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Abstract 

INTRODUCTION: In these days, the usage of smart-phones and wearable sensors have increased at an exceptional rate. 

These smart devices are equipped with different sensors such as gyroscope, accelerometer and GPS. By using these 

sensors to analyze the activity of the end-user, behavioural characteristics of the user can be captured. OBJECTIVES: 

Although smart-phone and wearable devices provide a platform for conducting social, psychological and physical studies, 

they still have several limitations and challenges. METHODS: This paper provides a comparative analysis of different 

classical Machine Learning and Deep Learning algorithms and discusses their accuracy and efficiency for human activity 

recognition (HAR). RESULTS and CONCLUSION: The paper has primarily used the data captured using wireless sensor 

devices placed on different parts of a human body, and then compared the results for different classifiers. The conclusion 

shows that Deep learning schemes are extremely accurate and efficient in comparison with classical machine learning 

techniques. 
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1. Introduction

In mobile and pervasive computing domain, recognizing 

human activity based on the data collected from sensors has 

become a promising field. Different sensing techniques are 

used to accumulate and classify the user’s activities, and are 

used in diverse application areas such as home automation 

and assisted living, sports and medical applications. 

During the last few years, smart-phones have become 

ubiquitous and gained prominence. There has been a 

continuous rise in computing power, sensing devices and 

emergence of novel inter-connectivity mediums.  This has 

enabled smartphones to perform physical human activity 

recognition, which has empowered many context-aware 

applications in different domains. For instance, it has been 

used in several data mining and artificial intelligence 

applications. Human activity recognition is a primary and a 

core structure block for these types of applications. It 

receives raw sensor data as inputs and predicts a user’s 

activity as shown in Figure 1. 
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Figure 1. A high level picture of sensor or/and Smartphone based activity recognition using 

classical machine learning and deep leaning approaches 

Modern smartphones are equipped with several sensors, 

which includes temperature, barometer, GPS, gyroscope, 

light, and accelerometer etc. These sensors become a rich 

data source to measure various aspects of a user’s daily life. 

Human activities such walking, running, jogging, sitting etc. 

can be identified based on the data from these sensors. Due 

to this rich data source, it can be said that smartphones have 

become the dominant platform for human activity 

recognition for their usability, cost-effective installation, and 

self-efficacy. To process this raw data, pervasive computing 

and machine learning have been employed, which provide 

context-aware and ubiquitous services to people. A host of 

researchers have developed several models that are designed 

for the identification of activities performed by humans. 

The process to differentiate appropriate activity 

information from sensor data is a significant task and leads 

to many challenges for traditional machine learning 

algorithm. These challenges include spatiotemporal 

variations in activity patterns, sparse occurrences for some 

activities, and the frequency of sensor data that does not fall 

into predefined activity classes. Recognizing human 

activities automatically is a vital prerequisite to monitor the 

efficient health of an intelligent home resident and enable 

their independent functionality. Applications including 

interactive interfaces for games and mobile services, smart 

homes, on-demand information system, healthcare system 

for both inpatient and outpatient treatment etc. has captured 

the growing interest of researchers in human activity 

recognition field. 

Human activity recognition is primarily targeted towards 

design and development of intelligent healthcare system. 

Health issues are eventually the crucial issues that encourage 

research to conduct research in human activity recognition. 

Studies for healthcare can be observed in [1, 2, 3, 4, 51]. 

This proposed MEDIC, a medical diagnosis and patient 

monitoring system designed by using physiological body 

worn and wireless contextual sensors network [2]. 

Quantified daily energy expenditure in daily life activities 

and sport activities based on physical activity classification. 

In this paper, a comparative study of classical machine 

learning and deep learning classifiers for human activity 

recognition is provided. The objective of the research is to 

investigate the performance of these classifiers on various 

datasets, and identify the classifiers that are good for 

multiple scenarios. Rest of the sections of the paper have 

been organized as follows: The next section presents the 

literature review. This is followed by the methodology and 

the research design used for experimentation. The results are 

then presented which is followed by conclusion and future 

work. 

2. Related Work

There has been a host of approaches proposed in literature 

for human activity recognition. Table 1 summarizes some of 

these approaches available in literature. [5] proposed an 

approach using smart-phone inertial sensors. In their 

approach, the features are first extracted from raw data. 

Autoregressive coefficients, median and mean are included 

in feature set. To make the system more robust, the feature 

set is further processed via linear discriminant analysis 

(LDA) and kernel principal component analysis (KPCA). 

Finally, deep belief network (DBN) was trained with 

selected features set for successful activity recognition. The 

proposed methodology was compared with traditional 

activity recognition methodologies like classic multiclass 

support vector machine (SVM) and artificial neural network 

(ANN). [6] proposed an online human activity classification 

based on deep learning. The approach is claimed to be user 

independent. To extract the local feature set, convolutional 

neural networks are used along with simple statistical 

features that reserve information regarding the global form 

of time series. Additionally, recognition accuracy is 

investigated based on influence of time series length. The 

proposed method provides real-time activity classification. 

Two popular datasets WISDM and UCI were used to 

evaluate the accuracy of proposed methodology. [7] 

presented a systematic performance analysis of motion-
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sensor behaviour for HAR using smart-phones. Sensory data 

is collected using smart phones while the participants 

performed daily human activities. To discriminate five 

different human activities, three multi-class classifiers: 

nearest neighbors, random forests and support vector 

machines were implemented [8]. The proposed two 

implementations for human activity recognition which are 

different in their prediction technique as they deal with 

transitions either by directly learning them or by considering 

them as unknown activities. This is achieved by assembling 

the output of a support vector machine (SVM) with a 

heuristic filtering method. The proposed design is validated 

on data gathered from people performing different kinds of 

activities (up to 33) using wearable sensors or smart-phones. 

[9] proposed an approach for human activity recognition

using time series data. The data was collected from a tri-

axial accelerometer of a smart-phone. To recognize human

activities, k-nearest neighbour algorithm and neural network

classifiers were used. Accuracy of the proposed methods

were evaluated on the WISDM dataset

[10] proposed an approach for human activity recognition

using wrist-worn device (smart-watch) and a smart-phone. 

Three classifiers were used to recognize 13 different 

activities. To make author’s work reproducible, dataset used 

to validate proposed methods is made publicly available. It 

show that the combination of a smart-phone and smart-

watch, identifies complex activities with a reasonable 

precision. [11] proposed a methodology based on deep 

learning algorithm i.e. convolutional Neural Networks with 

sensor data collected from smart- phone sensors for HAR. In 

experiments it is shown that increasing the number of 

convolutional layers raises performance. Publicly available 

HAR smart-phone dataset from the UCI repository has been 

used in experiments. [12] proposed a fast-human activity 

recognition system in terms of orientation, placement and 

subject variations. Coordinate transformation and principal 

component analysis (CT-PCA) are used along with online 

support vector machine (OSVM) for HAR. [13] proposed a 

methodology using deep neural networks and classical 

single layer feed-forward neural network (SLFN). The 

feature selection has been done using deep neural network 

and selected features have been used by single layer feed 

forward neural network (SLFN). The proposed approach is 

termed as a distilling strategy to maximize the performance. 

[14] proposed a new adaptive and interactive method with

general personal model training components. The data used

in experiment is shared on the cloud. Three classifier

decision tree (J48), logistic regression and multi layered

perceptron neural network were used with different feature

selections.[15] proposed One-Dimensional Convolutional

Neural Networks(1D-CNNs) for human behaviour

recognition [16]. This applied LSTM to classify human

activity recognition. By doing a critical review of existing

literature, it can be established that there is limited work on

the comparison of some of the modern deep learning

techniques for human activity recognition. Therefore, in this

work, a comparison of 11 machine and deep learning

classifiers on five different datasets was performed. The

objective of the research is to investigate the performance

and identify which of these classifiers performed well for

human activity recognition.

Table 1. Summary of selected methods for sensors or smartphone based Human Activity recognition 

Datasets Classifiers 

Methodologies 
No. Smartphone 

wearable 
sensors 

KNN NB DT RF AB ANN FC SVM CNN LSTM LR 

Minh-Son Dao et al 1 Yes No Y Y Y 

Zhenghua Chen et 
al 

1 Yes No Y Y 

Zhenghua Chen et 
al 

1 Yes No Y 

Charissa Ann 
Ronao et al 

1 Yes No Y 

M. Shoaib et al 1 Yes No Y Y 

Andrey D. Ignatov 
et al 

1 Yes No Y Y 

Jorge-L et al 1 Yes No Y 

Yufei Chen et al 1 Yes No Y Y Y 

Andrey Ignatov 2 Yes No Y 

Mehedi Hassan et 
al 

1 Yes No Y 

Zhiou Xu et al 1 No Yes Y 

LuKun Wang et al 3 No Yes Y 

Proposed 
methodology 

5 Yes Yes Y Y Y Y Y Y Y Y Y Y Y 
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3. Methodology

Classification problems and techniques have been 

considered a vital part of ML. In last few years, massive 

amount of applications has been published. In supervised 

classification we predict a class label basis on predictor 

features. After pre-processing of our datasets, we trained our 

machine learning and deep learning model on training 

dataset. In this section, we will discuss the pre- processing 

of our datasets and different classification techniques we 

used in this study.  

3.1 Dataset 

This study used five different datasets to evaluate different 

deep learning classifiers. The first dataset used is Activity 

Recognition based on Multisensory data fusion (AReM) 

dataset. This real-life dataset represents a benchmark in the 

area of HAR applications [17]. RSS data was collected 

using IRIS nodes. These nodes were embedded in a Chipcon 

AT86RF230 radio subsystem that implements the standard 

of IEEE 802.15.4. This is programmed with a TinyOS 

firmware. Three nodes were placed on the user’s ankles and 

chest. One is planted on a stuff in the environment 

representing an expressive place for a particular activity (i.e. 

a stationary bike for cycling activity recognition). 

Second dataset, HAPT, is a smart-phone based dataset for 

human activity recognition (HAR). To obtain the dataset 

[18], a group of 30 people were selected. Each person was 

instructed to follow a series of activities. All the volunteers 

were wearing a waist-mounted Samsung Galaxy S2 smart-

phone. Angular velocity and triaxial linear acceleration 

signals were collected using the phone’s Gyroscope and 

accelerometer at a 50HZ sampling rate. 

The third, OLDPPL, HAR dataset is based on battery-less 

wearable sensor for healthy older people [19]. This dataset 

contains the activity data of 14 healthy older people (older 

than what? Need to quantify this), performed activities using 

a battery-less wearable sensor. Volunteers resided in two 

clinical rooms. The setting of Room1 used 4 RFID reader 

antennas and Room2 used 3 RFID reader antennas to collect 

the activity data. 

The fourth dataset PAMAP2 is an Activity Monitoring 

dataset. This dataset contains data of 18 different activities 

(i.e. playing soccer, cycling, walking etc.). A group of 9 

people, wearing a heartbeat monitor and 3 inertial 

measurement units, performed some activities. The 

benchmark dataset can be used for HAR applying 

algorithms of classification [20], [21]. 

The fifth dataset WISDM is a smart-phone-based activity 

recognition dataset [22]. A group of twenty-nine volunteer 

were asked to perform a specific set of activities, while they 

were carrying a smart phone in their trousers’ front leg 

pocket. They were instructed to jog, sit, walk descend stairs, 

walk ascend stairs, 

Table 2. Dataset features set with abbreviations (walk and stand for specific duration of time. Table 2 summarizes 
the dataset used in this study) 

AReM HAPT OLDPPL PAMAP2 WISDM 

Bending1 (BND1) 

Bending2 (BND2) 

Cycling (CYL) Lying 

(LYN) Sitting (SIT) 

Standing (STD) 

Stand 1 (STD1) 

Sit 1 (SIT1) 

Stand 2 (STD2) 

Lay Down 1 (LYDN) Sit 2 

(SIT2) 

Lay Down 2 (LYD2) Walk 1 

(WLK1) 

Walk  2 (WLK2) 

Walk Downstairs 1 (WKD1) 

Walk Upstairs 1 (WKU1) 

Walk Downstairs 2 (WKD2) 

Sit on bed (SITD) 

Sit on chair (SITC) 

Lying (LYNG) 

Ambulating (AMB) 

Lying (LYN) Sitting (SIT) 

Standing (STD) Walking 

(WLK) Running (RUN) 

Cycling (CYL) 

Nordic walking (NWLK) 

Watching TV (WTV) 

Folding laundry (FLND) 

House cleaning (HCL) 

Playing soccer (PSC) 

Walking (WLK) 

Jogging (JOG) 

Upstairs (UPS) 

Downstairs (DNS) 

Sitting (SIT) 

3.2 Pre-processing 

In all datasets the missing values were fixed. For this 

purpose, we took average value of instances for each class 

label. After fixing the missing value, we took equal number 

of instances for each class label to maintain the entropy of 

the system. We encoded the class label accordingly. The 

huge amount of continuous feature values may cause issues 

and slow down processing of machine learning algorithms, 

so discretization is used to decrease the number of continues 

feature values. We used the normalization process to scale 

down the transformation of predictor features. This is a 
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critical step for artificial neural network (ANN) classifier 

and k-nearest Neighborhood (KNN). 

3.3 Training Process 

For training process, all datasets has been divided into 70% 

and 30% in ratio. All models have been trained separately 

on each classifier.    

3.3.1. Classical Machine Learning Classifiers 
Naive bayes, decision tress and random forest classifiers 

have been used in ad boost (AB) classification [23, 24]. In 

boosting technique, random forest provided the better 

accuracy then decision tree and naive bayes classifiers. In 

our study, we trained our artificial neural network (ANN) 

[25, 26] with different numbers of hidden layers and with 

different number of nodes in hidden layers. We started to 

train our ANN model from 5 numbers of hidden layers to 

50. For five different datasets we trained our ANN model

with different numbers of hidden layers to get better results.

We selected different number of input neurons for five

different datasets.

Decision trees (DT) [27, 28] has been trained with Gini 

index and Gain ratio respectively. Minimum number of 

records per node has been tried as 5, 7, and 3. During 

training, no pruning method has been used. Better results 

have been achieved with Gini index method. In our study, 

we used mixed fuzzy rules [29, 30] method. Fuzzy rule 

learner has been trained with maximum number of epochs 

20, 30, 40 and 50. For missing values incorp method has 

been utilized. The classifier performed better with 30 

maximum number of epochs. 

K-Nearest neighbor (KNN) [31, 32, 33] classification was

performed with different K values such as 3, 5, 7, 9, 11, 13, 

15 and 17. KNN classifier performed tremendously on K 

values with 7, 11 5, 11 and 5 for AReM, HAPT, OLDPPL, 

PAMAP2 and WISDM datasets respectively. Logistic 

regression (LR) [33] model has been trained with stochastic 

average gradient. Maximum number of epochs has been set 

as 100 and epsilon 1.0 × 10−5. learning rate 

Strategy was fixed and step size has been set as 0.1. For 

regularization, uniform 

Distribution has been used as prior probability with 0.01 

variance. 

Naive bayes (NB) [34, 35] model was trained with 0.5 

default probability. Maximum number of unique nominal 

value per attribute has been fixed as 20. Random forest (RF) 

[36] model has been trained with different split criterion for

all datasets. information Gain, information Gain ratio, Gini

index methods have been used for AReM, HAPT, OLDPPL,

PAMAP2 and WISDM. Best results has been found with

Gini index method. Tree depth has been adjusted as 10.

Minimum node size has been set as 1. Number of models

has been adjusted as 100.

For Support Vector Machine (SVM) [37, 38, 39, 40, 41]. 

model training, different kernels have been used for 

different datasets. Overlap penalty has been fixed as 1.0. For 

polynomial kernel, power parameter has been adjusted as 

3.0. Bias and Gamma value have been tune as 1.0 and 0.5 

respectively. Kappa and delta values have been adjusted as 

0.1 and 0.5 respectively for hyper tangent kernel. RBF 

kernel has been used with 0.1 sigma value. 

3.3.2. Deep Learning Classifiers 
Convolutional Neural Network (CNN) uses three significant 

parameters: sharing, sparse interactions and equivariant 

representations [42] ideas. Af- ter convolution, there are 

generally fully-connected and pooling layers, which achieve 

classification tasks. [43] put forward the structural model 

and [44] pro- posed recognition for the transformation of 

image. [45, 46] proposed and used the algorithm based on 

the error gradient to train CNN, and derived their prominent 

performance compared with other approaches used in some 

pattern recognition tasks. 

Our proposed Convolutional Neural Network (CNN) 

model for each dataset contains the Input layer with 2 

dimension input size. The input dimensions are based on 

datasets features and instances. 1D convolutional layer has 

been added with 64 kernels having kernel size 4 ×1. ’Relu’ 

activation function was use in the convolutional layer. Max 

Pooling layer has been added with kernel size 2 × 1. To 

reduce the overfitting dropout layer has been added with 0.5 

dropout ratio. Another 1D convolutional layer has been 

added with ’Relu’ activation function and 64 kernels having 

kernel size 4 × 1 . After 1D convolutional layer , another 

max Pooling layer has been added with kernel size 2 × 1. 

another dropout layer has been added with 0.5 dropout ratio 

after max pooling layer. fully connected layers have been 

added with 54 units and ’Relu’ activation functions Output 

layer has been added with softmax functions. Output layer 

of each dataset model contains the units according to labels 

f0 respective dataset. learning rate has been adjusted as 0.01 

with Categorical Cross-Entropy Loss function. 100 number 

of iterations has been set as epoch. 

Long Short Term Memory networks (LSTM) is a 

superset of feedforward neural networks with the ability to 

permit information across time steps Few work used LSTM 

for the HAR tasks [46, 47, 48, 49, 50], where the learning 

speed and resource utilization are the key issues for HAR. 

[49] Explored numerous model parameters first and then

suggested a comparatively good model which can achieve

HAR with high throughput. [50] suggested a binarized-

BLSTM- RNN model, in which the input, weight

parameters and output of all hidden layers are all binary

values.

Our Long Short Term Memory network contains the 

input layer as per dataset features and instances. Recurrent 

layer has been added with 100 unit and return sequences 

parameter was true. To reduce the overfitting, dropout layer 

has been added with 0.3 dropout ratio. another Recurrent 

layer has been added with 50 unit and return sequences 

parameter was true. another dropout layer has been added 

with 0.2 dropout ratio. fully connected layers have been 

added with 25 units and ’Relu’ activation functions. Output 

layer has been added with softmax functions. Output layer 

of each dataset model contains the units according to labels 

f0 respective dataset. learning rate has been adjusted as 0.01. 
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’adam’ optimizer has been used with Categorical Cross-

Entropy Loss function. 100 epoch has been set with 32 batch 

size. 

4. Result and Discussion

This section presents the results acquired from the classifiers 

employed over the five different datasets. We can categorize 

activities into two groups, static and dynamic activities. For 

instance, standing still is static activity while walking and 

running are dynamic activities. 

Table 3. Classifier Precision of Activities for all datasets 

Dataset Activity\Classifier AB ANN DT FZ KNN LR NB RF SVN CNN LSTM 

AReM 

BND1 84.1 85.9 87.5 93.8 90.3 93.8 92.4 89.7 89.7 89.6 89.8 

BND2 53.4 59.6 83.4 89.8 91 89.8 60.1 90.6 90.6 87.5 86.7 

CYL 61.3 60.5 60.8 54 62.9 54 58.4 68.3 68.3 71.7 72.8 

LYN 80.9 73.6 94.7 82.2 91.3 82.2 80.5 95.8 95.8 95.7 95.3 

SIT 38.8 51.8 69 35.6 69.5 35.6 44 74.7 74.7 74.3 72 

STD 69.2 64.9 75 63.2 72.9 63.2 83.3 80 80 79.2 76.2 

WLK 65.6 70 69.6 69.5 72 69.5 72.8 73.8 73.8 71.7 71.7 

HAPT 

STD1 83 90.2 81.1 83.4 85.7 92.2 60.2 68.3 53.7 86.1 70.7 

WKU1 57.1 57.9 60 50 53.3 55.6 8.6 83.3 66.7 71.4 25 

WKD2 31.6 42.9 54.5 46.7 70.6 58.8 37.6 62.2 60 64.7 57.9 

WKU2 55.6 63.6 52.6 46.7 53.3 61.5 100 80 100 54.5 75 

SIT1 50.2 75.6 70 77.5 89.7 86.2 32.7 68.8 72.2 90.2 77.8 

STD2 81.3 92.2 83.3 87 96.4 91.4 47.9 84.7 64.2 97.1 83 

LYDN 31.1 51.7 45.3 45.4 52.8 47.5 80 55 52.6 60.5 75 

SIT2 49.6 58.3 56.6 55.4 56.3 60.7 100 64.3 66.7 73.1 91.7 

LYD2 50.7 73.8 75.3 70.1 73.3 72.3 75 60 50 83 54.5 

WLK1 35.3 30 28.6 33.3 100 71.4 81.6 92.1 84.4 42.9 86.3 

WLK2 100 0 50 60 100 100 72.2 92 88.9 100 95.7 

WKD1 37.5 61.5 72.7 38.5 60 63.6 50.2 85.5 84 75 93 

OLDPPL 

SITD 77.8 71.6 96.5 96 95.8 96.6 77.8 96.6 71.6 96.2 93.6 

LYNG 98 99.3 99.9 99.8 99.1 99.9 98 99.9 99.3 99.9 99.9 

AMB 63.7 98.7 85 88.6 86.1 95.3 63.7 95.3 98.7 96.9 93.6 

SITC 96.1 25 95 94.2 93.3 96.2 96.1 96.2 25 97 93.4 

PAMAP
2 

LYN 98.4 100 97.4 99 100 90.5 100 100 99 100 100 

FLND 79.9 85.4 94.1 98.3 85.4 56 79.4 98.3 98.3 99 100 

HCL 40.2 84 91 90.4 84 72.3 24.9 97.2 90.4 100 100 

SIT 80.4 98.5 95.6 98 98.5 76.3 100 99 98 100 100 

PSC 72.6 82 98.3 95.9 82 47 82.7 97.8 95.9 93.8 99.5 

RJMP 59.8 94.7 96.7 99.5 94.7 56 72.5 100 99.5 98.5 97.6 

STD 91.8 95.7 94.7 93.8 95.7 56.4 96.6 97.2 93.8 96.4 98.6 

WLK 74.4 84 91.3 89.6 84 45.7 50 98.6 89.6 99 100 

RUN 45.6 88.5 95.1 89.3 88.5 47.1 18.7 99.5 89.3 99.5 100 

CYL 100 90.7 92.7 93 90.7 61.6 100 100 93 99.5 99.5 

NWLK 52.3 79.2 89 90.2 79.2 40.4 34.8 96.6 90.2 100 100 

WTV 93.3 99.5 99.1 100 99.5 89.5 100 100 100 97.6 97.6 

WISDM 

WLK 91.3 87 94.8 92.2 97.3 93.9 96.3 96.5 92.2 97.1 97.7 

JOG 70.9 74.5 90.2 70.1 92 69.1 77.5 89.6 70.1 90.8 92.1 

UPS 29.4 41.2 58.6 59.1 83 52.4 50.6 66.9 59.1 73.6 78 

DNS 43.8 69.4 54.6 15 74.7 23.3 37.9 70.7 15 70.3 73.8 

SIT 66.7 94.4 97.3 96.8 98.5 83.7 77.1 97.3 96.8 98.7 100 

STD 63.9 75.9 95.3 92.1 100 94.1 82.8 95.7 92.1 97.1 97.1 
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4.1. Accuracy Analysis 

Figure 2 shows the overall accuracy of all the classifiers we 

have used in this study. This is a graphical representation of 

the accuracy of all classifiers for each dataset. By observing 

Figure 2 , it can be clearly shown that deep learning 

techniques, CNN and LSTM provide better results than 

classical machine learning algorithms. If we analyze it 

thoroughly, it is found that CNN and LSTM are used to 

model sequential data in which the data is dependent on the 

specific order. In human activity recognition a set of sub-

activities when performed in specific sequence leads to a 

human activity i.e. the sequence of small sub-actions 

comprise a complete activity. Therefore the good 

performance of CNN and LSTM is evident. In all five 

datasets, these deep learning techniques are much better. 

CNN provides the accuracy rate up to 80%, 80%, 99%, 

99%, 90% for AReM, HAPT, Old People, PAMAP2 and 

WISDM datasets respectively. Random forest and support 

vector machine techniques provide better result than other 

classical machine learning techniques. Random forest 

provides the 80%, 79%, 99%, 99%, and 90% accuracy rate 

for AReM, HAPT, Old People, PAMAP2 and WISDM 

datasets respectively. SVM provides the 80%, 70%, 91%, 

95%, and 78% accuracy rate for AReM, HAPT, Old People, 

PAMAP2 and WISDM datasets respectively. Overall 

random forest, CNN and LSTM classifiers provide the 

accuracy rate up to 80% for all datasets. 

4.2. Precision Analysis 

Table 3 shows the precisions of individual activity for 

AReM, HAPT, Old People, PAMAP2 and WISDM datasets 

respectively. Precision of most of the activities are higher in 

CNN, LSTM, Random forest and support vector ma- chine 

classifier. Logistic Regression classifier is the other better 

classification technique. K-NN and Logistic Regression 

classifier provides good precision rate after CNN, LSTM, 

Random forest and support vector machine classifiers. In 

Figure 3, precision comparison of each activities from all 

datasets can be observed. According to Figures 3 (a), Figure 

3 (b) and Figure 3 (c), precision 

(a) AReM Dataset. (b) HAPT Dataset

(c) OLDPPL Dataset. (d) PAMAP Dataset

(e) WISDM
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Figure 2. Accuracy of all classifiers for all datasets, Classifiers represented as X-axis and 

Accuracy (%) represented as Y-axis

patterns are same for classical machine learning algorithm 

Random Forest and deep learning algorithms convolutional 

neural network (CNN) and Long Short Term Memory 

networks (LSTM). Comparison between static and 

transactional activities has been shown in Figure 4. From 

Figure 4 (a), it can be observed that performance of both 

deep learning algorithms and two classical machine learning 

algorithms Random forest and K-nearest neighbour are state 

of the art. Figure 4 (b) showed that LSTM, CNN, random 

forest, support vector ma- chine K-nearest neighbour 

performed very well as compare to other algorithms. Overall 

the precision for CNN, LSTM and random forest is 

benchmark for all five datasets. 

Figure 3.  Comparison analysis for precision of random forest classifier, All Activities of   all five 

dataset can be visualized. Each activity is represented as <Dataset Representation >- <Activity 

abbreviation denoted in table 2 >. A represents AReM dataset, B represents HAPT dataset, 

OLDPPL is represented by C,D represents PAMAP2 dataset and E represents WISDM database. 

4.3. Recall Analysis 

Table 4 shows the Recall of individual activity for AReM, 

HAPT, Old People, PAMAP2 and WISDM datasets 

respectively. Recall of most of the activities is higher in 

CNN, LSTM, random forest and support vector machine 

classifier. Logistic regression classifier is the other better 

classification technique. K-NN 

Five datasets 

Random Forest 

Classifier 

CNN Classifier 
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(a) static activities (sitting).

(b) Transactional activity (walking)

Figure 4. Precision comparison analysis for static activity (sitting) and transactional activity 

(walking) of all classifiers. One activity from each dataset can be seen. Each activity is represented 

as <Dataset Representation >- <Activity abbreviation denoted in table 2 >.   A represents AReM 

dataset, B represents HAPT dataset, OLDPPL is represented by C, D represents PAMAP2 dataset 

and E represents WISDM dataset. 
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and logistic regression classifier provides good sensitivity 

and specificity rate after CNN, LSTM, Random forest and 

SVM classifiers. 

5. Conclusion

In today’s world, the sensors and smart phone based human 

activity recognition area is proving to be vital in assisting 

human beings in different areas of life. In this paper, we 

used 5 benchmarks on different datasets to implement multi-

class classification techniques and used a GUI based 

analytics platform KNIME and MATLAB. We used Ada 

boost, artificial neural network, decision tree, K-NN, logistic 

regression, Naive Bayes, random forest, support vector ma- 

chine, convolutional neural network and Long Short Term 

Memory networks classifiers. The methods we applied in 

this study produced some outstanding classification, 

specifically for convolutional neural network and Long 

Short-Term Memory networks classifiers which produced 

over 90% overall classification rate, while random forest 

and support vector machine produced up to 80% accuracy 

rate. (One number is classification rate and other number is 

accuracy..? Should be the same thing when comparing. 

Either classification rate or accuracy) The primary reason 

for CNN and LSTM to perform better is their ability to work 

on sequential data. 

Some other finding in this paper is the pattern of an 

activity recognition. For example, random forest and KNN 

are best for static activities, convolutional neural network 

and Long Short Term Memory networks are best for almost 

each activity, especially for cycling and jump forward and 

backward. Random forest classifiers are other classifiers 

which produced better results. We concluded that deep 

learning models (CNN, LSTM) and Random forest from 

classical machine learning are more stable and best 

performance classification algorithms for human activity 

recognition. 

Table 4. Classifier Recall of Activities for all datasets 

Datasets Activity\Classifier AB ANN DT FZ KNN LR NB RF SVN CNN LSTM 

AReM 

BND1 70.9 70.4 87.7 72.2 88.4 72.2 71 89.2 89.2 89.9 87.7 

BND2 70.9 70.4 87.7 72.2 88.4 72.2 71 89.2 89.2 85.1 84.5 

CYL 75.4 57.5 79.2 20.5 76.7 20.5 76.1 79.4 79.4 69.4 68.5 

LYN 47.6 61.9 64.9 57.2 66.4 57.2 71.9 69.3 69.3 99 95.9 

SIT 68.6 89.2 96.3 79 97.8 79 84.2 98.4 98.4 71.1 70.1 

STD 58.7 44.8 70 84.7 69.2 84.7 68.8 74.4 74.4 78.2 77.8 

WLK 41.4 64.1 73.6 10.7 76.6 10.7 23.4 78.8 78.8 76.3 77.6 

HAPT 

STD1 51.8 86.7 77.6 82.3 93.7 92.2 18.1 76.5 86.3 94.8 73.2 

WKU1 53.3 73.3 40 28.6 53.3 66.7 87.5 62.5 50 66.7 20 

WKD2 33.3 33.3 66.7 41.2 66.7 55.6 42.9 57.5 1.1 68.8 57 

WKU2 58.8 41.2 58.8 43.8 47.1 47.1 75 100 75 60 50 

SIT1 71.1 83.2 71.1 75.8 83.8 85.3 94.4 61.1 72.2 84 87.5 

STD2 78.5 89 87.2 91.7 92.4 93 70.3 81.1 83.6 96.2 81 

LYDN 18.2 32.4 47.6 40.8 44 40.7 80 73.3 66.7 59 60 

SIT2 56.7 81.2 57 64 71.3 70 28.6 64.3 57.1 75.7 73.3 

LYD2 63.6 72 72.4 69.3 65.4 72 70.6 35.3 35.3 81.3 60 

WLK1 75 37.5 25 14.3 62.5 62.5 36.5 91.4 91 60 96.1 

WLK2 75 0 25 75 100 100 89 93 93 50 94.8 

WKD1 64.3 57.1 57.1 35.7 64.3 50 59.9 86.8 77.2 60 86.1 

OLDPPL 

SITD 92 97.9 97.2 97.5 94.9 98.7 92 98.7 97.9 98.9 97.7 

LYNG 100 100 99.9 99.9 99.9 99.9 100 99.9 100 99.9 99.9 

AMB 55.4 35 81.7 75.8 75.1 79.2 55.4 79.2 35 74.8 60.9 

SITC 24.6 0.1 94.9 94.3 93.8 96 24.6 96 0.1 97.7 95.4 

LYN 93.9 99 96.9 96.4 99 91.8 88.3 98 96.4 98.5 99.5 

FLND 73.6 98.9 97.8 98.9 98.9 80.9 28.1 100 98.9 99 99 

HCL 75.4 87.7 95.5 93.1 87.7 57 44.1 98.3 93.1 98.9 100 

SIT 62 96.6 95.1 95.6 96.6 43.9 39.5 96.6 95.6 96.7 97.2 
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PAMAP2 

PSC 88 65.1 98.3 94.8 65.1 72.6 65.7 99.4 94.8 100 100 

RJMP 84.3 94.3 98.1 97.6 94.3 37.6 66.7 99 97.6 98 100 

STD 26.5 95.7 92.4 95.1 95.7 85.3 26.5 99.5 95.1 100 100 

WLK 43.9 81.6 84.4 88.7 81.6 34.9 10.8 96.7 88.7 98 100 

RUN 60.8 87.3 92.5 91.4 87.3 34 89.2 99.1 91.4 99.5 99.5 

CYL 81.6 95.1 96.2 95.6 95.1 96.2 27.6 99.5 95.6 95.1 97.5 

NWLK 46.2 82.4 89.4 89.7 82.4 19.1 8 99.5 89.7 99.5 100 

WTV 99 99 100 100 99 97.6 92.9 99 100 99.5 99.5 

WISDM 

WLK 94.2 97.7 94.2 95.1 98.2 90.3 95.3 97.4 95.1 98.8 98.5 

JOG 88.4 96.3 88.4 96.4 96.4 83 89.7 95.6 96.4 96.9 97.4 

UPS 12.8 15.4 57.4 11.1 70.9 8.1 36.5 62.5 11.1 66.1 72 

DNS 7.2 22.1 62.8 3.1 70.1 32.7 25.3 57.5 3.1 55.3 62.8 

SIT 98.5 90.7 96 93.8 100 96 90 96 93.8 100 98.6 

STD 59 89.1 89.1 89.7 94.9 69.6 72.7 97.8 89.7 89.5 89.5 

6. Future work

Despite a comprehensive comparative study, we have not 

tested the human activity recognition datasets against 

some other deep learning models such as deep belief 

network. In addition, the use of feature transformation 

techniques such as restricted Boltzmann machine and 

auto-encoders can be utilized to further optimize the 

classification technique and improve the accuracy and 

other matrices. In future work, we also plan to work on a 

real time HAR system. The system is anticipated to be a 

cloud based solution that system will communicate with 

different IoT devices. In the proposed system, we will use 

deep learning techniques CNN and LSTM for Human 

activity recognition. 
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