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Abstract—Mobile communications and Internet have become 

one of the most important services nowadays. Most mobile devices, 

such as cell phone, PDA, and laptop computer, equipped with the 

WiFi, GPS, and Bluetooth as their standard, build-in equipment, 

and people have got used to use mobile services in their daily life. 

One interesting service is Wifi-based indoor positioning system 

(IPS) that attracts many researchers devote their effort to it. Many 

researches in IPS determine the user location by the method of 

scene analysis. This method needs to collect the RSSI of APs from 

the interested place beforehand to build the building’s WiFi radio 

fingerprint database and this task is time-consuming. Meanwhile, 

it also needs to resample very often in order to keep the accuracy 

of the positioning result. In this paper, we design and test a fast 

setup algorithm for collecting those sampling information. The 

Android smartphone and its build-in motion sensors were used to 

help collecting the AP’s RSSI. We use the motion sensor to detect 

the pace while walking and collect the AP’s RSSI in every step. 

The method gets through the sampling work in a walking duration 

which is much shorter than traditional method. This paper also 

compares the fast setup method with the traditional method from 

the positioning accuracy point of view. Experiments show that 

there is no significant difference on positioning accuracy between 

them. 
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I.  INTRODUCTION 

During the last decade, the growth of wireless sensor 
network technologies have led to several new applications which 
allow location-based service (LBS) available to better serve its 
user according to user’s context and location. Among these, 
WiFi-based indoor positioning and navigation services have 
attracted a lot of attention. It is because the system installation 
cost is lower than others in nowadays and offers acceptable 
positioning accuracy for some location-based services. WiFi, 
currently, is widely used in many territories in such a way that 
access point (AP) is very cheap and easy to obtain. WiFi AP has 
been widely deployed in many building, campus, and 
underground facilities. Meanwhile, the computation capacity of 
WiFi embedded smart mobile devices, such as iPhone and 
Android phone, gain ground rapidly and the cost is down 
continuously along with the fast development of personal mobile 
applications and services. 

WiFi-based positioning methods are currently divided into 
three main positioning principles: proximity, trilateration, and 

scene analysis. Proximity positioning method regard the AP 
with strongest received signal strength indication (RSSI) as the 
user’s location Such an algorithm is relatively simple; even 
though it has a fast positioning speed, its accuracy is lower when 
compared to other methods [1]. In general, positioning error is 
related to the density of AP provisioning. In addition, the APs’ 
position should be known beforehand. 

The trilateration positioning method uses three or more APs’ 
location to calculate distance using time differences or signal 
strength in signal receptions, which are then used to estimate the 
location of the user. The current WiFi system can only work with 
the RSSI method, which uses a wireless transmission attenuation 
model to calculate the distance from the estimation point to the 
AP. The multi-path effect generated from wireless signals in an 
indoor environment has made it much more difficult for the 
trilateration method to achieve high-accuracy positioning, which 
results in failure to obtain acceptable levels of accuracy and 
precision. Some Researchers have dedicated their effort to 
improve the positioning accuracy based on trilateration[2][3]. 

The scene analysis positioning is generally divided into two 
phases. In the first phase, so-called offline phase, APs’ RSSI and 
basic service set identification (BSSID) and the coordination of 
the sample point are recorded to build a radio fingerprint 
database in a building. In the second phase, called position 
estimation phase, user collects the AP’s RSSI and BSSID, using 
smartphone, and compare them with the records in the 
fingerprint database in order to estimate the user’s position. 
Nearest Neighbors in Signal Space (NNSS) algorithm is 
proposed in [4] for computing the distance of signal space 
between the observed and recorded measurements. The 
advantage of this approach is that it can reduce multi-path 
problems[5]. However, the intensity of sample points of this 
method directly affects positioning accuracy.  

A crucial problem for the scene analysis positioning is the 
cost on the offline radio-fingerprint building, which is a time-
consuming task. In the past, when doing those data collection, 
we need to build up a coordination system for the building, using 
the tape measure to mark the position of every sample point and 
then perform the signal sampling at every simple point one by 
one. 

In traditional method, a sampling process is going to scan the 
WiFi signal several times and then take the average as the final 
record for fingerprint in each sampling point.   Sometimes, in 
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order not to influent received signals because of human body, 
we need to sample the signal from the 4 different directions and 
then averaging them as the final record [4]. In a building, 
increasing the number of sampling points will directly increase 
the positioning accuracy of the scene analysis IPS method. 
However, it also increases the time used to build-up the 
fingerprint database.  

We wonder if, when build the fingerprint database, the 
number of scan at each sampling point is reduced to be one, then 
the fingerprint database can suit for scene analysis or not? In this 
paper, we use the smartphone and its build-in motion sensor to 
implement a fast fingerprint database build-up algorithm for 
WiFi-based IPS. We are not the first one to use the motion sensor 
of smartphone on the WiFi-based IPS. The most famous one is 
the WiFiSlam, a startup company acquired by Apple in early 
2013. Other researches, such as [6][7], have also been show the 
possibilities. However, our objective is to propose and verify a 
procedure to build the radio fingerprint in a short time from the 
implementation point of view. Meanwhile the motion sensor is 
only used in the phase of data collection.  

The remaining sections of this paper are as follows: second 
section describes the system environment in today’s wifi IPS 
and data collection method. Experiments are presented in the 
third section. Finally, conclusion is given in the last section. 

II. ENVIRONMENT DESCRIPTION AND FAST DATA COLLECTION 

Although the fingerprinting based floor estimation methods 
perform well, they suffer several problems in today’s WiFi 
usage environment as follows: a) due to the free use of WiFi, 
large amount of WiFi AP have been installed/uninstalled 
without administration; b) due to the use of smartphone bridge, 
there are some fake APs will be detected when performing 
offline fingerprint creation and online position determination; c) 
due to the wireless signal coverage and the convenience of 
network wiring problems, the location of AP’s installation 
position concentrates at certain areas, such as the majority of AP 
locate at center of corridors but none locates at staircases. These 
problems force us to refine our method to fit the more 
complicated environment. 

Through our observation, the number of APs in the Electrical 
Building in CYCU is 58 when we first scan this venue in mid-
2011. However, the number of APs increases sharply up to 289 
APs in early-2014 and is up to an incredible number of 496 APs 
in mid-2014. The Electrical Building is an 8-floor building with 
about 60 meters long and 45 meters wide, obviously the 
distribution of APs is very crowded. At any place of the building 
and performing the AP scan, there are at least 40 APs can be 
found. Those include the APs used in the infrastructure of the 
campus wireless LAN, the APs used as the WiFi IP router in 
the rooms and labs in the building, and the APs used as specific 
devices such as print server. As we know, there are only 11 
channels (in most place) for the 2.4 GHz WiFi and only 3 
channels (channel 1, 6, and 11) can operate fully isolate, the 
more APs were installed, the less spectrum efficient were 
obtained. But with the facts of convenient and unrestricted use 
of WiFi and poor planning of campus WLAN, resulting in the 
grotesque disappointing field. Similar problem happened at 
5GHz band. We think that the Electrical Building is not the only 

place having the crowed APs installation. It can be imaged that 
the situation happened in many campus and office blocks. 

Because there are at most 3 isolated channels of WiFi in 2.4 
GHz band, APs contend the channel for serving their user and 
mask effect happened when sampling the APs’ beacon used for 
indoor position. Figure 1 shows the RSSI of APs on a sampling 
point located at 4 floor corridor of Electrical Building. In this 
sample, there are 180 scans, with one second gap, are collected. 
Note that there are only 8 APs was shown in this figure for 
simplicity and all of them are use the WiFi channel 1 (2.412 GHz 
band). It can be found that the signal of AP3 are not detected 
until the second minute because of the signal masking effect. It 
is also shown that the APs with weaker RSSI have more 

probable shaded by others.  

The second problem is the use of Smartphone Bridge. More 
and more user uses Smartphone as a hotspot to bridge WiFi 
signal to 3G/4G network for accessing the Internet. If someone 
is using the WiFi IPS but having some others use the 
Smartphone Bridge around she/him, it will impact on the 
accuracy of positioning. Problems a) and b) may be solved by 
refine the IPS algorithm, however, the problem c) can not.  

Figure 2 shows the strongest RSSI distribution in 4 floor of 
Electrical Building. The strongest RSSI at every sample point is 
the one which be scanned and stronger than others. The sample 
points in this test includes staircases and corridors, from the left 
side to the right side of the building with one-meter gap. The 
range of the indexed horizontal axis is from -3 to 58 meter. The 
emitting power of APs, using for campus WLAN, is around  
-27dBm (measured at one meter distance), and about -32dBm 
for WiFi IP router, so the RSSI higher than -45dBm implies that 
the sample point is very close to an AP. On the other hand, the 
RSSI below than -55dBm implies there is no AP setup around 
the sample point. From Figure 2, although more than 100 APs 
can be detected in this floor, we can deduce that there is no AP 
installed in staircases. Moreover, it can be deduced that the 
signal in region 1 marked in Fig. 2 is dominated by APs which 
used for campus WLANs; in region 2, the signal maybe be 
dominated by APs which used for WiFi IP routers installed in 
labs; in region 3, there is no AP installed. The ununiformed 
deployment of AP results in trouble when performing RSSI-
based position determination algorithm at the place where close 
to the staircase. 

 

Fig. 1. RSSI sequence at a sample point 
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The proposed system is divided into two phases: offline data 
collection phase and online position estimation phase. But the 
source of information and procedure involving to the offline data 
collection phase is illustrated in Fig. 3 (a), and the online 
position estimation phase’s procedure is illustrated in Fig. 3 (b). 

The simple idea of the offline data collection phase is that: A 
user who holds an Android smartphone walks from one side to 
the other side of the venue. In every step, the smartphone 
performs a scan and records the scanned RSSI and BSSID of 
surrounding APs. Note that, there is only one scan at each step, 
so there is probability that some AP’s information will miss due 
to the mask effect discussed above. Sensor events and the map 
are used for producing the coordinate of the sampling point. 
From Android KitKat (Android 4.4) the SDK provides two new 
step detector and counter sensors but under supporting of 
specific hardware. As a consequence, we perform step detection 
based on the build-in low-cost microelectromechanical system 
(MEMS)-based inertial sensors in smartphone[8]. However, 
those methods cannot response the step event in time. For 
example, the step sensor in Android KitKat needs few seconds 
to report the event (The latency is expected to be below 2 

seconds stated in the official document). For the sake of response 
to the step detection accuracy and in time, we implement our 
own step detection algorithm on Android smartphone in 
constriction of limiting user’s walking to be steady and stable in 
data collection phrase. The overall offline procedure is shown in 
Fig. 4. 

III. EXPERIMENT AND RESULT 

A. Experiment Environment 

In order to verify the usability of the proposed method, two 
different data collection methods, called static sampling (SS) 
and moving sampling (MS), are preformed and compared. The 
testing place is at the 4th floor in the Electrical Building in 
CYCU. The sampling path are illustrated in Fig. 5 (a), two 

straight lines are sampled by SS and MS, respectively. The SS 
collects data by sampling the surrounding APs’ RSSI and 
BSSID along the straight lines and at every one meter. In each 
sample, 30 scans are performed and then take the average RSSI 
to be the RSSI in fingerprint database. The APs which the 
number of RSSI to be detected less than 10 will be filtered out 
from the database. We use a tripod to mount the smartphone to 
do the sampling in order to ignore the effect of absorption of 
radio signal by human body. In the experiment, the HTC one X 
based on Android 4.1.2 OS smartphone is used. On the other 
hand, the MS collects data by the method discussed in Sec. 2. 

The fingerprint database is a 2-tuple of AP RSSI 
measurements and the corresponding media access control 
(MAC) addresses:  

Sjk = {(bijk, ssijk) | 1  i }. (1) 

 

 
(a) 

 

 

Fig. 3. (a) Offline fingerprint creation, (b) position estimation 
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Fig. 4. Offline sampling procedure and its actions 
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Fig. 2. The strongest RSSI distribution at 4 floor 



Suffix k means the sample point is on kth path and j means it is 
the jth sample on kth path. bijk is the ith AP’s BSSID and ssijk is 
the ith RSSI of jth sample in order of RSSI on the kth path, 
respectively. 

B. Position estimation method 

Four points at the corridor are randomly chosen to be the 
testing point for comparing the MS and SS, which are shown in 
Fig. 5 (b) which coordinates are (20, 3), (49, 3), (23, 7), and (23, 
13) from A to D, respectively. A Minimum Signal Distance with 
Relational Factor algorithm, called MSDRF, is used to estimate 
the position of the testing points and is as follows: 

Let u = {(bi, ssi) | 1  i  p} be the measured APs’ 
information of a testing point in descendant order of RSSI, 
where p is a predefined threshold and is set to be 6 in this 
experiment, i.e., the most strongest 6 APs’ information 
measured at the testing point were included in the set u. The 
distance between the testing point and a sampling point is 
defined as: 

{
|𝑢 − 𝑆𝑗𝑘|, 𝑢 and 𝑆𝑗𝑘  are related

∞,   𝑢 and 𝑆𝑗𝑘  are unrelated
 (2) 

The reason to put a relational factor as a constraint is that if 
the number of sample point increases, the number of unrelated 
sample point is also increasing, too many unrelated sample 
points will impact on the result of position estimation. Relational 
factor, denoted as r, is defended as the number of AP’s BSSID 

both in u and in Sjk for determining if a sampling point is 
“relative” to the testing point or not. For example, let r = 2, p = 
3, and let u = {(ba, ssu,a) (bb, ssu,b) (bc, ssu,c)}, sampling point S1 
= {(ba, sss1,a), (bb, sss1,b), (bd, sss1,d), (be, sss1,e)}, and sampling 
point S2 = {(bc, sss2,c), (bd, sss2,d), (bf, sss2,f)}. Then S1 is “relative” 
to u because ba and bb, are both in u and S1, but S2 is not “relative” 
to u, because there is only one BSSID bc is in u and S2, which 
the number is less than r. We also define the r/p as the relational 
coefficient. It expresses a rough filter to filter the sampling 
points where far from the testing point without join into the 
calculation. Besides, it expresses the ability to adopt the 
phenomenon of AP’s signal shading at a single scan in the MS 
model. The RSSI distance |u – S1| is defined as: 

√(𝑆𝑆𝑢,𝑎 − 𝑆𝑆𝑠1,𝑎)2 + (𝑆𝑆𝑢,𝑏 − 𝑆𝑆𝑠1,b)2 + (𝑇𝑚𝑖𝑛)2 (3) 

where Tmin is a constant used to instead of the mismatch AP when 
calculating the signal distance between u and S1.  

C. Experiment Results 

The experiment results are shown in Fig. 6 to Fig. 9 for the 
4 different testing points and for the SS and MS fingerprint 
database respectively. The vertical axis is the signal distance 
from the testing point to the sampling point evaluated from eq. 
(2). Because the fingerprint is created for the experiment, there 
is no filter and fusion are performed to refine the database. 
Consequently, some signal distances vary a lot in this 
experiment. The red spot on the horizontal axis presents the 
position of the testing point. There is a polynomial regression 
drawn on these figures. It can be found that the local minimum 
value of the SS and MS are close. That means we can use the 
MS in place of SS in the WiFi-based IPS.  

IV. CONCLUSION 

In this paper, two offline fingerprint collection methods are 
performed and compared. Our goal is to find a way to speed up 
the creation and maintenance for the offline data collection 
phase for the wifi-based IPS. Experiments show that combining 
the build-in motion sensor of the smartphone and venue map the 
MS method can largely reduce the setup time of the IPS. In the 
meantime, the MS method perform almost close performance to 
the SS method. It can be thought that the MS method will be the 
main method for the signal sampling in the future IPS.  
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Fig. 6. The experiment result for the testing point (20, 3) (a) SS method, 

(b) MS method 
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Fig. 7. The experiment result for the testing point (49, 3) (a) SS method, 

(b) MS method 
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Fig. 8. The experiment result for the testing point (23, 7) (a) SS method, 

(b) MS method 
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Fig. 9. The experiment result for the testing point (23, 13) (a) SS 

method, (b) MS method 


