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Abstract: In this paper we propose an algorithm for segmentation of bipedal 

thermograms. To obtain the complete segmented foot region, we used a neural network 

trained using data obtained from active thermography. The foot region was segmented 

using improved U2-Net network. The results of experimental studies and simulations are 

given in this paper. The results are as follows. The proposed scheme can effectively 

segment the foot regions in different situations. The accuracy rate is 0.987, the miss 

detection rate is 0.006 and the detection speed is increased by 19%. The practical needs 

of diabetic foot detection can be better met by improving the U2-Net network 

segmentation algorithm. 
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1 Introduction 

Diabetes is a chronic endocrine disorder caused by insufficient insulin production. This 

deficiency raises the level of glucose concentration in the blood, potentially damaging blood 

vessels and nerves. In 2021, approximately 537 million adults worldwide will have diabetes, 

an increase of nearly 50 million people worldwide since 2019. 

In recent years, research scholars have used infrared thermography[2] to study changes in 

plantar foot temperature in diabetic patients. In asymmetric temperature analysis, the plantar 

foot temperature of the left foot was compared with that of the right foot. If the same 

complications were present in both feet, the diseased area could not be identified. When 

performing temperature distribution analysis, identifying the spatial distribution of 

temperature remains difficult due to the wide variation in temperature distribution, especially 

in diabetic patients, which makes the classification process more difficult. In addition, details 

of bipedal thermograms may be missing and the interpretation of plantar foot fever may be 

difficult. 

The aim of this study is to automatically segment diabetic foot (with or without neuropathy) 

using plantar temperature. First, the radiation data needs to be converted to temperature, the 

temperature is grayscale converted to image according to a fixed temperature window[3] , 

tested by a modified U2 -Net network model based on[4] to generate a mask map (i.e., binary 

map), and feature extraction is performed on the dataset by the mask map, and finally only the 

ICICA 2022, December 02-04, Chongqing, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.2-12-2022.2328003



foot region is retained. 

2 Image acquisition and preprocessing 

The infrared thermal image device is used to obtain the thermal image sequence of the surface 

of the tested foot, and the thermal image sequence is stored in the general memory, and the 

data in the memory is imaged. The data in the memory is the radiation value. First, the 

radiation value is converted into the temperature, and the temperature is converted into the 

image gray according to the fixed temperature window. Then, the pixel gray value is 

normalized to compress the pixel value to 0-1. 

3 Bipedal thermogram segmentation 

3.1 Overall structure of U2 -Net 

Qin et al. proposed a U2-Net network consisting of a two-layer nested U-block structure, 

mainly consisting of residual U-blocks (RSU) that extract multi-scale features within a stage 

and an outer U-block structure that connects the RSUs. This network design eliminates the 

need to use a backbone network for image classification, and can be trained from scratch to 

obtain excellent results and make the network deeper to obtain high-resolution feature maps 

without increasing the computational cost as much as possible. For bipedal heat map foot 

features, the network is built using Pytorch to test the effect of bipedal heat map segmentation, 

and the overall structure of RSU and U2 -Net is described below. 

The overall structure of the network includes a 6-stage encoder, a 5-stage decoder, and a 

feature map fusion output module, each stage is populated by configured RSU as shown in 

Figure 1. As can be seen from Fig. 7, the left side of the network is a downsampling process, 

the first four stages are populated by RSU with layer parameters L of 7, 6, 5, and 4, 

respectively, and the feature map size is halved and recovered layer by layer within the 

stages,and the last two stages are populated by RSU configured with hole convolution, and the 

feature map size remains constant within the stages. In the encoding phase, the RSU are 

connected to each other by a 2×2 maximum pooling, and the feature map size becomes 1/32 of 

the original size. while the right side of the network is an upsampling process, the RSU 

configuration within each phase is the same as the left symmetric position, and the input is a 

cascaded union of the upper phase output and the left symmetric phase output. In the decoding 

stage, the RSUsare connected to each other by a bilinear interpolation operation to gradually 

reduce the feature map. Finally, the feature maps output from each RSU in the decoding stage 

are stitched together to obtain the final feature maps. 



 

Figure 1 U2 -Net overall structure 

3.2 Loss function 

In order to accelerate the convergence speed of neural networks and to solve the gradient 

disappearance problem that occurs during the training of deep networks, a deeply supervised [5] 

approach is used, i.e., an auxiliary classifier is added to the hidden layer of the network to 

supervise the backbone network. Therefore, the loss function of the semantic segmentation 

network is defined as 
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Eq. (1) where: m is the mth lateral branch; )(m

side  is the loss of the lateral output feature map;

fuse  is the loss of the final fused output feature map; and
fusew  and )(m

sidew  are the weights of 

each loss term. For each term, we use the standard binary cross-entropy to calculate the loss. 
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where (r,c) (r,c) (r,c) (r,c) are the pixel coordinates and (H,W) are the image sizes: height and 

width. 
),( crGP and

),( crSP  denote the GT pixel values and the predicted significant probability 

maps, respectively. The training process tries to minimize the overall loss. During testing, we 

choose the final fusion result as the final saliency map of
fuse  . 

To better train the network, the sample image size was scaled down to 320×320 pixels and 

randomly cropped to 288×288 pixels before the training started. The semantic segmentation 

network uses Adam optimizer, in which the parameters take default values, and the Xavier 

method is used to initialize the convolution layer parameters, and the initial loss weights
fusew  

and )(m

sidew  are set to 1. Since the foot region accounts for a relatively large portion of the whole 

image, some adjustments are made in the output feature map part of the network, and the side 

output feature maps are upsampled to the input image size and then stitched together in the 

channel dimension, and finally the final output feature maps are obtained by sigmoid 

activation function and 3×3 convolution to get the final output feature map. To start the 

training, the training dataset is fed into the neural network, and after 1,000 to 1,500 rounds of 

training (batch of 5), the training loss converges. At this point, the training optimal model file 

is saved and the model is loaded for prediction, and the obtained network evaluation metrics 

are shown in Table 1. 

As can be seen from Table 1, the test set results show that although the model detects most of 

the foot region, there are still serious false detections and missed detections as well as the 

inability to segment the foot region completely. u2 -Net neural network solves the problem that 

traditional neural networks cannot take into account local details and global contrast 

information, but the network is complex, has large depth, and tends to lose information of high 

importance but low frequency of occurrence, which is especially obvious when facing small 

data sets and small target detection problems are especially obvious. An analysis of the 

experimental results shows that the model does not pay enough attention to the foot region and 

may have overfitting. Therefore, direct use of the U2 -Net network for foot region detection 

cannot achieve the expected results, and in other aspects, the U2 -Net network model is large, 

has many parameters, and takes a long time for training and prediction, which does not meet 

the requirements of real-time detection well. 

Table 1 U2 -Net training results evaluation metrics 

 HausdorFfdistance DSC IOU 

training 

set 
0.933 0.93 0.923 

test set 0.924 0.896 0.91 

4 Improvements 

Through the analysis in Section 2.1, the U2 -Net bipedal heat map detection scheme is 

improved by incorporating the residual circular convolution module[6] and the Attention 



mechanism[7] in the decoding phase to improve the detection accuracy while reducing the 

network training and detection time. 

 

Figure 2 Cyclic residual convolution module 

4.1 Cyclic residual convolution module 

The classical U2 -Net network architecture is widely used for segmentation of medical images, 

but due to the high complexity of the processed bipedal thermograms, the noise contained 

blends with the biped, and the different temperatures in different regions of the foot, 

sometimes it is not possible to segment the plantar region completely. In order to achieve 

higher accuracy with a model of low complexity and a balance between accuracy and 

complexity as a way to extract to more complex features. We take the classical U2 -Net 

network architecture as the basis, and introduce the cyclic residual convolutional network, 

which contains several cyclic residual convolutional modules, and replace the ordinary 

convolutional modules in the original network with cyclic residual convolutional modules, so 

as to deepen the U2 -Net network depth and extract more complex features. 

In the classical UNET network architecture, its feature coding module is composed of 5 

convolutions, each convolution block includes 2 convolution layers and 1 maximum pooling 

layer. The structure of the UNET convolution block is shown in Fig. 3. The method in this 

paper uses the cyclic convolution module structure to replace the convolution block in the 

UNET feature module. The feature coding module in this paper is composed of 5 convolution 

blocks, Each convolution block contains one convolution residual module (RRCB) and one 

MPL. Each cyclic residual module unit contains two cyclic convolution layers (RCLS). A 

single RCL contains three cyclic sub sequences, and its structure is shown in Fig. 3. 

The structure of the ordinary convolution layer, the cyclic residual convolution module, and 

the cyclic subsequence is shown in Fig. 2, where T denotes the number of cycles, which is 

calculated as 
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Where: k is the sequence of feature maps in the cyclic convolution layer,l is the sequence 

number of the cyclic convolution layer in the cyclic residual convolution module,x is the input 

feature map,  is the weight of the previous cyclic output in the kth feature map,  is the 

weight of x in the kth feature map,  is the activation function,F is the output feature of the 

cyclic convolution layer (RCL),O is the feature map of the cyclic subsequence output,T is the 

number of cycles,which determines the number of cycles per cyclic residual The convolution 

module contains several convolution modules,bk is the bias compensation. 

Compared to the convolution module in the classical U2 -Net network architecture, the cyclic 

residual convolution module retains both the fewer parameters of the original network 

structure and allows the network to extract to more complex features. 

 

Figure 3 Structure diagram of the improved algorithm 

4.2 Improving the network 

The proportion of positive samples in the bipedal heat map image is too small, and to solve the 

problem of unbalanced positive and negative samples and improve the effect of small target 

detection, the Attention mechanism from the literature is introduced into the U2 -Net network. 

In the decoding stage, the Attention mechanism is added to each RSU block for stitching 

upsampling to enhance the model's ability to process the features of the region of interest and 



improve the segmentation effect. The number of image channels is reduced from 3 channels in 

the RSU7 input, through 32 channels in the intermediate layer to 64 channels in the output 

layer, and then through 128, 256, and 512 channels for upsampling in order to avoid the 

phenomenon of overfitting the data set. Adding the Attention mechanism yields the improved 

network, as shown in Figure 3. 

5 Network training results 

5.1 Experimental process 

The experimental environment is Windows, the computer processor is Intel Core i7-9500, and 

the GPU is GTX1650. After repeated comparison and tuning experiments, we finally obtained 

the results of the improved network after training, comparing the training results of U2 -Net 

and the results obtained by using U-Net network trained on the same dataset, the experimental 

results are shown in Table 2.  

The experiments prove that the optimization strategy can indeed effectively improve the 

segmentation accuracy, outperforming the semantic segmentation network U2 -Net and the 

traditional classical segmentation network U-Net, which proves the correctness of the 

improvement idea. To test the detection effect of the model on real scenes, five networks are 

used to detect the collected bipedal heat maps, and the results of network evaluation metrics 

comparison are shown in Table 2.As can be seen from Table 2, the improved network 

outperforms the other two networks in the original image detection of transparent parts, which 

again validates the correctness of Attention U2 -Net improved idea in bipedal heat map 

detection. 

Table2 Comparison of the results of the improved network, U2 -Net and U-Net series test metrics 

 Hausdorffdistance DSC IOU 

Improving the 

network 
0.954 0.942 0.961 

U2 -Net 0.933 0.931 0.923 

U-Net 0.914 0.853 0.896 

MychannelU-Net 0.934 0.936 0.922 

AttentionU-Net 0.914 0.923 0.916 

U-Net++ 0.924 0.921 0.914 

 

To further evaluate the improved solution, the model size and detection time of the 

above-mentioned mult-iple networks were compared. the model size of U-Net network [9], 

MychannelU-Net [10], AttentionU-Net [11], U-Net++ [12] and U2 -Net networks were 51.2 

MB and 181 MB, respectively, and the average time to detect an image was 0.45 s and the 

model size of the improved network is 172.7 MB, and the average time to detect an image is 

0.76 s. Thus, it can be seen that the improved network has various performance improvements 

and can meet the practical needs of foot region detection. 



5.2 Experimental results of bipedal thermogram detection 

The bipedal thermograms were tested under different models and the results are shown in 

Figure 10. 

 
(a) Adaptive plot       (b) Mask plot            (c) UNet           (d) UNet++ 

 
(e) AttentionUnet     (f) myChannelUNet      (g) U2 Net     (h) Improvement Network 

Figure 4 Graph of results 

From the segmentation results of the bipedal heat map in Figure 10, it can be seen that there 

are a small number of false detections in the U2 -Net, AttentionUnet, myChannelUNet, 

UNet++ and U-Net prediction maps, and some point defects and foot edge information are 

extracted, while the improved network performs better compared to both and the error 

detection has been eliminated. 

6 Conclusion 

A bipedal heat map segmentation method based on an improved U2 -Net deep learning model 

is proposed for the automated bipedal heat map segmentation problem, and the following 

conclusions are obtained. 

(1) Applying U2 -Net neural network for bipedal thermogram segmentation, it has some 

segmentation ability for foot region in bipedal thermogram, but the foot segmentation results 

have defects, which are difficult to meet the requirements of practical segmentation. 

(2) From the experimental results, it is shown that the proposed bipedal thermogram 

segmentation method can effectively improve the accuracy of foot edge segmentation in 

bipedal thermogram segmentation problem. This method can segment the images of various 

complex defect cases accurately, and the detection accuracy reaches 0.961, the detection effect 

is better than the direct application of U2 -Net with U-Net series, and the detection speed is 

improved, and the final results verify the correctness and feasibility of the improved scheme. 
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