
Dynamics Analysis of Two-Dimensional Systems of the 

Hodgkin-Huxley Model on Propagatsion of Nerve Cell 

Impulse 

1st Usman Pagalay1, 2nd Mukhammad Fahmi1, 3rd Juhari1 

{usmanpagalay@yahoo.co.id1, mukhammadfahmi1@gmail.com1, juhari@uin-malang.ac.id1} 

 

UIN Maulana Malik Ibrahim, Malang, Indonesia1 

Abstract. This research aims to assess the environmental quality of Jodipan, Malang 

through the Comprehensive Assessment System for Built Environment Efficiency 

(CASBEE) Tools. Jodipan is one of the urban villages in Malang city which stands along 

in the Brantas riverbanks. It is a high-density settlement with the majority of the 

population work as a merchant. At 2016, the settlement in Jodipan riverbanks painted 

colorfully, and it made Jodipan called “Kampung Warna Warni” or Colourful Kampong. 

Jodipan now became one of the new community-based tourism destinations in Malang 

and succeeded to attract domestic and international tourist. The existence of this 

kampong gave a big impact on environmental quality especially river since their 

communities’ activities are very depending on the river. The method based on the triple-

bottom-line approach that adopts three classifications of sustainable development which 

are the environment, society, and economy. The result of environmental quality in 

Jodipan kampong riverbank was 2.1. This score indicates a low value and below the 

average of the environmental quality standards. 
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1   Introduction 

Much progress has been made in the study of spike generation since the work of Hodgkin 

and Huxley. Working without the knowledge of the membrane structure, scientists tried to 

build models of a neuron by adjusting parameters that were measured and not necessarily 

from the same neuron. The study of dynamical systems today asks and tries to answer the 

questions of why two seemingly similar neurons can behave so differently under the same 

conditions. A dynamical system consists of a set of variables that describe its state and a law 

that describes the evolution of the state variables with time [1]. 

The Hodgkin-Huxley model is a dynamical system consisting of the state variables 

 and  with a four-dimensional system of ordinary differential equations governing the 

evolution of the state variables [2]. We will see that the Hodgkin-Huxley model can be 

reduced to a two-dimensional model and still produce the same action potentials. Then we will 

perform analysis on the reduced model to explain some of the dynamics of the squid giant 

axons. We begin by seeing how other models are analyzed. 

Most concepts will be illustrated using the  model in eq. 3.1 having leak 

current , persistent  current  with instantaneous activation kinetic and a relatively 
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slower persistent  current  with either high or low threshold. The two choices of  

current result in fundamentally different dynamics of the model. This model is equivalent in 

many respects to the well-known and widely used  model proposed by [3] to describe 

voltage oscillations in the barnacle giant muscle fiber. 

Since persistent  current has only one gating variable , the state of this system is a 

two-dimensional vector  on the phase plane . New types of equilibria, orbits, 

and bifurcations can exist on the phase plane that cannot exist on the phase line . Many 

interesting features of single neuron dynamics can be illustrated or explained using two-

dimensional systems. Even neuronal bursting, which occurs in multi-dimensional systems, can 

be understood via bifurcation analysis of two-dimensional systems [4]. 

Previous research has been conducted by [5]. They studied the four-variable Hodgkin-

Huxley cables model by looking at the axon geometry side and the Neuron membrane 

capacitance. 

The problem raised in this research is how to know the dynamics analysis of two-

dimensional systems of the Hodgkin-Huxley model to describe the model when there is a 

change in electric current impulse  received by the membrane potential  from outside 

the Neuron membrane or in other words, when the value of   value is fickle. By observe at 

this change of  value is expected to control the magnitude of Neuron membrane potential 

and the ionic population of Neuron membrane. The numerical simulation conducted in this 

research is by using ODE45. So the dynamics obtained from changes in the ionic population is 

controlled by the magnitude of the membrane potential. Thus, the depth of this research is to 

see how far two-dimensional systems of the Hodgkin-Huxley model analysis of the external 

current changes. Therefore, it can be concluded how the condition of an ionic population of 

Neuron membranes to remain balanced. 

2    Literature Review 

 
2.1  Two-Dimensional Systems of the Hodgkin-Huxley Model 

This research will use systems of nonlinear ordinary differential equations formulated by 

Izhikevich, (2004). It is consist of two equations, such as membrane potentials and probability 

of the activation gate to be in the open state for  channels. Let us consider the 2-

dimensional leak + persistent sodium + potassium model denoted as: . This 

model having leak current , persistent  current  with instantaneous activation kinetic 

and a relatively slower persistent  current  with either high or low threshold. The state of 

this systems is a 2-dimensional vector  on the phase plane  since the  current has 

instantaneous activation kinetics, such that its conductance may be considered to be maximal, 

, over most all of the time interval. The activation kinetics for n are much slower and so it 

must be defined by its derivative [6]. 

2.2  Differential Equations, Vector Fields, and Linear Algebra 

Natural, social and artificial systems change hour by hour. Dynamical system is a 

mathematics for the modeling and the analysis of such systems’ behavior. Dynamical systems 

incorporate the state and its time change in a system. Consider a difference equation or 

continuous-time dynamical system [7]. 



The solution  which satisfies this differential equation is called an orbit or trajectory 

of the system (2.1). The state  is referred as the initial state again. The special state point 

 such that  is called a fixed point, an equilibrium point or a steady state. The 

right-hand side (r.h.s.)  of the differential equation (2.1) is a vector and is called 

a vector field. The vector field assigns the vector  to each point  of the state space . 

The simplest example of the continuous dynamical system (2.1) is also the case that the map  

is a linear matrix  [8]: 

where A is an invertible  matrix. Note that only the origin  is the 

fixed point or an equilibrium point since this system is linear and  is invertible. The general 

solutions can be obtained by [9]. 

 

 

 

2.3  Linearization and Stabilities 

In the case of the continuous-time dynamical system (2.1), the equilibrium point at the 

origin is stable if the real parts of all eigenvalues of  are less than zero (negative). Next, 

consider nonlinear dynamical systems. Let  be an equilibrium point of the continuous-time 

dynamical system (2.1), then  in (2.1). The Taylor expansion of the function  

near the equilibrium point  are obtained as follows [10]: 

where  denotes the higher-order terms (second-order terms and higher 

terms) and  is the Jacobian matrix: 

  

  



Near the equilibrium point , we can neglect (under some conditions) the higher-order 

terms  since  becomes small when  is small. Then, 

we can obtain a linearized system or linearization of (2.1), respectively as follows: 

 

where we have made use of the change of a variable . 

3   Results and Discussion 

The model that used in this research is a system of two variables of the Hodgkin-Huxley 

model that formulated by Izhikevich. The equations is as follows [12]: 

 

where 

 

 

 

 

 

The description initial value of variables and parameters that used in the system of two-

dimensional systems of the Hodgkin-Huxley model (3.1) can be seen in the appendix. The 

equilibrium point of the system (3.1) is obtained if   and . From the system of 

equations (3.1) is sought the equilibrium point value with the help of Maple to obtain the 

equilibrium point, is  and   We first 

need to establish the equilibrium points by studying the nullclines of the state variables. A 

nullcline is all of the locations in the phase plane where a state variable is at rest. In this 

system, that would be when  and . The equation for the  nullcline is: 



The  nullcline is: 

 

The intersections of these nullclines will be the points where neither of the state variables 

is changing, so the membrane is at equilibrium [13]. In Figure 3.1, we see the cubic-shaped 

nullcline for  in purple and the sigmoid-shaped nullcline for  in orange. Their intersection is 

the equilibrium for this model. 

This figure also is demonstrating when  that some models fail to have “all 

or nothing spikes”. We can see trajectories of the phase plane which have varying initial 

values for membrane potential but the same initial value for the potassium activation variable, 

“ ”. It is apparent that some trajectories follow a subthreshold path to the equilibrium and 

others take a longer excursion with greater values of membrane potential. So, there are 

varying amplitudes of action potentials, not “all or nothing” spikes. 

 
Figure 1. Phase Plane Sub-System  Hodgkin-Huxley Model 

In Figure 3.2, we observe the  low threshold system when  has 

trajectories all starting with the same initial membrane potential of  , but varying 

values of initial  activation variable “ ”. Some trajectories depict full action potentials and 

some make small excursions and return to equilibrium with subthreshold spikes. We can see 

that this model has no fixed threshold of membrane potential. All of the action potentials 

exhibited in Figures 3.1 and 3.2 are transient; they all return to equilibrium values. 

 

 

 

  

  

  

  



 
Figure 2. Phase Plane Sub-System  when  

In Fig. 3.2. It is easy to see how  and nullclines partition the phase plane into four 

regions having different direction of the vector field: (a) Both  and  increase: Both  and 

 currents activate and lead to the upstroke of the action potential. (b)  decreases but  still 

increases:  current deactivates but slower  current still activates and lead to the down 

stroke of the action potential. (c) Both  and  decrease: Both  and  currents deactivate 

while  is small leading to a refractory period. (d)  increases but  still decreases: Partial 

activation of  current combined with further deactivation of residual  current lead to an 

excitable period, and possible to another action potential. 

 
Figure 3. Phase Plane Sub-System  when  

 

The intersection of  and  nullclines in Fig. 3.3 is an equilibrium corresponding to the 

rest state. The number and location of equilibria might be difficult to infer via analysis of 

equations (3.1, 3.2), but it is a trivial geometrical exercise once the nullclines are determined. 

Because nullclines are so useful and important in geometrical analysis of dynamical systems, 

few scientists bother to plot vector fields. Following this tradition, we will not show vector 

 

 

  

  



fields in the rest of the book (except this chapter). Instead, we plot nullclines and 

representative trajectories. 

In Fig. 3.4 we illustrate another dramatic aspect of threshold behavior, which can be 

explained only by considering joint evolution of  and . We apply a long pre-pulse current I 

of various strength to keep the membrane potential of the  model  at various 

subthreshold values, and then a strong but brief pulse to reset the membrane potential to 

exactly -48 mV, which is a superthreshold voltage value. As one can see, -48 mV becomes a 

subthreshold value for positive pre-pulses but remains to be superthreshold for negative and 

zero pre-pulses. 

0 2 4 6 8 10 12 14

Time t (mS)

-80

-70

-60

-50

-40

-30

-20

-10

0

10
Graph of V with Respect to t

  
Figure 4. Graph of  with respect to  when given  

In Fig. 3.5 we inject  pulse of current into a brainstem mess  neuron 

of a rat. When the inhibitory current is removed, the neuron generates rebound action 

potentials called post-inhibitory spikes. Such spikes are ubiquitous in many neurons, and they 

are often attributed to the existence of cation inward current with low-threshold  current to 

generate a post-inhibitory spike in Fig. 3.5. Since the model has neither of the currents, it can 

produce such a strange phenomenon. 

 
Figure 5. Graph of  with respect to  when given  

 

To explain the mechanism of post-inhibitory spikes, we need to consider joint evolution 

of the state variables  and : When the membrane potential is hyperpolarized, the  

current, which is partially activated at rest, starts to deactivate, i.e., variable n starts to 

decrease. When we suddenly remove the inhibitory current, there is a deficit of outward  

current (  is too small) and the net membrane current drives  over the threshold. From the 

dynamical system point of view such post-inhibitory spikes are closely related to the existence 

of fast damped oscillatory potentials seen in Fig. 3.5.  



The approach of the linear system around the equilibrium point  and  using the 

Taylor series and cut to first order. After a long process obtained the following linear 

equations: 

 

The Eigen value is obtained by completing . With the help of Matlab 

program obtained Eigen values  and  

. 

At the state of equilibrium point   and 

 the two-dimensional systems of the Hodgkin-Huxley model is 

expressed nodes with asymptotically stable because . 

The result of numerical simulation using ODE45 obtained that the two-dimensional 

systems of the Hodgkin-Huxley model becomes unstable when the external current at the 

interval of  . While at the interval  the 

graph is stable and goes in the direction of the equilibrium point. 

4    Conclusion 

Based on the result and discussion analysis of two-dimensional systems of the Hodgkin-

Huxley model on the transmission of nerve cell impulse action potential, it can be concluded 

that: two-dimensional systems of the Hodgkin-Huxley model is expressed nodes with 

asymptotically stable because . In the phase-phase analysis, it is understood that the 

process of transmitting the nerve cell impulse action potential in the  sub-system 

of Hodgkin-Huxley model runs as follows: the resting state → depolarization → decrease of 

 → increase of  → repolarization. 

The result of numerical simulation using ODE45 obtained that two-dimensional systems 

of the Hodgkin-Huxley model becomes unstable when the external current at the interval of 

 . While at the interval  the graph is 

stable and goes in the direction of the equilibrium point. 

For further research, it is advisable to the reader to examine an analytical solution from 

two-dimensional systems of the Hodgkin-Huxley model and then compare the results with a 

numerical solution to see how much approximation error of the numerical method. 
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Appendix  

 

Table 1. Initial Value of Variables 

 

Variable Variable Description 
Initial 

Value 
Unit 

 

The magnitude of the Neuron 

membrane potential 
-48 

 

 

The probability of the activation gate 
to be in the open state for  

channels. 

0 

 

 
Table 2. Initial Value of Parameter 

 
Para-

meter 
Parameter Description 

Initial 

Value 
Unit 

 

Eksternal membrane current 

density 
0 

 

 

Membrane capacitance 1 
 

 

Conductance for Potassium 10 
 

 

Equilibrium potential of Potassium -90 
 

 

Conductance for Sodium 20 
 



 

Equilibrium potential for Sodium 60 
 

 

Conductance for “leaking” ions 8 
 

 

Equilibrium potential for leaking 
ions   

 

Voltage-sensitive time constant 1 mS 

 

Parameter satisfies  -20 mV 

 

Parameter satisfies  -25 mV 

 

The slope factor of  15 mV 

 

The slope factor of  5 mV 

 
Table 3. Functions of Systems 

 
Function Function Description 

 

Persistent sodium (applied current inward of  gating 

activation) 

 

Potassium (applied current outward of  gating 

activation) 

 

The probability of opening for Sodium 

 

The probability of opening for Potassium 

 


