, ��(�) is asymptotic towards 0.941588383 pg / ml. 

Whereas in the graph the results of ODE45 ��	(�) is asymptotic towards 2.480470654 pg / ml, 

��(�) is asymptotic towards 0.25167585240 pg / ml, ��(�) is asymptotic towards 0.941588583 

pg / ml (see Fig. 2). 

 

Fig. 2. Numerical Solution of ��(�), ��	(�), ��(�) on � = 90 

To see the effect of the rate of growth of cytokines on the population of macrophages, 

constant values were given for ��	@ (t), ��@ (t), and ��@ (t) by 0.1 pg / ml and 0.0001 pg / ml, 

respectively. 



 

 

 

 

Fig. 3. Numerical Solution for macrofages with ��@ (�) = 0.1 (left), and with ��@ (�) = 0.0001 

(right) 

In Fig. 3, the influence of tuning the growth-rate for the variable ��(�) tunrs out to be 

unsignificant. It doesn’t massively change the whole population of macrofages. the inactive 

macrophages ��(t) increases until the 8th day and then decreases since day 9. While, the 

population of classically activated macrophages ��(t) increases up to day 90. Alternative 

activated macrophages ��(t) increases along certain period and tends to be constant until the 

90th day.  

 

Fig. 4. Numerical Solution for macrofages with ��@ (�) = 0.1 (left), and with ��@ (�) = 0.0001 

(right) 

In Fig. 4, we can observe that the inactive macrophages ��(t) increases until the third day 

and starts to decrease at day 4. The growth occurred in the population of classically activated 

macrophages ��(t) until the 90th day. Meanwhile the decaying phenomena occurred in the 

population of alternative activated macrophages ��(t) and also tends to be constant towards the 

90th day. Based on the graph it can be concluded that giving a relatively high growth-rate for 

��(t) in about 0.1 units results in a significant growth in ��(t) and decay in ��(t). While giving 

a relatively low growth-rate for ��(t) in about 0.0001 units in implies that the population of each 

macrophages increases and tends constant. 

 



 

 

 

 

Fig. 5. Numerical Solution for macrofages with ��	@ (�) = 0.1 (left), and with ��	@ (�) = 0.0001 

(right) 

In the figure above, we observe that the inactive macrophages ��(t) increases until the 8th 

day and then decreases on day 9. The growth occurs in the population of alternatively activated 

macrophages ��(t) until the 90th day. Meanwhile the classically activated macrophages ��(t) 

have increased until the 20th day and have decreased until the 90th day. Based on the graph it 

can be concluded that giving a growth-rate value for ��	 in about 0.1 units results in a significant 

growth for ��(t) and a decay for ��(t) and ��( t). While giving a growth-rate value for ��	 in 

about 0.0001 implies that the population of macrophages tends to be constant, in other words it 

does not result in a significant increase or decrease. 

4   Conclusion 

Based on the results of the simulation of mathematical models of macrophages and cytokines 

after myocardial infarction using the 4th-order numerical Runge Kutta method and ODE 45 

from t = 0 to t = 90 with the size of the steps h = 0.01, it can be concluded that the solutions of 

the two methods are close together and almost the same, that can be observed by a graph of the 

solution of both methods. Giving a constant value of 0.1 on ��(t) and ��(t) affects the increase 

in ��(t), while giving a relatively large value to the rate of change ��(t) and ��(t) produces a 

significant effect on ��(t), and giving a relatively large value for ��	(t) produces a significant 

effect on ��(t). 
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