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Abstract 

Although LDA has many successes in dimensionality reduction and data separation, it also has disadvantages, especially the 

small sample size problem in training data because the "within-class scatter" matrix may not be accurately estimated. 

Moreover, this algorithm can only operate correctly with labeled data in supervised learning. In practice, data collection is 

very huge and labeling data requires high-cost, thus the combination of a part of labeled data and unlabeled data for this 

algorithm in Manifold subspace is a novelty research. This paper reports a study that propose a semi-supervised method 

called DSLM, which aims at overcoming all these limitations. The proposed method ensures that the discriminative 
information of labeled data and the intrinsic geometric structure of data are mapped to new optimal subspace. Results are 

obtained from the experiments and compared to several related methods showing the effectiveness of our proposed method. 
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1. Introduction

In many areas of artificial intelligence, information 

retrieval, and data mining, one is often confronted with 

intrinsically low-dimensional data lying in a very high-

dimensional space. This leads one to consider methods of 

dimensionality reduction that allow one to represent the 

data in a lower dimensional space. Two of the most popular 
techniques for this purpose are Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA). 

PCA is an unsupervised and an eigenvector method 

designed to model linear variation in high-dimensional 

data. PCA is guaranteed to discover the dimensionality of 

the subspace and produces a compact representation when 

the data is embedded in a linear subspace. 

LDA is a supervised method. LDA searches for the 

project axes on which the data points of different classes 

are far from each other while requiring data points of the 

same class to be close to each other. LDA encodes 
discriminating information in a linear separable space 

*Corresponding author. Email: lhthai@fit.hcmus.edu.vn

using bases are not necessarily orthogonal. When label 

information is available, e.g. for classification task, LDA 

can achieve significant better performance than PCA. 

However, recent work [4] shows that when the training 

dataset is small, PCA can outperform LDA. The reason is 

covariance matrix of each class in LDA may not be 

accurately estimated. There are a lot of approaches that try 

to improve the performance of PCA and LDA, which are 

[1][2][3][23][24]. 

Recently, a number of research efforts have shown that 
the face images possibly reside on a nonlinear manifold 

[6][10][11][16][17][18][20][21][22]. Both PCA and LDA 

fail to discover the underlying structure when the face 

images lie on a manifold since they effectively see only the 

Euclidean structure. There has been some interest in the 

problem of developing low dimensional representations 

through kernel based techniques for face recognition 

[14][15]. These methods can discover the nonlinear 

structure of the face images. However, they are 

computationally expensive, and none of them explicitly 

considers the structure of the manifold on which the face 
images possibly reside. In the meantime, some nonlinear 
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techniques have been proposed to discover the nonlinear 

structure of manifold, e.g. ISOMAP [13], LLE [6], 

Laplacian Eigenmap [12]. However, these nonlinear 

manifold learning techniques might not be suitable for face 

recognition since they do not generally provide a functional 

mapping between the high and low dimensional spaces that 

are valid both on and off the training data. There are a lot 

of approaches that try to address this issue by explicitly 

requiring an embedding function either linear or in 

reproducing kernel Hilbert space when minimizing the 

objective function [16][17][18]. One of the major 

limitations of these methods is that they fail to characterize 
the manifold structure of data when there are insufficient 

training samples. To solve this problem, many techniques 

have been proposed [19][20] which have significantly 

improved the face recognition performance. However, 

these recognition algorithms struggle in achieving a 

reliable performance under more practical environments, 

where facial appearances are of large variations in 

illumination, expression, pose. An approach based on deep 

neural network has been proposed [5] to learn a nonlinear 

embedding from a high-dimensional data space to a low-

dimensional space. However, this technique is 
computationally expensive and hard to determine the 

parameters. 

In reality, we usually have small part of input data 

labeled, along with a large number of unlabeled data. Thus, 

semi-supervised learning has attracted an increasing 

amount of attention. Two well-known algorithms are 

extension of Support Vector Machine [21] and graph-based 

learning [10][22]. Despite of their performance, it is 

unclear to determine the good graph. 

The above described fact has shown that nonlinear 

manifold learning is encouraging and has good results in 

this field. The traditional methods such as PCA and LDA 
use Euclid distance in linear space, which cannot represent 

or simulate data in all cases. Besides that, new approaches 

with manifold learning is more suitable for face data 

because they utilize geodesic distance between pairwise 

points then estimates the local embeddings of data  in order 

to update weights for each data point proportional to the 

distance between the point and the estimated manifold 

(compared to the original data). Thus, original data will be 

projected to another optimal subspace of manifold learning 

and still obtain characteristics of data. In a recent study, 

Thang, et al. [25] proved that data clustering in manifold 
learning is better than in linear subspace and proposed a 

scheme to overcome the limitation of the traditional Graph 

K-means algorithm called GKM-LC which always ensures 

that the number of clusters is stable in each iteration. 

This paper is the extended version of our published 

paper [26], we propose a new semi-supervised 

dimensionality reduction algorithm, called Discriminative 

Semi-supervised Learning in Manifold subspace (DSLM). 

Our proposed algorithm aims to find a projection which 

captures not only the discriminant structure inferred from 

the labeled data but also the intrinsic geometrical structure 

inferred from the whole training data. Specifically, the 

training data is used to build a graph incorporating 

neighborhood information in which each data point is 

represented as a linear combination of the neighboring data 

points. The graph provides a discrete approximation to the 

local geometry of the data manifold. Figure 1 describes the 

general idea of proposed framework: firstly, the data is 

used to construct an adjacency graph; next, each edge in 

the graph is weighted with appropriate values, the result 

matrix 𝑊 then used to compute a characterise matrix D; 

finally, by solving eigen-problem and choosing the suitable 
number of eigenvectors to form the projection matrix, the 

algorithm can find the optimal subspace for representing 

data. 

Figure 1. A general scheme of a group of extended 
manifold algorithms 

The rest of this paper is organized as follows: The 
Discriminative Semi-supervised Learning in Manifold 

subspace (DSLM) algorithm is described in Section 2. A 

variety of experimental results are presented in Section 3. 

Section 4 discusses the effectiveness of our proposed 

algorithm. Finally, we provide some concluding remarks 

and suggestions for future work in Section 5. 

2. Discriminative Semi-supervised
Learning in Manifold subspace (DSLM) 

2.1. The objective function 

The basic idea of Linear Discriminant Analysis (LDA) 

is to seek directions on which the data points of different 

classes are far from each other while requiring data points 

of the same class to be close to each other. 

Suppose we have a set of 𝑛 sample 𝑋 = {𝐱𝑖}𝑖=1
𝑛 , 𝐱𝑖 ∈

ℝ𝐷 belonging to 𝑐 classes (C1, C2, … Cn). And suppose we 

have the number of data points in each class is 𝑛𝐶1
, … , 𝑛𝐶𝑐

,

𝐱i
(k)

 is the i-th point belonging to k-th class. In this space,

we have some following equations for LDA algorithm: 

𝛍(𝑘) =
1

𝑛𝐶𝑘

∑ 𝐱i
(k)

𝑛𝐶𝑘

𝑖=1

(1) 
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𝛍 =
1

𝑛
∑ 𝐱i

𝑛

𝑖=1

 (2) 

S𝐛 = ∑ 𝑛𝐶𝑘
(𝝁(𝑘) − 𝛍)(𝝁(𝑘) − 𝛍)

𝑇
𝑐

𝑘=1

(3) 

Sw = ∑ (∑ (𝐱i
(k)

− 𝝁(𝑘)) (𝐱i
(k)

− 𝝁(𝑘))
𝑇

𝑛𝐶𝑘

𝑖=1

)

𝑐

𝑘=1

 (4) 

The objective function of LDA is as follows: 

𝒂𝑜𝑝𝑡 = arg max
𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇𝑆𝑤𝒂
(5) 

where 𝝁 is the total sample mean vector, 𝝁(𝑘) is the average 

vector of the 𝑘-th class, Sb is the "between-class scatter"

matrix, and Sw is the "within-class scatter" matrix.

We define the total scatter matrix St = SW + Sb: 

𝑆𝑡 = ∑(𝐱𝑖 − 𝝁)(𝐱𝑖 − 𝝁)𝑇

𝑛

𝑖=1

(6) 

Then the object function of LDA in Equation (5) is 

equivalent to 

𝒂𝑜𝑝𝑡 = arg max
𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇𝑆𝑡𝒂
(7) 

We denote the matrix 𝑋 = [𝑋(1), … , 𝑋(𝑐)] and the matrix 

𝑊𝐿𝐷𝐴 as 

𝑊𝐿𝐷𝐴 = [

𝑊(1) 0 ⋯ 0
0 𝑊(2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑊(𝑐)

] (8) 

where W(k) is a 𝑛𝑘 × 𝑛𝑘 matrix with all elements equal to 
1

𝑛𝑘

and 𝑋(𝑘) is the data matrix of 𝑘-th class. 

Without loss of generality, we assume 𝝁 = 0, which 

can be achieved by centering the data, i.e., subtract the 

mean vector from all the sample vectors. Thus, we have: 

𝑆𝑏 = ∑ 𝑛𝑘𝝁(𝑘)(𝝁(𝑘))
𝑇

𝑐

𝑘=1

𝑆𝑏 =  ∑ 𝑛𝑘 (
1

𝑛𝑘

∑ 𝐱𝑖
(𝑘)

𝑛𝑘

𝑖=1

) (
1

𝑛𝑘

∑ 𝐱𝑖
(𝑘)

𝑛𝑘

𝑖=1

)

𝑇
𝑐

𝑘=1

𝑆𝑏 = ∑ 𝑋(𝑘)𝑊(𝑘)(𝑋(𝑘))
𝑇

𝑐

𝑘=1

𝑆𝑏 = 𝑋𝑊𝐿𝐷𝐴𝑋𝑇

(9) 

And  

𝑆𝑡 = ∑(𝐱𝑖)(𝐱𝑖)
𝑇

𝑛

𝑖=1

= 𝑋𝑋𝑇  
(10) 

The object function of LDA in Equation (7) can be 

rewritten as [10]: 

𝒂𝑜𝑝𝑡 = arg max
𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇𝑆𝑡𝒂
= arg max

𝒂

𝒂𝑇𝑋𝑊𝐿𝐷𝐴𝑋𝑇𝒂

𝒂𝑇𝑋𝑋𝑇𝒂
(11) 

When there is only one sample, LDA may be an ill-
posed problem. When there is a small training set, 

overfitting may occur. The technique to solve those 

problem is regularization by introducing additional 

information. The optimization problem of regularized 

version of LDA can be written as follows [9]: 

𝑚𝑎𝑥
𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇𝑆𝑡𝒂 + 𝛼𝐽(𝒂)
(12) 

where 𝐽(𝒂) controls the learning complexity of the 

hypothesis family, and the coefficient 𝛼 controls balance 

between the model complexity and the empirical loss. The 

regularizer term 𝐽(𝒂) provides us the flexibility to 
incorporate our prior knowledge on some particular 

applications. The key to semi-supervised learning 

algorithm is the prior assumption of consistency. For 

classification, it means nearby points are likely to have the 

same label [7]. For dimensionally reduction, it means 

nearby points will have similar low-dimensional 

representations. Motivated by this intuition, we take 

advantage of the geometric properties of manifold patches. 

Specifically, if the data points lying on the same patch are 

likely to have the same label (Figure 2). 

Figure 2. Data points lie on same patch This is a 
legend. Caption to go below figure 

Suppose 𝑋 is from a smooth underlying manifold of 

dimensionality 𝑑 ≪ 𝐷. Each data points can be 

reconstructed from its neighbors with appropriate weights 

and these weights should be the same in low-dimensional 

space. Let 𝒚1 , … , 𝒚𝑛 ∈ ℝ𝒅 be the corresponded mapped data.
We have the cost function of a good map [6] under 

appropriate constraints as: 

Φ(𝒚) = ∑ (𝒚𝑖 − ∑ 𝑊𝑖𝑗𝒚𝑗

𝑗

)

2

𝑖

(13) 

which adds up the squared distances between all the data 

points and their reconstructions. 𝑊𝑖 reveals the layout of 

the point around 𝒙𝒊. Suppose the transformation is linear, 

that is, 𝒚𝑖 = 𝑓(𝒙𝑖) = 𝒂𝑇𝒙𝑖. We define
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𝒛𝑖 = 𝒚𝑖 − ∑ 𝑊𝑖𝑗𝒚𝑗

𝑗

 (14) 

which can be rewritten in vector form: 

𝒛 = 𝒚 − 𝑊𝒚 = (𝐼 − 𝑊)𝒚 (15) 

The cost function in Equation (13) can be reduced to 

Φ(𝒚) = ∑ (𝒚𝒊 − ∑ 𝑾𝒊𝒋𝒚𝒋

𝑗

)

2

𝑖

Φ(𝒚) = ∑(𝒛𝒊)2

𝑖

Φ(𝒚) = 𝒛𝑇𝒛 

Φ(𝒚) = 𝒚𝑇(𝐼 − 𝑊)𝑇(𝐼 − 𝑊)𝒚 

Φ(𝒚) = 𝒂𝑇𝑋(𝐼 − 𝑊)𝑇(𝐼 − 𝑊)𝑋𝑇𝒂 

Φ(𝒚) = 𝒂𝑇𝑋𝑀𝑋𝑇𝒂 . 

(16) 

where 𝑀 = (𝐼 − 𝑊)𝑇(𝐼 − 𝑊). 

Finally, we apply the approach of LDA and use the 
preserving local patches cost function as a regularizer term 

to make the objective function of DSLM: 

max
𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇𝑆𝑡𝒂 + 𝛼𝐽(𝒂)
= max

𝒂

𝒂𝑇𝑆𝑏𝒂

𝒂𝑇(𝑆𝑡 + 𝛼𝑋𝑀𝑋𝑇)𝒂
(17) 

Without loss of generality, we assume that the first 𝑛 
data points are labeled and ordered according to their 

labels. We use 𝑋𝑙 = [𝐱1 , … , 𝐱𝑙] to denote the labeled data 

matrix. We define the weight matrix 𝑊 ∈ ℝ𝑛×𝑛 as 

𝑊 = [
𝑊𝐿𝐷𝐴 0

0 0
] , 𝐼 =  [

𝐼 0
0 0

] (18) 

where 𝑊𝐿𝐷𝐴 ∈ ℝ𝒍×𝒍 is defined in Equation (8), 𝐼 is an

identity matrix of size 𝑙 × 𝑙. 

We have 

𝑆𝑏 = 𝑋𝑙𝑊𝐿𝐷𝐴𝑋𝑙
𝑇 = 𝑋𝑊𝑋𝑇 (19) 

𝑆𝑡 = 𝑋𝑙𝑋𝑙
𝑇 = 𝑋𝐼𝑋𝑇 (20) 

Then equation (17) describing the objective function of 

DSLM in can be rewritten as 

max
𝒂

𝒂𝑋𝑊𝑋𝑇𝒂

𝒂𝑇𝑋(𝐼 + 𝛼𝑀)𝑋𝑇𝒂
 (21) 

2.2. The algorithm 

Given data set 𝑋 = {𝒙𝑖}𝑖=1
𝑛  includes labeled set 𝑋𝑙 =

{𝒙𝑖 , 𝒚𝑖}𝑖=1
𝑙  belonging to 𝑐 classes and ordered according to

their labels, and unlabeled set 𝑋𝑢 = {𝒙𝒊}𝑖=𝑙+1
𝑛 . The 𝑘-th class

have 𝑙𝑘 samples, ∑ 𝑙𝑘
𝑐
𝑖=1 = 𝑙. The detail of the proposed 

method is described in Figure 3: (1) data set 𝑋 is used to 

construct the adjacency graph 𝐺, with each image being 

assumed a single node of the graph; (2) we weight the edge 

of the graph 𝐺 by using simple method (described below), 

the result is a weight matrix 𝑊 which is used to compute 

matrix 𝑀; (3) we construct a special matrix �̃� which 

characterises the property of labeled data and an 

appropriate matrix 𝐼; (4) three feature matrices of two 

previous phases are combined for reconstructing optimal 

subspace by solving eigenvector problem. 

Figure 3. The proposed method (DSLM) 

1. Construct the adjacency graph:

In this step, we construct the adjacency graph 𝐺 of all

data set 𝑋 by using the 𝑘-nearest neighbors method.

2. Compute the weights:

In this step, we compute the weights on the edges of 𝐺.

Let 𝑊 be the weight matrix with 𝑊𝑖𝑗 having the weight

of the edge from node 𝑖 to node 𝑗, and 0 if there is no

such edge. We define 𝑀 = (𝐼 − 𝑊)𝑇(𝐼 − 𝑊) where 𝐼 is

the identity matrix of size 𝑛 × 𝑛.

Please see [6] for details about how to compute 𝑊.

3. Construct the graph for labeled data:

In this step, we construct the weight matrix �̃� ∈ ℝ𝒏×𝒏 

for labeled data

�̃� = [
𝑊𝑙 0
0 0

] , 𝐼 =  [
𝐼 0
0 0

] 

where 𝑊𝑙 ∈ ℝ𝒍×𝒍 is defined as 𝑊𝐿𝐷𝐴 in Eqn. (8), 𝐼 is an

identity matrix of size 𝑙 × 𝑙. 

4. Computing the projections:

In this step, we compute the linear projections by

solving the following generalized eigenvector problem

𝑋�̃�𝑋𝑇𝒂 = 𝜆𝑋(𝐼 + 𝛼𝑀)𝑋𝑇𝒂 (22) 

It is easy to check that �̃� is of rank 𝑐 and we will have 

𝑐 eigenvectors with respect to non-zero eigenvalue [8]. 

Let 𝐴 = [𝒂0 , 𝒂1, … , 𝒂𝑐−1] be the solution of Eqn. (22), 

ordered according to their eigenvalues, 𝜆0 ≥ 𝜆1 ≥ ⋯ ≥

𝜆𝑐−1 > 0. 𝐴 is a 𝑛 × 𝑐 matrix. The mapping subspace is 

as follows 

𝐱 → 𝒛 = 𝐴𝑇𝐱 (23) 

5. Classification:

- Having projection matrix 𝐴 which is computed using

DSLM algorithm by solving Eq. (22), each testing

𝑀 

�̃�

𝐼 
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image 𝑇 is mapped into the optimal subspace by using 

Eq. (23), which can be written as follows: 

𝒕𝑖 → 𝒖𝑖 = 𝐴𝑇𝒕𝑖 

where 𝒕𝑖 is the feature vector of testing image 𝑇.

- Compute the Euclidean distance from the testing 

image to each 𝑗-th labeled image 𝒙𝑗
′ in the optimal

subspace as follows: 

𝑑𝑗(𝑇, 𝑥𝑗
′) = ‖𝑢𝑖 − 𝑧𝑗

′‖
2

𝑑𝑗(𝑇, 𝑥𝑗
′) = ‖𝐴𝑇𝑡𝑖 − 𝐴𝑇𝑥𝑗

′‖
2

𝑑𝑗(𝑇, 𝑥𝑗
′) = √∑ ((𝐴𝑇𝑡𝑖)𝑠 − (𝐴𝑇𝑥𝑗

′)
𝑠
)

2
𝑑

𝑠=1

- We then assign a label 𝑐 to 𝑇 as follows: 

𝑐 = arg min
𝑗

𝑑𝑗(𝑇, 𝑥𝑗
′) , 𝑗 = 1,2, . . , 𝑙 

3. Experimental results

In this section, we investigate the use of our proposed 

approach for face recognition. We compare our DSLM 

algorithm with several representative dimension reduction 

algorithms, which include PCA, LDA, SDA [10]. PCA and 

LDA are the two most widely used subspace learning 

techniques for face recognition. SDA is the algorithm with 

high accuracy on semi-supervised face recognition [10]. 

3.1. Dataset descriptions 

The YALE [27] face database contains 165 grayscale 

images of size 320 × 243 of 15 people (11 samples for 

person). The images demonstrate variations in lighting 

condition (left-light, center-light, right-light), facial 

expression (normal, happy, sad, sleepy, surprised and 

wink), and with/without glasses. 

The ORL [28] face database contains 400 gray images 

of size 92 × 112 of 40 people (10 samples for person). The 

images were captured at different times and have different 

variation including expressions (open or closed eyes, 

smiling or non-smiling) and face details (glasses or no 

glasses). The images were taken with a tolerance for some 

tilting and rotation of face up to 20 degrees. 

3.2. Data preparation and experimental 
settings 

In all the experiments, preprocessing to locate the faces was 

applying. Original images were normalized (in scale and 

orientation) such that the two eyes were aligned at the same 

position. Then the facial areas were cropped into the final 

image for matching. 

The size of each cropped image in all the experiment is 

32 × 32 pixels, with 256 gray levels per pixel. Thus, each 

image can be represented by 1024-dimesional vector in 

image space. No further preprocessing is done. 10 images 

of a person in YALE and 10 images of a person in ORL are 

displayed in Figure 4. 

Figure 4.a: ORL face database 

Figure 4.b: YALE face database 

Figure 4. Samples from YALE face database and 
ORL face database with different facial expression 

and details 

We use the semi-supervised setting for our experiments. 

That is, the available training set during the training phase 
contains both labeled and unlabeled examples, and the 

testing set is not available during the training phase. In this 

paper, we apply nearest-neighbor classifier for its 

simplicity. For each person in dataset, 𝑛 images are 

randomly selected as the training set. Among these 𝑛 

images, 𝑙 images are randomly selected and labeled which 

leaves other 𝑛 − 𝑙 images unlabeled. We average the result 

over 25 random split. The recognition performance is 

measured by the accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑐

𝑁𝑠
× 100% 

where Nc is the number of correctly classified test samples 

and Ns is the number of test samples 

3.3. Face recognition with different 
dimensions 

In this experiment, we fix 𝛼 = 0.1 for two methods SDA 

and DSLM. The number of nearest neighbors 𝑘 is between 

2 and 4, the recognition is carried out then. In general, the 
accuracy rates varies with the dimension of the face 

subspace. Figure 5 shows the plots of accuracy rates versus 

dimensionality reduction for the PCA, LDA, SDA and 

DSLM. The best result obtained in the optimal subspace 

and the corresponding dimensionality for each method are 

shown in Table 1. Note that the upper bound of 

dimensionality of SDA and DSLM is 𝑐 where 𝑐 is the 
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number of classes. When there is a single labeled training 

image per class, LDA cannot be applied since the within-

class scatter matrix is the zero matrix. As can be seen, our 

DSLM algorithm performed the best for all the cases. 

Moreover, the optimal dimensionality obtained by DSLM, 

SDA and LDA is much lower than that obtained by PCA. 

3.4. Face recognition with different 𝒌-nearest 
neighbors 

The most important parameter in all of the manifold 

approaches which make use of the manifold structure is 𝑘-

nearest neighbors. We test and compare two methods SDA 

and DSLM with different values of 𝑘.  In this experiment, 

we use the ORL face database and fix 𝑛 = 7, 𝑙 = 3, 𝛼 = 0.1; 

𝑘 is chosen between 2 and 6; the recognition is carried out 

then.  

Figure 5.a: 𝑛 = 5, 𝑙 = 1 

Figure 5.b: 𝑛 = 5, 𝑙 = 2 

Figure 5.c: 𝑛 = 5, 𝑙 = 3 

Figure 5.d: 𝑛 = 5, 𝑙 = 4 

Figure 5. Accuracy rates vs. dimensionality 
reduction on the YALE face database 

Figure 6 shows the plots of accuracy rates versus 

number nearest of neighbor. Table 2 shows the 

performance comparison of those. As can be seen, our 

DSLM algorithm performed better result. Moreover, the 

accuracy of our DSLM algorithm is stable with varying 

value of parameter 𝑘. It is shown that our DSLM algorithm 

is stability with varying size of patches on manifold. 

Table 1. Performance comparisons on the YALE face 
database 

Methods 

The value of parameter l 

l = 1 l = 2 l = 3 l = 4 

PCA 32.6 (14) 43.5 (29) 50.4 (44) 54.4 (59) 

LDA - 45.8 (9) 63.6 (14) 69.1 (14) 

SDA 32.8 (15) 52.5 (15) 62.1 (15) 69.7 (15) 

DSLM 32.8 (15) 54.2 (15) 64.6 (15) 71.6 (15) 

Figure 6. Accuracy rates vs. 𝑘-nearest neighbor 

Table 2. Performance comparisons on the ORL face 
database 

The parameter l 

Methods 

SDA DSLM 

l = 2 88.83 88.70 

l = 3 88.57 88.83 

l = 4 88.23 89.02 

l = 5 87.80 88.77 

l = 6 86.70 88.64 

4. Discussion

It is worthwhile to high light several aspects of the 

proposed approach here: 

1. Our proposed algorithm DSLM shares some similar

properties with Semi-supervised Discriminant Analysis

[10] algorithm. Both of them aim to find the optimal

projection of the discriminative power of the labeled

data and of the locality preserving power of manifold.
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However, their graphs which discover manifold 

structure are totally different. Thus, their objective 

functions are different. 

2. Some manifold learning algorithms like ISOMAP,

LLE, Laplacian eigenmaps are defined only on the

training data points and it is unclear how to evaluate the

map for new test points. DSLM can find the optimal

linear projection. Thus, this makes it fast and suitable

for practical applications, e.g. face recognition.

3. DSLM can be performed and product significant results

in small datasets which cannot be achieved by LDA,

which can be seen as experimental results.

5. Conclusion

In this paper, we proposed a new linear dimensionality 

reduction algorithm called Discriminative Semi-supervised 

Learning in Manifold subspace. By using a graph which 

characterizes the locality structure of manifold data and 

taking advance of discriminative power of LDA method, 

our algorithm can make use of both labeled data and 

unlabeled data points to find optimal projection. 

Experimental results on face recognition have 

demonstrated the effectiveness of our algorithm.  

For future works, we are interested in applying the 

proposed method to other graphs which characterize better 

the geometric properties of the dataset. On the other hand, 
the algorithm should be investigated in supervised mode. 
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