
1

A Reliable Load Balancing Fault Tolerant Multi-SDN
Controller approach in a typical Software Defined
Network
Sharathkumar S1,* , N Sreenath2

1Research Scholar, Department of Computer Science and Engineering, Puducherry Technological University, Puducherry
2Professor, Department of Computer Science and Engineering, Puducherry Technological University, Puducherry

Abstract
INTRODUCTION: In the 21st Century, we have an emerging, modernized networking approach for efficient transfer of data
in the form of packets i.e Software defined Networking (SDN). It is often recognized as the network paradigm acquired by an
isolated independent control plane by the means of the underlying networking interface. As the communication medium is
getting rapidly increased, the usage of the number of resources are also increasing in the same ratio, this results to connectivity
problem in communication networks as well. If the development in technology is gaining more interest, the resource utilization
will also increase.
OBJECTIVES: In the proposed work here, we need to establish the connection between the client (or the end user) and the
server by calculating the network performance using the parameters such as server response time and the throughput of the
network by the method of load balancing.
METHODS: This paper aims to identify the new methods or techniques to improve the performance of SDN with the increase
in reliability, specifically required to improve the real-time data delivery. Alternatively, a reliable disjoint, distributed Multi-
SDN controller will be used, to collect the updated network information like packet size, connectivity, packet flow etc. The
methods involved are ideal controller optimization technique, distruption acquiscent technique and Maximum flow shortest
route technique.
RESULTS: From the results obtained by the simulation, the Reliable Load balancing Fault Tolerant Multi-SDN
Controller(RLFTMS) approach is more reliable, fault tolerant compared to the other existing traditional mechanisms.
CONCLUSION: Load balancing based on the server response time, throughput is being compared , this improves
the server workload ditribution among various datacenters. Ultimately the customers or clients will have a great
experience in terms of the reducing response time and increase in the throughput.

Keywords: SD-WLB, LBBSRT, Round Robin (RR), Random, Server Response Time, OpenFlow, Load Balancing, Throughput,
 RYU Controller, IoT.

Received on 12 January 2022, accepted on 18 January 2022, published on 02 February 2022

Copyright © 2022 Sharathkumar S et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.2-2-2022.173295

*Corresponding author. Email: Sharathkumar.s@pec.edu

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Sharathkumar S and N Sreenath

2

1. Introduction

In recent years, computer networks plays an important role
in the communication system and that too in Internet of
Things (IoT)[11]. It is gaining more attention among the
young and dynamic researchers to a large extent. The
advanced features in communication are taking place in this
modern era, users are gaining interest in the field of
communication networks. Overall, the growth done in the
field of research and development has reached its glory. This
mechansim is getting popularity and lot of people are
showing interest to do research under the area of Wireless
Networks and in particular about SDN, since the growth in
network traffic is reaching its glory and in particular future
networks like 5th Generation (5G) and 6th Generation (6G)
networks.

This motivates the researchers to build an efficient
networking architecture named SDN which should be easily
managed, programmable and having centralized
accessibilty. This allows all the applications or the network
operators to get the control of the whole network and make
easy to understand the behaviour of the entire network as
well. SDN makes the network software more useful [12].

In order to change the distributed approach of
keeping control plane and data plane together, the SDN
approach will make it centralized i.e making one controller
acting in the control plane and all the other devices in the
data plane are connected to it , so that the network
programmability becomes simple and we can have separate
data traffic and control traffic. In other words a centralized
controller acting at the control layer will take care of the end
users in the form of hosts depicted in the data plane. This
helps in easy and simple programming ability of SDN [13].

Here, we focus on one of the important concept
called fault tolerance. In the context of fault tolerance, SDN
provides important opportunities with its central view on the
whole network. Therefore, a fault tolerance mechanism is
required which reduce single point of failure in the network
by using multiple controllers. In SDN, considering all the
three layers or planes, the fault tolerance is acting in all
these layers , we need to take care about how to handle the
fault in all the planes of SDN. The problem existing in data
plane includes link failures and switch failures whereas the
control plane takes care of the failure in connection
between switch and controller or controller failures. The
main function of the application plane is to detect the
failure in an application which in turn will affect the
connectivity established through northbound Application
Program Interface (API) and it will spread to the other
applications gradually[14].

As a significance, this mechanism also increases
the scalability, reliability and high availability of services in
the network.

Further, controllers are categorized into two
types: centralized and distributed [1]. We need to
understand the respective architectures of both types
of the controllers. According to the survey done
until now, the distributed controller approach where
the control plane and data plane are coupled together
faces the synchronization problem, connectivity
issues, no proper fault management activities etc. In
the centralized approach, the remote SDN controller
is used to act as a centralized system and connects
all the networking devices and will achieve
complete access. This approach decouples the
control plane and data plane, where in a single
controller is acting like a master and the networking
devices as slave. The principle resembles the master-
slave approach. But, there is a limitation in SDN or
centralized controller approach i.e they suffer from a
single point of failure and also they will face the
problem of resource utilization, scalability issues. In
order to avoid this limitation, we make use of the
multi-controllers as a backup controller and work
cooperatively.

Further, the control plane consists of a
suitable SDN controller in a typical SDN
environment. The controller situated in the middle
layer of this architecture consist of network
operating system (NOS), helps to provide any
network applications and also software-based
services [15]. Further, single centralized controller,
which is responsible for managing the entire
network system is situated in the control plane. This
can be both advantage and disadvantage for a
network. One centralized network will monitor the
whole network, this solves the scalability problem.
Futher, there is a drawback in SDN[16], if a single
point of failure occurs then the entire network fails.
To overcome this, an updated mechanism should be
proposed by having a Network Information Base
(NIB) which is used to store all the switches acting
in the data plane in order to handle the packets and
also through the ingress port of the switch the
packets will be arriving and they are matched to the
flow accordingly[17].

Here we are making use of the Mininet tool
and SDN controller named RYU[8][9] a free source
and was developed by a telecommunication
company in Japan named Nippon Telegraphy and
Telephone(NTT). The word “RYU” means “flow”
in their language. The main function of this
controller is to provide easy and controlled flow of
data, so that we can get a interactive networking
platform. This controller supports some protocols
like Netconf, Openflow and even managed properly
as well. The language used and developed in RYU
controller is python and it is the most efficient and

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

3

useful coding language for implementation of any required
work related to SDN.

Further, due to the structural characteristics of
SDN, the function of the switch is simpler and it is only
responsible for data forwarding, makes the switch design
simple [18]. The essence of the SDN concept is to separate
the control layer from the data layer, which simplifies
network management, improves network flexibility and
scalability. In large networks, the good placement of the
controllers makes the best use of the existing structure of
links between the network nodes. One centralized controller
is not enough to control all the nodes in a large SDN, as its
performance is limited, and synchronization between the
controller and every clients or nodes in SDN will not be in
real time and there exits a signal propogation delay [19].
Because, single controller works for a small network, it is
not suitable for the large networks, in order to improve the
scalability in the network multiple controllers can be used in
the entire network. In the multiple SDN controller scenario,
either there can be a replication of network state information
or it may be shared among all the controllers existing in the
network. We should achieve synchronization among the
controllers as per the periodic time to finally get consistency
in the network [20].

In spite of applying various methods like testing,
decoding, verification, validation, certification the rate of
large-scale failures is more in the production networks and
remain less suspectible [21]. The availability of resources to
a load balanced network [2] is obtained by the method of
optimization using the various process by reducing the
response time, gradual raise or increase of throughput and
reduce in the overloading of resources in the intended
network. Multiple controllers are reserved for backup but we
should take care about the scalability and availability issues
in this mechanism. If there is any failure in the controller,
the failed controller is replaced with an alternative controller
which is already there in the queue. In order to achieve more
reliability, we require many instances of the controllers and
also have a well stock of alternative controllers in the form
of backup and have the clear information about where to
install the alternative controllers available [22]. Distributed
controller handles the whole network, while maintaining
complex tasks such as quality of service, security and load
balance [23]. Here, in order to fullfil the available demands
of the next generation networks, a logically centralized
network is used, this even gives the backup for the network
administrators to enable and regulate the network-wide
traffic flows. Through this centralized approach we can
create the dynamic network topologies defined as in the data
centers and also policy based routing can be implemented in
service providers or enterprise networks [24].

As shown in [3] [4] the motivation should be to
implement the architecture of SDN using a RYU SDN
controller which is a free source, mainly used for the
analysis of the network and to evaluate in deep, performance

analysis of SDN architecture for various parameters
like the number of packets transmitted, packets
received, throughput, bandwidth, round trip time etc.

 In this paper, for a SDN network a
proposed method for load balancing is explained in a
new way by optimally load balancing the network
by reducing the duration of time in response of the
server. We define the metric for load balancer i.e the
server response time, it is the time or duration of
the requests commenced that means end users
accepts the request and gets the response in the form
of reply from server. If the load is heavy or high,
then the server response time will take long time.
Our approach should be efficiently help to calculate
the server response time by using the load balancing
method.

The main work carried out by this paper
includes,

• Using the SDN architecture, the
performance metric like real time server
response time is calculated w.r.t specified
controller to design an efficient, load
balancing scheme in the network.

• Realize the network traffic for the
potential implementation of load balancing
scheme using the suitable SDN Controller.

• Compare the performance metrics like the
server response time , throughput and
provide the effectiveness of the proposed
scheme over the existing traditional
approaches.

Finally, a reliable, disjoint and fault tolerant
multi SDN controller has to be developed.

2. Related Works

In this section, we review the other researches
related to the work we propose.

In [1], the work mainly focuses on Data
center Networking and uses floodlight controller,
uses load balancing algorithmic approach, but
mainly it fails to use other controllers and no
response time is considered with no dynamic
methodology adopted to calculate the throughput of
the system.

As in [2], SDN flexibility is used for load
balancing describing real-time measurement of
server response and it is not considering the energy
saving issues and the balanced load is not achieved.
In [3][5], the comparison of round-robin, random
etc. Startegies are considered but no server load and

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

4

no real hardware is used and the controller is limited to POX
alone.

In [4], Intercloud manager (ICM) in SDN is used to
allocate network flows in cloud for monitoring and decision
making in cloud network. This method fails to improve the
performance of the SDN network and also the energy-
awareness is restricted to small scale.

A dynamic server load balancing technique is
proposed using RYU controller in [6], with Mininet and
Raspberry pi switch compared with Random, Round-robin
load balancing strategies. But the testing of code done only
for reliability and resource utilization, throughput and server
response time is not considered here.

The performance test analysis on SDN controller is
done in [7]. Parameters considered are throughput, Round
Trip Time (RTT) using Mininet, RYU controller, and
performance on bandwidth, throughput, RTT, jitter, packet
loss using RYU are calculated. But the restriction here is
only adopted to default topology and other topologies like
linear, single, tree topologies are not taken into
consideration.

RYU controller alone is used considering the
bandwidth, throughput and RTT for custom topology
between any 2 nodes in [8]. Comparison with other
controllers the work carried out here is by considering the
other networking parameters as well.

Deployment of Low-cost high performance open
testbeds are carried out in [9] considering controllers like
ONOS, floodlight, RYU etc. with low-cost open switch. But
the networking functions like Quality of service (QoS),
dynamic flow installation, server response time, throughput
is not considered.

The SDN architecture is centralized, focus is on
traffic engineering load balancing in data plane. In
[10],bayesian network scheme is used to choose alternate
path but no multi-controller scenario is used considering the
standard network topologies to reduce the SDN controller
overhead.

Sminesh et al [25], in their work partitioned the
network using a modified-Affinity Propogation (AP)
clustering algorithm and provides the input by calculating
the distance between switch and other components, as well
as uses link bandwidth between each .There is no
mechanism of load balancing w.r.t server or the response
time.No involvement of any external controllers like
Mininet is involved, so the network traffic, performance
could be analyzed. No efficient solution for placement of
controllers and optimality is achieved w.r.t to the placement.
Only the distance and bandwidth are considered as the input
and no other parameters are considered. The major work
involved here is about clustering and there is no other
methods used for the load balancing of SDN controllers.

Failure of internal controllers is not been involved
and no solution for the fault recovery and
management.

Alenazi et al [26], developed a new nodal
metric, nodal disjoint path (NDP), which measures a
node's importance in terms of its diverse
connectivity to other nodes. NDP determines the
locations of the k- controllers to increase network
robustness against targeted attacks by using US-
based fiber-level networks and evaluate centrality-
based attacks and random failures. The NDP-global
algorithm evaluated here provides better network
resilience in the face of centrality-based attacks and
random failures. The results also indicate that the
NDP-cluster algorithm has a delay performance
comparable to that of the k-median algorithm and
provides higher network resilience. There is no work
carried out w.r.t the placement of software-defined
SDNs.

Ruaro et al [27] proposed a multi-objective
management based on a distributed SDN (D-SDN)
architecture (SELF-SDN). Fault-tolerance
experiments highlight the simplicity of the SDN
paradigm to recover from faults in the NoC, not
requiring additional hardware. Results related to
multi-objective management demonstrate the fast
reaction time of SELF-SDN to recover the
communication latency faced to QoS loss and faults.
But the work is not satisfied and no work is carried
out in respect to extending management objectives
by addressing power and energy by turning off
unused CS routers and security.

Phemius et al [28], proposed DISCO, an
extensible DIstributed SDN COntrol plane able to
synchronize with the distributed and heterogeneous
nature of modern overlay networks. A DISCO
controller manages its own network domain and
communicates with other controllers to provide end-
to-end network services by using AMQP protocol
and evaluates inter-domain topology disruption
cases. But more techniques helpful to extension for
additional resilient and recovery mechanisms can be
done so that a controller can take the control of
switches from a neighbor domain on the fly in case
of failure.

Yang et al [29], developed the SDN
controller placement problem for single-link and
multilink failures, respectively. For single-link
failures, we develop a heuristic algorithm to address
the controller placement problem. For multi-link
failures, an efficient method Monte Carlo
Simulation is being used to reduce the
computational overhead. We conduct experiments
with real network topologies, and the simulation

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

5

results show that the heuristic algorithm can save
significantly more time than the optimal algorithm, while
achieving good performance and ultimately improves the
time complexity of the algorithm. However, with a larger
scale failure analysis, and a need for more precise prediction
mechanism for those vulnerable links, nodes, and controllers
are required.

Satheesh et al [30], developed a priority-based
model using SDN to control the flow of data packets over
the network, gives assurance to the bandwidth enforcement,
and reallocation is made through virtual circuits. The
network behavior of the system is continuously monitored
through the machine learning model for normal and
abnormal traffic data transmission to detect anomaly
intruders. Flow-based machine learning (FML) model with
SDN act as an intelligent system to limits the throughput
virtually through the flow of reserved bandwidth and make
use of extra bandwidth, which presents more than the
utilization bandwidth for priority-based applications with
minimal cost while compared with the traditional methods.
However, steps have to be taken to improve network traffic
in a real SDN environment.

In [25], a solution for controller load balancing,
considering the dynamic load of each controller by
developing an external SDN controllers has to be defined.
As of [26] the proposed algorithms are to be applied to the
placement of software-defined SDNs. In the paper [27] the
concept where the requirement on extending management
objectives by addressing power and energy by turning off
unused CS routers and security is discussed. In [28], the
technique has to be extended for additional resilient and
recovery mechanisms so that a controller can take the
control of switches from a neighbor domain on the fly in
case of failure, in [29] a larger scale failure analysis, and
provide a more precise prediction mechanism for those
vulnerable links, nodes, and controllers are required and as
of [30] some mechanism w.r.t steps has to be taken to
improve network traffic in a real SDN environment.

Hence to overcome the above mentioned issues, a
fault tolerant, multi SDN controller has to be developed.

3. System Architecture

RYU controller provides software components by making
use of well-defined API’s, this makes developers or the
network admin to create new network management and
control applications. RYU supports the well defined
protocol named OpenFlow and with versions of
1.0,1.2,1.3,1.4 and 1.5 and the controller is implemented in
the python language.

RYU SDN Controller consists of three layers or 3
planes. The lowest layer is the infrastructure or physical
layer which consists of various physical and virtual devices
interconnected via internet for the purpose of

communication. It also consists of different devices
placed within the same plane.

The middle layer or the 2nd Layer known as
control layer or the network lyer consists of network
devices and hosts ,both connected via Northbound
API’s and Southbound API’s. Further, this
layer is used for flow control mechanism i.e data
traffic from one device to another device to provide
the stability in the network without any network
traffic overhead.

The interface between physical and control
layer is done with the guidance of Application
programming interfaces (API) i.e southbound API’s
like OpenFlow, OF-config etc.

The topmost layer is the application layer
usually consists of network logic applications and
business applications. The interface acting between
the application layer and network layer is issued
with the consultation of API’s known as Northbound
interfaces like OFREST, Firewall, Quantum etc.

The RYU Controller used here, make use
of OpenFlow protocol to interact with the
forwarding plane consisting of switches and routers
for handling the traffic flows. The testing process is
carried out using Openvswitch and also supported
by some companies such as Centec, HP, IBM etc.

All these layers have the similar goal or
target to collect the network intelligence at one fixed
area or the place named the centralized controller.
The objectives gathered here by the controller runs
the algorithms and orchestras the new rules used by
the controller.

3.1 General System Architecture

Figure 3.1: Layered Architecture of SDN

The Figure 3.1 depicts a layered
Architecture of the SDN. This architecture
comprises of a standard 3-tier namely the bottom

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

6

infrastructure layer, a middle Control layer and the above
Application layer.

Various topologies and the devices are constituted
by the lowest layer which is formed of OpenFlow switches
and connecting devices in any network. It is also known as
forwarding plane or data plane and it’s main responsibility is
data packet handling initiated by the client or the user via
any linked devices to obtain the network traffic and get
forwarding information based on instructions from the
control plane.

The control plane’s main responsibility is decision
making that is handling of packets and forwarding of the
data at the linked devices properly across the network. The
SDN controller is present or included in the middle control
layer and it is used for the overall operation management of
the entire system. The controller used here is RYU. All kind
of network services related to the packet flow, data
transmission, synchronization and updating of forwarding
tables and even packet handling policies also reside in this
layer.

To establish the connection and the transfer of data
in between control layer and infrastructure layer is done via
Southbound API and uses a well known protocol called
OpenFlow protocol, which is used to maintain flow rules for
forwarding of packets from controller. There is a fair
independence between the controllers used to overcome any
network issues or transmission issues and also resilience of
the network in the control layer.

Finally, the application layer contains the
information of any network services used and accessed in
the entire network via the useful network operator.
Additionally, this plane consists of the network behavioural
information in terms of its applications and services. Some
of the routing processes acting in the control layer where no
applications are considered directly or even support this kind
of operation are not considered to be the part of this layer.
The connection or communication between the control layer
and Application layer is achieved by Open Northbound API
and the RESTful API.

3.2 Proposed Working Model

The working model of a typical RYU SDN framework
architecture is depicted as shown in the figure 3.2.

The first (Topmost) layer is the Application layer.
In this layer the testing and logical design of the application
programs is thoroughly checked and made implemented. All
the applications are acting in this layer including the End
user applications, the Operator used and the OpenStack
cloud orchestration. This layer is connected with the
Network layer or the control layer through RESTful API,
Northbound API, RestAPI and User defined API.
Programming system arrangements, administrations and
even the switch packet processing, brings numerous new
potential outcomes to the system administration

The second middle layer or the
intermediate translation layer is the Network layer
where the Framework of RYU SDN controller is
defined. Inter-controller communication exclusively
refers control layer own operations, rest of the
operations are affected by the other layers.It consists
of Built-in RYU applications, Firewalls, Libraries
including the Toplogies used. OpenFlow protocol
with versions like 1.0,1.2,1.3 etc. and Non
OpenFlow protocols Netconf, VRRP etc.

In the network layer both, Ideal Controller
Optimization approach and distruption acquiscent
techniques are included.

The lowest layer or the bottom most layer
is the Infrastructure layer. It mainly includes the
OpenFlow switches and Network Devices. Fault
tolerance issues like link failure, node failure
normally available in traditional network are part of
this layer. But in SDN due to centralized
management and programmability leads to new
challenges. The failure is detected at link or node
level. SDN permits novel kind of fault recovery
arrangement. In SDN numerous arrangements
broaden the southbound protocol conduct as well as
repurpose header fields to help fault recovery
systems.

The techniques or approaches are synchronized with
standard SDN Model as shown in the Figure 3.2.

The 3 layered proposed methods of
RLFTMS is as shown in the Figure 3.2. The topmost
approach is the novel ideal controller optimization
approach where the sub controllers used in the
approach should be optimal and also it should take
care of the controller load by checking the maximum
capacity it can handle for any process to happen so
that no problem should happen in the connectivity
and also check the ping connectivity so that to verify
whether all the connections are up to date and end to
end connection can be done smoothly.

The middle layered approach in the Figure
3.2 is the novel disruption acquiescent technique.
This technique is majorly used for checking the
connectivity between the sub controllers and
switches and in turn connected to the hosts. Further,
to check the behaviour of the network i.e. normal or
not especially the nodes in IoT networks. This
approach uses Micro-cluster Outlier detection
method which is based on the conditional entropy
approach that is used for incorporating the network
traffic flows, separation of the data traffic and
control traffic using a deep packet inspection where
the network behaviour can be easily judged and also
we can check any security lapse has happened like
the DDOS attack has happened or not. It helps us to

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

7

eliminate the vulnerability of attacks as well. Ultimately, the
unnecessary link failures in the network can be eliminated.
This solves both the single link and multi-link failures by
using distribution decision scheme containing load
information and using the nearest switch which has lowest
active nodes. In the multi-link failures, the controller cannot
do it single-handed, so it will allow the nodes to migrate to
the neighbouring switch linked with the respective sub
controller.

Finally, the lower layered approach which is the
Maximum flow shortest technique is used to determine the
secured and fastest route of the network and also to
overcome the overlapping of data in the network path. This
technique is developed since it uses shortest and minimal
path consisting least number of links, so that any
interference of the packet happens can be avoided. It will
also utilize the minimum available bandwidth capacity and
flow weightage through the nodes and hence eliminate any
weak nodes available in the network to achieve maximum
flow capacity with minimal links and by using the shortest
path without any overlapping by employing suitable transfer
protocol for the proposed architecture. Additionally, flexible
and common switch is attached with two controllers, is in
case any controller failure happens, then the concerned
switch will act as the backup link and path can be re-
established without any problem.

Figure 3.2: Advanced architecture of RYU SDN
Controller

3.3 List of Available SDN Controllers

There are many controllers acting in the control
layer of SDN. Among them POX, RYU,
OpenDaylight, Floodlight are important. The list of
other controllers shown in the Table 3.1 exhibiting
the comparison of various controllers with controller
name, programming language, Developer, license
provider and the platform support.

3.3.1 Comparison of Various SDN
Controllers

The following table 3.1 signifies the comparison of
the variuos SDN controllers with their programming
languages used, Developer of the controller, License
provider and platform support.

Table 3.1: List of available SDN controllers

Controlle
r Name

Progra
mming
Langua
ge

Develope
r

License
provide
r

Platform
support

NOX C++ Nicira
Network

GPL Linux

POX Python Nicira
Network

Apache Linux,
MAC OS,
Windows

Becon Java Stanford
University

GPLv2 Linux,
MAC OS,
Windows

Mastero Java Rice
University

LGPL Linux,
MAC OS,
Windows

Floodlight Java Big Switch
Network

Apache Linux,
MAC OS,
Windows

Trema C, Ruby NEC GPLv2 Only
Linux

OpenDay
light

Java Cisco and
OpenDayli

ght

- Linux

RYU Python NTT Apache Linux

4. Proposed Work

SDN is a new concept in the modern network
scenario which provides the emerging answer to
provide enough flexibility that is not been achieved
by the existing traditional networking systems.
Several recent research studies carried out has not

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

8

provided any mechanism to achieve high-level performance
or fault-tolerance at high scale in SDN based networks in
which high latency are the most essential issues to be taken
care of, since it happens by the variation of links
heterogeneity through the backup path. During no failure in
the network or if it is a ideal network the backup controllers
remains passive and will not be used for the process.Inorder
to solve this, Load balancing during the failure becomes an
important concern. To overcome scalability issue, previous
research has used multi controllers but the optimal numbers
of controllers to be used is not yet determined which leads to
overloading and high complexity in load balancing. Many
attacks lead to failure of links, by detecting those attacks, the
link failure can be eliminated at initial stage itself which is
not yet incorporated with the SDN plane. Generally, many
techniques are employed for overcoming link failure but the
complex nature of the link prediction path and too many
paths and backup leads to high energy consumption and
high computational time. The efficient route of the network
must be determined and overlapping of data in the path must
be overcome. Hence to overcome all the issues mentioned a
novel technique has to be implemented.

SDN technology can help a network prepare for a
successful and stable IoT deployment which can deliver the
agility and flexibility that the Internet of Things demands.
The architecture of the SDN is framed in a Multi Controller
Framework in which a main controller is linked with
optimal number of sub-controllers.

As shown in the Figure 3.2, the optimal number of
sub-controllers is required to be determined which is carried
by adopting a novel Ideal Controller Optimization approach
which takes into account the maximum capacity of the
controller, data packet size and average request of data to
the controller and the required controllers are connected in
series in the control plane of the network. Each sub-
controller is connected to various switches which are linked
with nodes. In order to identify abnormal behaviour of nodes
in IoT networks a novel Disruption acquiescent technique
has been introduced which uses Micro-Cluster Outlier
Detection with conditional entropy approach incorporating
traffic separation techniques using deep packet inspection
which not only detects the abnormal behaviour but it also
decides whether the abnormality has been caused by a
DDoS attack and eliminates the vulnerability of attacks.
Thus unwanted link failures are highly eliminated. Even,
when a link failure occurs the node automatically gets
migrated to the neighbouring node using distributed decision
scheme with load informing strategy which considers the
nearest switch with lowest active nodes. In case of multi-
link failure, the controller migrates from all the nodes to
another switch which is linked to other controller. Moreover,
in SDN technology, delays will be the most essential issues
to be taken care of, since it happens by the migration of
links inaccurately which causes overlapping via the saved
path. In order to do route discovery in the network and to
overcome the overlapping of data in the path a novel

Maximum Flow Shortest Route Technique is
developed in which shortest path consisting
minimum number of links is achieved thereby
avoiding the interference of the packet by
utilizing the minimum residual bandwidth capacity
and the weightage of flow through the nodes and
thereby eliminating the weak nodes to get the
maximum flow with shortest path without
overlapping by employing transfer protocol for the
architecture.

Also, a common switch is linked with two
controllers; in case of controller failure the switch
acts as a backup path. In case of overloading in the
main controller, a dormant controller is allocated for
the routing. This results to get an appropriate flow
entries that can be generated priorly to avoid the
overloading of control channel and determine the
latency or delay in path formation. If any link or
controller failure occurs, the active controllers take
over which in turn, controls the flow of data over
various links and promptly replace the routing.
Hence a reliable fault tolerant with no link faults or
failure in an interactive, secured SDN has to be
implemented.

5. The Design and Implementation of
RLFTMS

Figure 5.1: Proposed Architecture of RLFTMS
The RLFTMS architecture is depicted as shown in
the figure 5.1. The implemenation of RLFTMS
approach is mainly carried out by the three methods
proposed in the load balancing module namely Ideal
Controller Optimization approach, Distruption
acquiscent technique and Maximum flow shortest
route technique. All the techniques are mainly used
for developing the reliable fault tolerant Multi-SDN
controller. The details of all the techniques is
explained in detail in the section 4.

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

9

Algorithm 5.1: Ideal Controller Optimization
 Approach

Output: Multicontroller Framework: Linking Main
Controller with Optimal Sub Controllers.

1. while Main controller startup do

2. if main controller connect to sub-controllers do

3. for each subcontroller do

4. Get Maximum capacity of controller

 (Max_Controller_Capacity)

5. Get Data packet size (DPsize)

6. Get Avg_request of data (AREQD)

7. Control plane = Max_Controller_capacity +

 DPsize + AREQD.

8. end for

9. Connect Main Controller to Optimal sub

controllers

10. Sub-controllers are linked with nodes

11. end if

12. end while

Algorithm 5.2: Distruption Acquiescent Technique

Output: Identification of Abnormal node(Host) behaviour

in IoT Networks

1. while system startup do

2. for each node do

3. if node behaviour = = Abnormal do

4. Use Micro-cluster Outlier detection and
Conditional entropy approach

5. Calculate network traffic separation techniques

6. if (Deep packet inspection)

7. Get Node Abnormality Information.

8. Abnormality caused from DDOS attach

9. Eliminate vulnerability of attacks

10. Eliminate unwanted link failures

11. end if

12. end if

13. if (link failure occurred)

14. Automatic node migration to Neighboring node

15. Use distributed decision scheme with load

 information strategy.

16. Get nearest switch information with lowest
active nodes.

17. end if

18. if (mult-link failure)

19. Node Migration to other switch using
Controller (Node to Switch migration).

20. link to other sub-controllers

21. end if

22. Store the node abnormality information and
correct it.

23. end for

24. end while.

Algorithm 5.3: Maximum Flow Shortest Route
 Technique.

Output: Determine Overlapped free route for IoT

Network

1. while system startup do

2. for each node do

3. Get backup path in each network.

4. Calculate the path having minimum links
in Network.

5. if shortest path achieved.

6. Packet interference is avoided.

7. Calculate Packet interference =
Minimum residual Bandwidth capacity+

Node flow
weightage.

8. Eliminate weak nodes.

9. Use FTP protocol to get
Maximum flow with shortest path without
overlapping.

10. end if

11. if (Controller failure)

12. Use Swtich as Backup path

13. end if

14. if (Main controller overload)

15. Use dormant controller for
Routing

16. end if

17. Assign Overlap_free_path = Control
channel Overload + Path information latency

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

10

18. Obtain Result = Overlap_free_path

19. end for

20. Store Result containing error_free controllers and
optimal links and develop secured SDN.

21. end while

The ideal controller optimization approach is
depicted in Algorithm 5.1. Initially, the main controller is
started. Then, the subcontrollers are connected to the main
controller. For each subcontroller, from line 3 to line 8 as
depicted, collect and record the maximum capacity of
controller (Max_controller_capacity), Data Packet size
(DPsize) and Average request of data (AREQD). Connect all
these parameters in series to the control plane of SDN. In
this way, the main controller is connected to optimal
subcontrollers and in turn the subcontrollers are linked with
the end hosts or nodes in the network.

The second component or technique is Distruption
Acquiescent Technique which is depicted in Algorithm 5.2,
we are checking for the abnormal node behaviour in IoT.
Initially, after the system is started, the node behaviour is
verified. For each host or node using the approaches like
Micro-cluster Outlier detection and conditional entropy
approach, calculation of the traffic separation is done based
on the data traffic and the link traffic. Using the method,
Deep Packet Inspection(DPI), we obtain the abnormality
information in node. Further, the abnormality can happen
from DDOS attack. Using DPI technique the vulnerability of
attacks are eliminated and even unwanted link failures are
also eliminated.

There exists two types of link failures, single link
and multi-link failures. If single link failure occurred, then
automatic node migration can happen to the neighbouring
node. To do this we use distributed decision scheme with
load information strategy, obtain the nearest switch
information with lowest active nodes. In case of multilink
failures, node migration is done with the help of controller
to other switch or (Nodes to Switch Migration). These
information are linked to the other subcontrollers. Finally,
store the node abnormality and correct it to eliminate the un-
necessary information.

In the third technique the maximum flow shortest
route technique is explained in Algorithm 5.3. Here we
need to determine the overlapped free route for IoT
Network. Once the system is started, in each host, get the
backup path in each network. Calculate the path having
minimum links in network. If the shortest path is achieved,
the packet interference is avoided. Calculate the packet
interference by considering miniumum residual bandwidth
capacity, node flow weightage. Further eliminate the weak
nodes.

Further, by using File Tranfer Protocol (FTP) to
get Maximum flow with shortest path without overlapping.
If any failure of the controller, switch will having the backup

path. Suppose if there is an overload of main
controller, use dormant controller for routing.
Additionally calculate the overlap free path by
considering the control channel overhead and path
information latency and store the result containing
the error free controllers and optimal links and
develop secured SDN.

6. System Application Model

Figure 6.1: Schematic Diagram indicating the
connectivity between controllers, switches and

Hosts

According to the figure 6.1 application
model, the main controller C0 i.e the remote
controller which is RYU here, is connected to three
sub controllers, C1, C2 and C3. In turn, the
subcontrollers are connected to switches which are
internally connected to each other. We can find the
connection established between the two ends i.e the
host machines with that of the switches. The hosts or
clients are connected to the switches. Through the
switches, hosts can connect to the controllers. Here,
SDN follows the centralized approach, we have a
main controller. If the hosts cannot get information
about the data packets from the switches, then the
switches will connect to the controllers and through
it, there is a connectivity established between the
remote main controller with the sub-ordinate
controllers which are subcontrollers in this case.
Now the controller will pass the information to the
sub-controllers, in turn the subcontrollers will pass
the data packets to switches and finally it will reach
the hosts for processing of data. Like this we have a
efficient and guaranteed data communication
between the hosts or clients and the controllers.

The proposed system model appears to be a
layered architecture consisting of the main
controller(C0) in the above layer, sub-controllers
below it, and number of switches connected with
one more host connecting to the switches in the
middle and the bottom layers. This will make the
connection establishement easier and also if any

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

11

error occur in the network can be easily depicted and also
can be resolved as per the requirement.

6.1 Existing Algorithm to Calculate Server
Response Time
Algorithm 6.1: Measuring server’s response time
[2]
1. While system startup do

2. If current time % t == 0 do

3. Send Packet_out to switches and record sending
time Tsend ;

4. End if

5. If receive a Packet_in message then

6. Parse message;

7. If the source address of the received packet
is the server, the destination

 address is the controller then

8. Record the time Tarrive of received
message;

9. Calculate the response time by the formula
T response = T arrive - T send ;

10. Store response time;

11. Else

12. Send to other modules;

13. End if

14. End if

15. End while

6.2 Advanced Algorithm for RLFTMS Method

Algorithm 6.2: Improved method for measuring
server response time and calculation of
throughput based on minimum Bandwidth

1. While system startup do

2. If Main controller is remote and start_controller
= = RYU do

3. Connect and start the sub-controllers C1,C2
and C3 to main controller

4. Check the data packet_size

5. If data_packet_size = = 10 OR 50 OR 100

6. Calculate the average_load of controller, No.
of switches used, No. of

connection to switches and Avg_ratio of
no. of switches to no. of connection to switch.

7. end if

8. Print the number of controllers used

9. While startup controllers, sub-controllers
and switches

10. Connect or link clients with respective
switches

11. Inter Connect switches with other switches

12. Calculate the bandwidth of all clients
connected to switches respectively.

13. Check the ping reachability and make
any one switch down

14. Check the ping reachability once again
after switch is down

15. Now packet loss occurs – No ping
connection

16. Inspect the switches_B.W and obtain the
minimum_B.W

17. Add_links between the switches

18. Create the client,switches and the link
from client to switches

19. Add the remote controller again

20. End While

21. Repeat Steps from 8 to 21 again in a
loop

22. Print(“Creation of switches”)

23. Print(“Connecting client with switches”)

24. Check the controller and sub-controller
connectivity with server.

25. Repeat Steps 8 to 21 do

26. Check Ping reachability for calculating the
packet loss

27. Get the reachability information of all
switches and obtain the new bandwidth

28. Obtain the minimum bandwidth

29. Finally check the ping connectivity once
again

30. Print(“No packet_loss and 100% packer
transmitted”)

31. End if

32. End While

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

12

The ultimate aim of the preferred algorithm is to
attach the controllers with the main-controller and the
switches and ultimately to the end hosts. Check the ping
connectivity and verify the bandwidth of the link and obtain
the minimum bandwidth to get the least server response time
and the throughput.

6.3 Simulation Study

6.3.1 Server Response Time Measurement in Real-
Time

As in [2] , to measure the response time of a server
there is a strategy of obtaining the it and it is as follows:

Step1: Generate Packet_Out message and pass to
Switches. The controller commences once the system starts,
further the controller checks the time interval say ‘t’ to send
the message i.e the transmission time and makes the
initiation of sending the authenticated message and makes
note of the initiation i.e the start time and the transmitted
time. There should be a synchronization established between
the servers available in the pool of resources and the
message transmitted. The content of this Packet_out
message includes the information of data in terms of packet,
their source address, IP address of the controller used and
also the designated receipent address attached with the
respective server IP.

Step2: Handling of Packet_out message by Switches.
Next, the intended message initiated by the controller is
received by the respective OpenFlow switch, the respective
switch will check the data packets by parsing and transfers
these packets to the respective servers.
Step3: Reply message generated from server, is received
by the controller and calculates the the response time of the
server. The client request from the server is done in a form
of a simulation, once the controller generates the data
packets and the controller IP will be acting as the destination
address. The flow table gets a new entry in a form of the
Packet_in message, therefore this message need to be sent
by the server to the controller. Further, the controller
receives the incoming time of the parsed packet_in message
data packet from the respective server. This results, to obtain
the response time of the respective server and also the
database will be update accordingly.

 Step4: Again and again go through step1, step2, and step3
until end condition is reached.

7. Results and Discussion

Figure 7.1: Comparison of the throughput
between various clients based on Performance

metrics

Table 7.1: Performance of the Network based
on the throughput

Time Clients
Connected

Throughput1
(Gbps)

Throughput2
(Gbps)

1 C1-C2 26.7 26
2 C1-C3 25.2 26.2
3 C1-C4 25 26.6
4 C2-C3 24.8 29.6
5 C2-C4 23.8 30.2
6 C3-C4 22.7 27.1

The throughput is nothing but the measure
of the performance of the network. The comparison
of the various clients in the SDN network is done
and graph is plotted as shown in figure 7.1 and
indicated in the Table 7.1.

Figure 7.2: Comparison of Average Server
Response Time with other methods

From the figure 7.2 and the data shown in
table 7.2 we can see that the calculated server
response time of the various methods. Each
algorithm is executed four times, as shown in the

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

13

figure 7.2, the proposed algorithm has a lower response time
than SD-WLB, LBBSRT, round robin and random
algorithms. Based on these methods, we can clear see that
the proposed (RDFTMS) method is having less server
response time i.e 1.3 seconds with that of RND, RR,
LBBSRT, SD-WLB who have 3.9 seconds, 2.5 seconds, 2.2
seconds and 1.8 seconds respectively.

Table 7.2: Comparison of the Server Response
Time with Various Methods

Figure 7.3: Comparison of the TCP Bandwidth of
the proposed with that of custom and default

topology

As shown in the figure 7.3, we need to
calculate the TCP bandwidth between the clients. We
have three topologies mentioned here namely, custom
SDN, default SDN and the proposed (RDFTMS)
SDN. The graph is plotted between Nodes connected
vs Gigabits per second. The respective output shows
that the suggested methodology has better TCP
bandwidth compared to the other two approaches.

The following Table 7.3 signifies the TCP bandwidth
between various clients :

Table 7.3: Correlation of the TCP Bandwidth of
the proposed , default and Custom SDN
Topology

Sl
No

Clients
Connected

Default
SDN

Bandwidth
(Gbps)

Custom
SDN

Bandwi
dth

(Gbps)

Proposed
SDN

Bandwidth
(Gbps)

1 C1-C2 25.1 26.7 26.0
2 C1-C3 24.5 25.2 26.2
3 C1-C4 24.4 25 26.6
4 C2-C3 - 24.8 29.6

5 C2-C4 - 23.8 30.2
6 C3-C4 - 22.7 27.1

We need to calculate the TCP Bandwidth between
the clients to check the performance of the network. From
the Table 7.3 and Figure 7.3 we can see the Comparison of
the SDN bandwidth between Custom SDN, Default SDN
and the proposed SDN.

The bandwidth of the network is defined as
the computation that indicates the maximal capacity of
communication media links to transfer the data packets
over a network in a particular interval of time. Figure
7.3 explains the TCP bandwidth compared with that of
proposed topology, default topology and custom
topology.

In the process of calculating the bandwidth
using the Open Flow switch with RYU controller, the
performance metrics obtained represent the data
packets transferred from Client 1(C1) to Client 2 (C2)
in the proposed topology is 26.0 Gbps, in custom
topology it is 26.7 Gbps and in default topology it is
25.1 Gbps. Similarly for the packets transferred from
C1 to C3 in proposed topology it is 26.2 Gbps and
that of custom and default topology it is 25.2 Gbps
and 24.5 Gbps, between C1 to C4 , for proposed
topology it is 26.6 Gbps and that of custom and
default topology it will be 25 Gbps and 24.4 Gbps.

The total number of combination of nodes in
default topology are three (C1-C2, C1-C3, C1-C4)
whereas the proposed topology consists 6
combinations i.e (C1-C2, C1-C3, C1-C4, C2-C3,
C2-C4, C3-C4). Additional combinations C2-C3, C2-
C4, C3-C4 has no value in default topology.
According to the results of bandwidth , we have good
improvement in the proposed topology compared to
the default topology.

Similarly the proposed topology has good
improvement compared to the custom topology as
depicted in the table 7.3. The details are mentioned in
the table 7.3. From the figure 7.3, we can observe the
minimum and maximum throughput of the proposed,
custom and default topology in Gbps. The arrival of
data packets is the important factor to get high and
good performance of SDN network. In the default
topology, the minimum and maximum throughput are
24.4 Gbps and 25.1 Gbps respectively. As in custom
topology, the minimum and maximum throughput are
22.7 Gbps and 26.7 Gbps and as far as the proposed
topology, the minimum and maximum throughput are
26.0 Gbps and 30.2 Gbps respectively.

Sl No Method Used Server Response
Time

(Seconds)
1 RND (Random) 3.9
2 RR(Round Robin) 2.5
3 LBBSRT 2.2
4 SD-WLB 1.8
5 RDFTMS 1.3

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

14

Figure 7.4: Calculation of the Average
throughput between different clients in RLFTMS

TCP throughput for node to node path

The throughput test in the controller is
evaluated for the maximum amount of data, it is
processed in a second between two nodes, measured
in bits per second or data packets per second. Here
iperf3 utility is used to test the controller throughput
performance. In order to measure the TCP throughput,
iperf3 is executed for 10 seconds on client side and
data is collected every 1 second on the server side.
The executed result is shown in table 6 and
represented graphically in figure 8. It supports to
understand about the end-to-end performance of the
network.

As in Figure 7.4, highest and lowest
throughput in gigabits is approximately 37.6 gigabits
and 27.4 gigabits between C1 and C2 node, 37.7
gigabits and 27.1 gigabits between C1 and C3 node,
29.3 gigabits and 26.2 gigabits between C2 and C3
node.

From the Figure 7.4 and Table 7.4, we can
see the comparison of the average throughput between
different clients i.e Client1-Client2, Client1-Client3
and Client2-Client3. From the result we can clearly
mention that the average throughput between Client2-
Client3 is better compared to the other comparison of
the clients. (iperf3 command used to test the
throughput between the clients)

Table 7.4: Comparison of the throughput
between the three clients C1, C2 and C3 TCP

throughput for three node to node path

Time
(seconds)

C1toC2
Throughput

(Gbps)

C1toC3
Throughput

 (Gbps)

C2toC3
Throughput

(Gbps)
0 0 0 0
1 37.6 37.4 29.3
2 37.6 37.3 27.3

3 36 37.7 27.1
4 27.4 37.6 26.9
5 27.7 33.4 27.2
6 27.7 27.1 27.5
7 27.8 27.5 27.3
8 27.8 27.4 27.1
9 28.3 27.6 26.2

10 27.7 27.6 27.4

 Figure 7.5: Connection Establishment
between the Controller and the Switches

Initially, connection should be established
between the controller and switches. Here the main
controller used is RYU. This controller is connected
to switches via subcontrollers. It is as shown in the
figure 7.5.

Figure 7.6: Calculation of Bandwidth between
the client using iperf command

Once, the connection is established, using the iperf
command, calculation of Bandwidth in switches are
done. The minimum bandwidth is taken among them
and it is used for the further process. It is as shown in
the figure 7.6.

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

15

To check whether the connection is established
properly, we need to conduct the ping test between the
client and server. This process is carried out as shown
in the figure 7.7.

Figure 7.7: Ping Test Connectivity between the
client and the server to check network

reachability

Figure 7.8: Calculation of Round Trip Time using
Ping Command between Client and Server.

As shown in the figure 7.8, the round trip time
between the client and the server is calculated after
performing the ping command and clearly showing
the number of packets transmitted, received and also
any packet loss has occurred and even the time to
obtain the round trip time.

Based on the results obtained and
comparison done with that of the traditional methods
such as SD-WLB, LBBSRT, Round Robin (RR)
and Random selection methods, the RDFTMS
mechanism is having superiority and there is

improvement w.r.t the average server response time
by 18%, 19.58%, 33.94% and 57.41% respectively.
Similarly, the enhancement of throughput in an
average w.r.t these algorithmic techniques are also
considered and they appear to be 8.25%, 16.52%,
29.72% and 58.27% respectively.

8. Conclusion

Load balancing based on the server response time,
throughput is being compared , this improves the
server workload ditribution among various
datacenters. Ultimately the customers or clients will
have a great experience in terms of the reducing
response time and increase in the throughput. The
controller is considered as the master mind of the
network and is majorly anlayzed to get the flow of
network traffic in the real time so that it is easily
monitored to get the clear idea of the packet flow in
the heavy network traffic. For any efficient client to
server communication to happen, i.e nothing but the
smooth traffic movement between any two nodes , we
need an effective and efficient mechansim of
movement of data in the form of packets so that easy
flow of data can happen without any transmission
impairment. In this work the controller used is RYU.
It is mainly used to gain resource utilization so that
the network traffic is better and to achieve high
network performance. In future, using any deep
learning or machine learning mechanisms with other
SDN controllers, calculate the performance of the
network in terms of server response time, throughput
by considering other metrics like packet loss, delay,
jitter. Finally developing a improvised, reliable, fault
tolerant SDN for the efficient communication between
the intended client or the host and the respective
server.

Acknowledgements.
This is to acknowledge the Department of Computer
Science and Engineering, Puducherry Technological
University for giving the opportunity to conduct the
experiments and utlization of the research lab to carry out
the work. Further, I would thank all the faculty and staff ,
Puducherry Technological University for kind cooperation
for carrying out this work successfully.

References
[1.] Soleimanzadeh, K., Ahmadi, M. and Nassiri, M.,
2019. SD‐WLB: An SDN‐aided mechanism for web load
balancing based on server statistics. ETRI Journal, 41(2),
pp.197-206.
[2.] Zhong, H., Lin, Q., Cui, J., Shi, R. and Liu, L., 2015.
An efficient SDN load balancing scheme based on variance
analysis for massive mobile users. Mobile Information
Systems, 2015.

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

Sharathkumar S and N Sreenath

16

 [3.] Kaur, S., Kumar, K., Singh, J. and Ghumman, N.S.,
2015, March. Round-robin based load balancing in
Software Defined Networking. In 2015 2nd

international conference on computing for
sustainable global development (INDIACom) (pp.
2136- 2139). IEEE.
 [4.] Kang, B. and Choo, H., 2018. An SDN-enhanced load-
balancing technique in the cloud system. The Journal of
Supercomputing, 74(11), pp.5706-5729.
[5.] Linn, A.S., Win, S.H. and Win, S.T., 2019. Server Load
Balancing in Software Defined Networking.
[6.] Hamed, M.I., ElHalawany, B.M., Fouda, M.M. and Tag
Eldien, A.S., 2017. Performance analysis of applying load
balancing strategies on different SDN environments. Benha
Journal of Applied Sciences, 2(1), pp.1-7.
[7.]Islam, M.T., Islam, N. and Al Refat, M., 2020. Node to
node performance evaluation through RYU SDN controller.
Wireless Personal Communications, pp.1-16.
[8.] Bhardwaj, S. and Panda, S.N., 2022. Performance
Evaluation Using RYU SDN Controller in Software-
Defined Networking Environment. Wireless Personal
Communications, 122(1), pp.701-723.
[9.] Silva, J.B., Silva, F.S.D., Neto, E.P., Lemos, M. and
Neto, A., 2020. Benchmarking of mainstream SDN
controllers over open off‐the‐shelf software‐switches.
Internet Technology Letters, 3(3), p.e152.
[10.] CN, S., 2019. A proactive flow admission and re-
routing scheme for load balancing and mitigation of
congestion propagation in SDN data plane. International
Journal of Computer Networks & Communications (IJCNC)
Vol, 10.
[11.] Kiadehi, K.B., Rahmani, A.M. and Molahosseini,
A.S., 2021. Increasing fault tolerance of data plane on the
internet of things using the software-defined networks.
PeerJ Computer Science, 7, p.e543.

[12.]Xin-gang, W., 2018, March. A Link Performance-
based Failure Recovery Approach in SDN Data Plane. In
Proceedings of the 3rd International Conference on
Multimedia and Image Processing (pp. 46-51).
[13.] Rehman, A.U., Aguiar, R.L. and Barraca, J.P., 2019.
Fault-tolerance in the scope of software-defined networking
(sdn). IEEE Access, 7, pp.124474-124490.
[14.] Yamansavascilar, B., Baktir, A.C., Ozgovde, A. and
Ersoy, C., 2020. Fault tolerance in SDN data plane
considering network and application based metrics. Journal
of Network and Computer Applications, 170, p.102780.
[15.] Karakus, M. and Durresi, A., 2017. A survey: Control
plane scalability issues and approaches in software-defined
networking (SDN). Computer Networks, 112, pp.279-293.
[16.] Das, R.K., Pohrmen, F.H., Maji, A.K. and Saha, G.,
2020. FT-SDN: a fault-tolerant distributed architecture for
software defined network. Wireless personal
communications, 114(2), pp.1045-1066.
[17.] Seidlitz, L. and Perner, C., 2020. Fault tolerance in
SDN. Network, 45.

[18.] Liang, D., Liu, Q., Yan, B., Hu, Y., Zhao, B. and Hu,
T., 2021. Low interruption ratio link fault recovery scheme
for data plane in software-defined networks. Peer-to-Peer
Networking and Applications, 14(6), pp.3806-3819.
[19.] Dolynnyi, O., Nikolskiy, S. and Kulakov, Y., 2020.
THE METHOD OF SDN CLUSTERING FOR
CONTROLLER LOAD BALANCING. Information,
Computing and Intelligent systems, (1).
[20.] Das, T. and Gurusamy, M., 2020. Controller
placement for resilient network state synchronization in
multi-controller sdn. IEEE Communications Letters, 24(6),
pp.1299-1303.
[21.] Zhou, Z., Benson, T.A., Canini, M. and
Chandrasekaran, B., 2021, October. Tardis: A Fault-
Tolerant Design for Network Control Planes. In
Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR) (pp. 108-121).
[22.] Shailly, M., 2021. A critical review based on Fault
Tolerance in Software Defined Networks. Turkish Journal
of Computer and Mathematics Education (TURCOMAT),
12(2), pp.456-461.
[23.] Rajoriya, M.K. and Gupta, C.P., 2021, April. A
Taxonomy on Distributed Controllers in Software Defined
Networking. In 2021 5th International Conference on
Computing Methodologies and Communication (ICCMC)
(pp. 120-126). IEEE.
[24.] Ahmad, S. and Mir, A.H., 2021. Scalability,
consistency, reliability and security in sdn controllers: A
survey of diverse sdn controllers. Journal of Network and
Systems Management, 29(1), pp.1-59.
[25.] Sminesh, C.N., Kanaga, E.G.M. and Sreejish, A.G.,
2020. A multi-controller placement strategy in software
defined networks using affinity propagation. International
Journal of Internet Technology and Secured Transactions,
10(1-2), pp.229-253.
[26.] Alenazi, M.J. and Cetinkaya, E.K., 2020. Resilient
placement of SDN controllers exploiting disjoint paths.
Transactions on Emerging Telecommunications
Technologies, 31(2), p.e3725.
[27.] Ruaro, M. and Moraes, F.G., 2020, August. Multiple-
objective Management based on a Distributed SDN
Architecture for Many-cores. In 2020 33rd Symposium on
Integrated Circuits and Systems Design (SBCCI) (pp. 1-6).
IEEE.
[28.] Phemius, K., Bouet, M. and Leguay, J., 2014, May.
Disco: Distributed multi-domain sdn controllers. In 2014
IEEE Network Operations and Management Symposium
(NOMS) (pp. 1-4). IEEE.
[29.] Yang, S., Cui, L., Chen, Z. and Xiao, W., 2020. An
efficient approach to robust SDN controller placement for
security. IEEE Transactions on Network and Service
Management, 17(3), pp.1669-1682.
[30.] Satheesh, N., Rathnamma, M.V., Rajeshkumar, G.,
Sagar, P.V., Dadheech, P., Dogiwal, S.R., Velayutham, P.
and Sengan, S., 2020. Flow-based anomaly intrusion
detection using machine learning model with software

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

A Reliable Load Balancing Fault Tolerant Multi-SDN Controller approach in a typical Software Defined Network

17

defined networking for OpenFlow network.
Microprocessors and Microsystems, 79, p.103285.
[31.] Rai, P. and Sarma, H.K.D., 2022. Reliable Data
Delivery in Software-Defined Networking: A Survey. In
Contemporary Issues in Communication, Cloud and Big
Data Analytics (pp. 3-17). Springer, Singapore.

EAI Endorsed Transactions on
Internet of Things

04 2021 - 02 2022 | Volume 7 | Issue 26 | e4

