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Abstract—With the rapid progress of wireless technology,
mobile users can retrieve multiple real-time data with portable
devices from mobile service centers. Providing deadline guar-
antees for queries over mobile environments is a challenging
problem due to real-time data arrival rates and time-varying data
contents. In this paper, we propose a prediction-based scheme for
periodic continuous queries over wireless multi-channels. It is an
important issue to effectively disseminate various materials in
mobile environments. This paper highlights important problems
that have mobile real-time systems from improving the system
performance it could be for periodic continuous queries. While
current systems aim to foster significant improvements in access
latency, this paper argues that most systems are still limited
to just being online material without performance concerns.
Mobile real-time infrastructure has become a topic for research.
A performance-driven model to mobile real-time delivery is
proposed in this paper. A novel methodology for deploying
periodic continuous queries based on prediction mechanism in
mobile environments is presented. We focus on describing the
dynamic processing in terms of performance, rather than the
details of its implementation.

Keywords—Wireless Multi-Channel, Kalman Filter, Broadcast
Real-Time Data,Periodic Continuous Queries

I. INTRODUCTION

Over the last decade the rapid advance of cloud computing
and mobile network technologies has radically changed the
potential for periodic continuous queries described in [1], [2]
and [3]. Wireless communication and computing technology
can facilitate important issues and provide access to a wide
variety of quality real-time resources. Two of the key techno-
logical points are real-time data and wireless network. These
technologies are making more and more resources available
for periodic continuous queries, but their effectiveness is often
debated. Further, even if real-time databases can help achieve
periodic continuous outcomes, technologies by themselves
rarely have substantial impact on periodic continuous queries.

As the mobile environments in which we use technology
become more complex and more diverse, we need to extend
and expand our notion of usability to include a broad spectrum
of data with time constraint and periodic continuous queries
described in [4] and [5]. We take as an example the case of
dynamic deployment for periodic continuous queries in mobile
environments described in [6] and [7]. While system perfor-
mance is the subject matter for periodic continuous queries, the
queries themselves present a challenging case study in mobile
systems. Broadcast delivery described in [8] has been proposed
and proven to be an efficient way of disseminating data to the
mobile client population. With broadcasting, the server can
satisfy all pending requests on a data item simultaneously, thus,
eliminating the potentially very large overload of data requests,
and saving both the wireless bandwidth and a mobile client’s
battery energy. Another feature is that it greatly increases
the scalability of the broadcast system by keeping the server
from being swamped with data requests described in [9].
For periodic continuous queries in mobile environments, the
client population is the critical factor of data delivery to
system performance. To uplift periodic continuous queries,
real-time data has become new trend in mobile databases.
There are three key features such as frequent disconnection,
limit of bandwidth allocation and user mobility to influence
system performance in mobile environments. When mobile
clients increase in a mobile cell, the bottleneck is becoming
more urgent for mobile system. Prediction mechanism proved
that applications enhance their ability efficiently according to
experimental research. In our approach, we provide an efficient
method based on Kalman filter theory described in [10] to
decrease system overload so that real-time data resources
satisfy sufficiently various requests of periodic continuous
queries. From the observation of experimental results, our
approach outperforms the traditional strategies of deploying
periodic continuous queries in mobile environments. The rest
of the paper is organized as follows. In section 2 we discuss
related work for periodic continuous query strategies and
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mobile data dissemination. In section 3 we describe our model
and propose the prediction approach. In section 4 we present
the experimental results and simulation environment. Finally,
we conclude the paper in section 5.

II. PRELIMINARY

There are several scheduling algorithms for multichannel
systems in mobile environments described in [4]. However,
we demonstrate that traditional well-known algorithms do not
always perform the best in a mobile environment, such as
greedy and dynamic programming, when they are applied with
time constraints over the on-demand wireless multichannel in
a mobile environment. Scheduling of transactions for real-time
databases in a non-mobile environment is studied extensively
in [9].

A real-time client/server model is considered in which
the server assigns priorities to transactions based on several
strategies. We describe the features of traditional real-time
algorithms as the followings:

• Earliest Deadline First(EDF)[11] Algorithm: as its
name implies, for EDF the transaction with the earliest
deadline is given the highest priority.

• Least Slack (LS) first[12] Algorithm: the slack time is
defined as: d−(t+E−P ), where d is the deadline, t is
the current time, E is the execution time and P is the
processor time used thus far. If the slack time is ≥ 0,
it means that the transaction can meet its deadline if it
executes without interference. The slack time indicates
how long a transaction can be delayed and still meet
its deadline.

• Longest Wait First (LWF)[13] Algorithm: the sum of
the total time that all pending requests for a data item
have been waiting is calculated, and the data item with
the largest total wait time is chosen to broadcast next.

• Requests Times Wait (RxW )[14] Algorithm: RxW
makes scheduling decisions based on the current state
of a queue (instead of access probabilities).

The Least Slack LS differs from EDF because the priority
of a transaction depends on the service time it has received. If
a transaction is restarted, its priority will change. Simulation
results show that the EDF is the best overall policy for real-
time database systems in a non-mobile environment. However,
when system loads are high, the LS and EDF strategies lose
their advantage, even over FCFS, as most transactions are
likely to miss their deadlines. LWF algorithm has been shown
to outperform all other strategies at minimizing wait time. In
LWF, However, LWF has been recognized as expensive to
implement described in [15]. The RxW algorithm provides
an estimate of the LWF algorithm by multiplying the number
of pending requests for a data item times the longest request
wait time. In general, the performance of the approximate
algorithms has been shown to be close to LWF.

There has been some research work to consider broadcast-
ing for mobile real-time systems described in [16]. A push-
based protocol for organizing broadcast disks for real-time
applications, called Adaptive Information Dispersal Algorithm
(AIDA) described in [17]. In this work, the data must be

broadcast periodically to satisfy the timing constraints. The
AIDA protocol considers fault-tolerance and the data items
are allocated to the broadcast disks to minimize the impact
of intermittent failures by utilizing redundancy. AIDA guar-
antees a lower bound on the probability of meeting timing
constraints. Similar work addressing fault-tolerant real-time
broadcast disks appears described in [4]. In this work, the
authors show that designing strategies for real-time broadcast
disks is related to pinwheel scheduling described in [18].
The authors derived a pinwheel algebra, which utilizes rules
that can be used to construct fault-tolerant real-time broadcast
disks. Their work differs from our work because we assume
that we schedule all data items with time constraints using
adaptive algorithms under limited bandwidth to minimize miss
rate.

In the on-demand wireless multichannel broadcast model,
the server periodically repeats a computed broadcast program,
based on user access patterns. A broadcast cycle is defined as
one transmission of the periodic broadcast program. Deadline
constraints have been integrated into the broadcast model
described in [16]. In order to minimize the total number of
deadlines missed by making the most effective use of the
available bandwidth, scheduling approach has to focus on
critical factors such as access frequency, time constraint, and
bandwidth requirements. In [19], scheduling mechanisms for
broadcasting data that are to minimize the delay incurred by
insufficient channels, but it is reasonable that all clients are
satisfied with an expected time to optimize average access
time.

III. PROBLEM FORMULATION AND PROPOSED METHOD

Multiple real-time data is defined as a real-time, continuous
required (implicitly by arrival time or explicitly by time
stamps) sequence of data items. A service center is a system es-
pecially constructed to process continuous queries on dynamic
real-time data. Real-time database systems are different from
traditional database management systems in that traditional
database management systems expect the data to be required
in the system and the queries to be dynamic whereas service
centers expect dynamic real-time data and continuous queries.
Due to the high volume of required data, it is often assumed
that it is not possible to store a broadcast program in its
storage, nor is it feasible to query the whole program history.
Typically, the queries are executed on a group of data. A group
data is a segment of broadcast program that is considered
for the current query. Emerging applications, such as sensor
networks, wireless traffic network, and financial stock market,
have brought research related to real-time data in focus. These
applications inherently generate real-time data and real-time
database systems are well suited for such applications.

We now describe a framework to support the on-demand
broadcast scheduling problem with time constraints. In this
section, the real-time scheduling problem, system architecture
and solving mechanism are introduced. We now describe a
framework to support periodic continuous queries with moving
ability over mobile environments. In this section, the prediction
mechanism, problem formation and system architecture shown
as figure 1 and solving mechanism are introduced. The general-
ization of the wireless networks combined with the increase of
the extra-light devices transforms in-depth the data-processing
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Fig. 1. Wireless Broadcasting System Based On On-demand Mode

applications, as well in their design as in their use. The hard-
ware and software infra-structure is already available or about
to be. First, the wireless Internet access is now operational,
by the 802.11 standard (wireless local area network) or by
cellular network. In addition, the extra-light devices increase
in number and become connected to the network: tablets,
smart phones, laptops, and the other portable devices, etc. All
offer calculation capacities, storage or interaction in constant
progress according to a lot of research. The mobile users can
reach data and carry out treatments anywhere, any time and
starting from any device. Our objective is thus to accompany
this evolution in the information technology field by proposing
techniques to optimize information accesses.

A. Prediction Mechanism Based on Kalman Filter

The Kalman filter is a very powerful tool when it comes
to controlling prediction systems. It addresses the general
problem of trying to estimate the state of a discrete-time
controlled process that is governed by the linear stochastic
difference equation. The five kernel definitions of time discrete
Kalman filter equations and the predict-update equations are
as below:

Definition 1. Kernel Equations of Kalman Filter

Predict Equations:

xt = Atxt−1 +Btut (1)

Pt = AtPt−1A
T
t +Qt (2)

Update Equations:

xt = xt−1 +Kt (yt −Htxt−1) (3)

Kt = Pt−1H
T
t

(

HtPt−1H
T
t +Rt

)−1
(4)

Pt = Pt−1H
T
t (I −KtHt)Pt−1 (5)

where

• x: Estimated state.

• A: State transition matrix (i.e., transition between
states).

• u: Control variables.

• B: Control matrix (i.e., mapping control to state
variables).

• P : State variance matrix (i.e., estimated error).

• Q: Process variance matrix (i.e., error due to process).

• y: Measurement variables.

• H : Measurement matrix (i.e., mapping measurements
onto state).

• K: Kalman gain.

• R: Measurement variance matrix (i.e., error from
measurements).

Subscripts are as follows: t current time period, and t− 1
previous time period. The random variable matrices Q and R
represent the process and measurement noise (respectively).
They are assumed to be independent (of each other), white,
and with normal probability distributions. In practice, the
process noise covariance Q and measurement noise covariance
R matrices might change with each time step or measurement,
however here we assume they are constant. The matrix A in the
difference equation (1) and (2) relate the state at the previous
time step t−1 to the state at the current step t, in the absence of
either a driving function or process noise. Note that in practice
A might change with each time step, but here we assume it is
constant. The matrix B relates the optional control input u to
the state x. The matrix H in the update equation (3), (4) and
(5) relate the state to the update xt. In practice H might change
with each time step or measurement, but here we assume it is
constant.

B. Problem Formation and Solution Scheme

The Kalman filter predicts state by assuming a predefined
model of a system. Therefore, the Kalman filter model must
be reasonable. Its operations should be defined as follows:

1) Analyze the problem: Look at the problem. Break it
down to the mathematical steps.

2) Model the state process: Start with a basic process.
It may not work effectively at the beginning, but this
can be refined later.

3) Model the measurement process: Analyze how the
approach to measure the process. The measurement
space may not be in the same space as the state.

4) Model the noise: This needs to be done for both the
prediction and update process. The base Kalman filter
assumes Gaussian (white) noise, so make the variance
and covariance (error) meaningful.

5) Test the model: The result trend shows the relation-
ship between exact data and error distribution. If the
filter needs to be corrected, the parameters will be
adjusted.

We consider a simple situation showing a way to measure
the number denoted as N of periodic continuous queries with
portable devices in a wireless cell. This is shown in the figure
1. We are trying to estimate the number of mobile clients in
the hot spot, which is unknown. The measurements obtained
are from the known number. This could be an initial number,
or an assumed number. The number could be:

• Maximizing, emptying or static (i.e., the number of
mobile clients is increasing, decreasing or not chang-
ing).



• The relative measuring number to the average number
of mobile clients is changing over time, or is static.

The first is the most basic model, the number is static (i.e.,
the number is constant N = c). Using the equations above
kernel definition, the state variable can be reduced to a scalar
(i.e., xt = x where x is the estimate of N ). We are assuming a
constant model, therefore xt+1 = xt, so At = 1, for any t ≥ 0.
Control variables B and u are not used (i.e. both = 0). In our
model, we have the known number. This is represented by y =
y. The value we are measuring could be a scaled measurement.
For simplicity, we will assume that the measurement is the
exact same scale as our state estimate (i.e. H = 1). For this
model, we are going to assume that there is noise from the
measurement (i.e. R = r). The process is a scalar, therefore
P = p. And as the process is not well defined, we will adjust
the noise (i.e. Q = q). We will now demonstrate the effects of
changing these noise parameters. The filter can be simplified
as follows:

Definition 2. Our Approach Model

Predict Equations:

xt = xt−1 (6)

pt = pt−1 + qt (7)

Update Equations:

xt = xt−1 +Kt (yt − xt−1) (8)

Kt = pt−1(pt−1 + r)
−1

(9)

pt = (1−Kt) pt−1 (10)

We formulate our problem to make it a resolvable problem
as follows. Given a number of data items N to be broadcast
in multiple wireless channels K . Each data item is associated
with an access probability. Every access of a client is only one
data item. Expected delay, wi, is the expected number of ticks
a client must wait for the broadcast of data item di. Average
expected delay is the number of ticks a client must wait for
an average request and is computed as the sum of all expected
delays, multiplied by their access probabilities, where wi is
expected delay and pi is access probability for data item di
respectively. With miss rate of real-time data, a request for
data item di has exceeded its maximum waiting when timing
fault (expected delay for data item di exceeds its waiting time
ti < W ) occurred at some time slot. The miss rate of all
real-time data items is defined as follows (where i indicates
identification number of data item):

MissRate =

K
∑

j=1

∑

pi (11)

Our goal is to predict the number of mobile clients in the
hot spot that minimizes the overload of system. We provide an
algorithm referred as algorithm prediction of system overload
described in [20] to predict the periodic continuous queries
with portable devices so as to balance the system efficiency
over mobile environments. If mobile client number minimized,
let system efficiency gets optimization.

We formulate our problem and design our model to make
it a resolvable example as follows. Given the three wire-
less broadcast channels, consider a set of 10 data items,

Algorithm 1 Predict-Update

{Predict-Update process estimates the state of system}
Input: The number of mobile clients at the previous time step;
Output: The number of mobile clients at the current time

step;
Predict the current state based on the previous state;
Adjust state variance matrix by process variance matrix;
Update the current state using Kalman gain and measure-
ment variables;
Adjust Kalman gain by measurement variance at the current
time step;
Adjust state variance matrix by Kalman gain at the current
time step;

{d1, d2, d3, d4, d5, d6, d7, d8, d9, d10}, with the following pre-
dicted states and measured states shown as table I. For the
first prediction and measure, we assume the true level of the
system state is N = 1. We initialize the state with an arbitrary
number, with an extremely high variance as it is completely
unknown: x0 = 0 and p0 = 1000. If you initialize with a
more reasonable variable, you will get faster convergence. The
system noise (i.e., system measurement error) we will choose
will be q = 0.0001, as we think we have an accurate model.
Let this process begin with the operations.

Predict Process:

x0 = 0

p0 = 1000 + 0.0001

The hypothetical measurement we get is y1 = 0.9 (due to
noise). We assume a measurement noise of r = 0.1.

Update Process:

k1 = 1000.0001(1000.0001+ 0.1)−1 = 0.9999

x1 = 0 + 0.9999 (0.9− 0) = 0.8999

p1 = (1− 0.9999) 1000.0001 = 0.1000

To observe the step 1, the initialization of 0, has been brought
close to the true value of the system. Also, the variance
(i.e. error) has been brought down to a reasonable value. To
continue the process at step 2:

Predict Process:

x1 = 0.8999

p1 = 0.1000 + 0.0001 = 0.1001

The hypothetical measurement we get this time is y2 = 0.8
(due to noise).

Update Process:

k2 = 0.1001(0.1001 + 0.1)
−1

= 0.5002

x2 = 0.8999 + 0.5002 (0.8− 0.8999) = 0.8499

p2 = (1− 0.5002) 0.1001 = 0.0500

To observe the variance is reducing each time. If we
continue (with hypothetical yt − values) this we get the
following results. On the table I, the first row represents
predicted states and the second row represents measured states.
To observe the serious outcome, our approach model shows the
prediction accuracy.



TABLE I. PREDICTION AND MEASUREMENT OF EXAMPLE DATA

d1 d2 d3 d4 d5

0.0000 0.8999 0.8499 0.9334 0.9501

0.8999 0.8499 0.9334 0.9501 0.9501

d6 d7 d8 d9 d10

0.9501 0.9669 1.0006 0.9878 0.9722

0.9669 1.0006 0.9878 0.9722 0.9905

IV. SIMULATION AND EXPERIMENTAL RESULTS

To begin with, we randomly chose a scalar constant.
We then simulated 50 distinct measurements that had error
normally distributed around zero with a standard deviation of
0.001. We could have generated the individual measurements
within the filter loop, but pre-generating the set of 50 measure-
ments allowed me to run several simulations with the same
exact measurements (i.e. same measurement noise) so that
comparisons between simulations with different parameters
would be more meaningful. During the simulation process,
we fixed the measurement variance at R. Because this is the
true measurement error variance, we would expect the best
performance in terms of balancing responsiveness and estimate
variance. This will become more evident in the following
simulations. Figure 2 depicts the result distribution which
represents the relationship of prediction and measurement. In
figure 3, both prediction and measurement are close in some
estimated values in term of accurate prediction from our model.
In except of the initial state which is extreme assumption, the
experimental result shows the better performance and verifies
the fact that our approach model is an efficient prediction
mechanism.

In our mobile simulation model, bandwidth is not explicitly
modeled. Instead, similar to previous work described in [21],
we use broadcast ticks as a measure of time. The greatest
advantage of this approach is that the results are not limited
to any particular bandwidth and/or data item size. Rather, it
aims to capture the fundamental characteristics of the systems
described in [22]. The model simulates one hop wireless
network shown as [23]. All data items are stored in a data
server in a fixed location. Mobile clients need to send requests
to the server via an uplink back-channel before the requested
page can be broadcast in [24]. The arrival of requests generated
by mobile clients follows a Poisson process and the inter-
arrival time is exponential with mean λ. Each request has
a request id, and arrival time. For each page, a queue is
maintained to store the information about requests on the
object. We assume the results produced after the maximum
waiting time are useless, so all requests that have missed their
waiting time are discarded. Mobile clients are responsible for
re-sending requests when link errors occur. We also assume
a time fault can capture the mobility of clients who are no
longer able to receive the broadcast. In our model, since newly
generated data requests are sent to the server immediately, the
request generating time is equal to the time the server receives
it (assuming network delay is ignored). We also ignore the
overloads of request processing at the server, because the main
purpose of the model is to support the mobile environments.

We assume requests generated by mobile clients are read
only, and no update request is allowed. Concurrency control
issues are not our main concern, and thus, not considered.
At each tick of the simulation clock, the following occurs. A
simulated request generator generates requests with exponen-

tial inter-arrival time. The information about each request id
and arrival time is recorded. The request is then inserted to the
corresponding queue. The server checks the deadlines of all the
arrived requests, and discards those requests that have missed
their time fault. Then the server selects a page to broadcast
by applying a scheduling strategy and starts to broadcast the
selected page. All requests requesting the page are satisfied
when the broadcast is finished. A client can request multiple
pages and a page can be requested by multiple mobile clients
at a time. We assume that data demand probabilities pi follow
the Zipf distribution described in [25], where pi represents
the i′th most popular page. The Zipf distribution allows the
pages requested to be skewed.

pi =

(

1/i

)θ

M
∑

i=1

(

1/i

)θ
, (i = 1, 2, 3, ...,M) (12)

We only choose the online heuristic algorithms to simulate
the environments since we believe these online heuristic al-
gorithms better adapt to the dynamic changes of the intensity
and distribution of system workloads. The push-based (access
probabilities, broadcast histories, etc.) off-line algorithms are
not considered due to the fact that they are mainly for fairly
stable systems. We implement the simulation model described
in the previous section using visual C++. In each experiment,
we run the simulation for 1000 time units, and we use an
average of 50 runs of each simulation as the final result. The
default total number of data pages stored in the server, referred
to as DBSIZE, is 100 pages. Client requests reach the system
with exponential inter-arrival time with mean λ, and λ is varied
in our simulation from 2-50. It is assumed that each data
request requires 1 broadcast tick to broadcast. An open system
model is used to simulate the system for extremely large,
highly dynamic populations. Data access follows a skewed
Zipf distribution with parameter θ to control the skewness.
The minimum slack time is 10, with the maximum slack time
ranging from 20 to 100. This variation in maximum slack time
allows us to vary the tightness in the deadlines. In addition to
a uniform distribution of time fault, an exponential distribution
is utilized with lambda ranging from 10 to 300.
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Fig. 2. Accuracy Distribution between Prediction and Measurement States

V. CONCLUSION

In this paper, we present a prediction model based on
Kalman filter for scheduling real-time data to balance system
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overload over on-demand wireless broadcasting environments.
As this paper demonstrates, the traditional well-proven strate-
gies do not balance efficiently system overload in a mobile
environment. We propose an efficient prediction mechanism
based on online heuristic algorithm, which is designed for
timely balancing mobile clients in mobile environments to
minimize deadline miss rate and reduce system overload. We
simulate our model over on-demand wireless broadcasting
environments based on heuristic scheduling and adjustment.
The proposed approach is shown to generally outperform
the existing strategies with different accuracy distributions.
In the future, we plan to adjust our system parameters by
reducing its time complexity. Other concentrations include
estimated state of variance variables and matrices that can
handle measurement errors, update process, control variables
and matrices.
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