

Design and Implementation of Various File
Deduplication Schemes on Storage Devices

Yong-Ting Wu, Min-Chieh Yu,

Jenq-Shiou Leu
Department of Electronic and Computer

Engineering
National Taiwan University of Science

and Technology
Taipei, Taiwan

{M10302107, D10002103,
jsleu}@mail.ntust.edu.tw

Eau-Chung Lee,
QNAP Inc., Taipei, Taiwan

ytlee@qnap.com

Tian Song
Electrical and Electronic Engineering,

Graduate School of Engineering,
Tokushima University, Tokushima City,

Japan
tiansong@ee.tokushima-u.ac.jp

Abstract—As the smart devices revolutionize, people may

generate a lot of data and store the data in the local or remote file
system in their daily lives. Even though the novel computer
hardware and network technologies can handle the demand of
generating a big volume of data, effective file deduplication can
save storage space in either the private computing environment or
the public cloud system. In the paper, we aim at designing and
implementing various file deduplication schemes on storage
device, which are based on different duplication checking rules,
including file name, file size, and file full/partial content hash
value. Comprehensive experiment results show that a partial
content hashing based file deduplication can have a better
trade-off between the computation cost and deduplication
accuracy.

Keywords—file deduplication; cloud system; storage devices

I. INTRODUCTION

he emerging technical gadgets, like digital TV, smartphone,
pad has rapidly driven a large volume of digit data. When
the digital data are stored in a storage system, duplicated

data may be conducted due to intended backups or unintended
copies. By properly removing file redundancy in the storage
system, the volume of information to manage is effectively
reduced, significantly lessening the time and space required for
file management. B. Hong, D. Plantenberg, D. D. Long, and M.
Sivan-Zimet proposed their file deduplication scheme to
improve the storage utilization of the storage area network [1].
D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki then used
the concept of file partitioning to increase the efficiency of the
file deduplication scheme [2]. The aforementioned schemes are
running with the online storage, which may not be suitable for
the storage devices.

Besides, as the network applications have been widely
developed and deployed in the world, application users would
generate a lot of multimedia data in their daily lives, such as
images or video clips captured by the digital cameras or
cameras bundled in smartphones. Users then store them in the
remote cloud system or the personal local storage. The demand
for storage either in the local disk or in the remote storage farm
hence increases. In addition, on account of the heterogeneity of
the modern smart devices people may own, people more likely
own duplicated multimedia data in many storage systems or
even in the same storage system, resulting in an ineffective

storage utilization and an inefficient search for some specific
file in the system. Carrying out file deduplication schemes on
the storage system can lessen the situation of wasting the space
for duplicated files and increase the file search speed in the file
system.

The most intuitive deduplication strategy is finding the files
with the same file name or size. However, such a strategy may
cause an inaccurate deduplicated result. Therefore, a hashing
based file deduplication process is designed to increase the
accuracy. However, a full content based hashing calculation
may increase high computation cost [3]. A compromised way is
taking a partial content based hashing calculation, which may
bring a faster response to users, with a few sacrifices of
deduplication inaccuracy [4, 5]. This work in the paper aims at
how to design and implement the various file deduplication
schemes for space saving. The detailed data structures, process
flows for these schemes are also illustrated. Besides, a
comprehensive evaluation results are depicted to validate the
effectiveness of the implemented deduplication schemes.

The rest of the paper is organized as follows: Section II
presents the data structures, process flows used in the three
deduplication schemes. Section III details the experiment
environment and the corresponding evaluation results. Finally,
a brief conclusion is offered in Section IV.

II. DEDUPLICATION SCHEME IMPLEMENTATION

We briefly design three intuitive approaches to implement
the file deduplication schemes on storage devices, including by
the filename, by the size, and by the MD5 (Message-Digest
algorithm number 5) hash value [6]. The introduction of the
data structures and processing flows used is shown below.

A. Data Structures

To implement the file deduplication system, we need to
define the data structures first, and then use the data structures
to carry out the file deduplication procedure.

1) By the filename: This is the most intuitive and easiest
approach of three deduplication schemes. The user may copy
the file into another folder but forget to delete the old one.
Hence, the main goal of this approach is to find out and show

T

QSHINE 2015, August 19-20, Taipei, Taiwan
Copyright © 2015 ICST
DOI 10.4108/eai.19-8-2015.2260903

the properties of the files with the same filename. Then, the user
can decide whether to delete the duplicated files or not.

Fig. 1. The data structure in the filename based approach

Fig.1 shows the data structure of the approach. An node
would be generated by the deduplication procedure and it
contains the nameTree, nameList and nameInfoList which are
shown in Fig.1.

a) nameTree: This node is the header in the filename
based approach. The procedure would convert the filename into
ASCII (American Standard Code for Information Interchange)
values and store the summation value in node_key. The address
of nameList is stored in list_pointer. Moreover, The addresses
of previous and next nameTrees are stored in previous and next
respectively.

b) nameList: The list is used to store the filename (name)
of files with the same node_key. The deduplication scheme
would change the value of is_dup to note if the filename is
duplicated. The address of nameInfoList is stored in link_info.
Furthermore, the address of next nameList is stored in
link_next.

c) nameInfoList: The main property of the file is stored
in this list, including the filesize(size), the filepath(path), and
the file last modified time(mtime). Additionally, the address of
next nameInfoList is stored in link_next.

2) By file size: The approach is based on an intutive idea
that the same file has the same filesize. The user may copy the
file into another location and change its name, but forget to
delete the original one. Therefore, the approach would find out
the files with the same filesize, showing the details on the user
interface so that users can decide which duplicated file needs to
be deleted.

Fig. 2. The data structure in the file size based approach

Fig.2 shows the data structure of the approach. An node
created in the approach would contain the sizeTree, and
sizeInfoList which are shown in Fig.2.

a) sizeTree: This node is the header in the file size based
approach. The procedure would store the file size value in
node_key. The deduplication scheme would change the value of
is_dup to note if the file size is the same. The address of
sizeInfoList is stored in info_pointer. Moreover, The addresses
of previous and next sizeTree are stored in previous and next
respectively.

b) sizeInfoList: The main property of the file is stored in
this list, including the filename(name), the filepath(path), and
the file last modified time(mtime). Additionally, the address of
next sizeInfoList is stored in link_next.

3) By the MD5 hash value: In order to avoid deleting the
indepedent files with the same file size, the scheme is designed
based on the calculated hash value. The scheme would
calculate the MD5 hash value of first and last 10 percent of the
file content, or even the compelte file content to improve the
accuracy of duplication check.

Fig. 3. The data structure in the MD5 hash value based approach

Fig.3 shows the data structure of the approach. Since the
approach is an extended approach of the file size approach, a
node created in the approach would contain the sizeTree
MD5List, and sizeInfoList which are shown in Fig.3.

a) sizeTree: The address of MD5List is stored in
list_pointer. The rest parameters are the same as the data
structures in the file size based approach.

b) MD5List: The list is used to store the calculated MD5
hash value (MD5_hash) of files with the same node_key. The
deduplication scheme would change the value of is_dup to note
if the MD5 hash value is duplicated. The address of sizeInfoList
is stored in link_info. Moreover, The address of next MD5List
is stored in link_next.

c) sizeInfoList: The list is identical with sizeInfoList
which is mentioed in the file size based approach.

B. Processing Flows

The processing flows of all designed approaches are shown
in Fig. 4, 5, and 6. Since the main objects of three deduplication
schemes are the same, the processing flows are similar.

1) Find the duplicated filename among files: For the
filename based approach, the process would choose one file
first in the selected directory and use the ASCII code to convert
the filename of the chosen file as node_key. Then, the process
would search all nameTree to find out the existing nameTree
with the calculated node_key. Once the nameTree with same

node_key is found, the process would check if the filename in
the nameList is the same as the chosen file. If yes, the process
would insert the new nameInfoList after that one in the existing
nameTree, and change the value of is_dup to note that the
duplicated file with the same filename is found. If no, the
process would take the chosen file as a new file, insert the new
nameList next to the old one, and then store the property of the
new file into its own nameInfoList.

However, if there is no any existing nameTree with the
calculated node_key, the process would create a new instance
of nameTree and store the file information into nameList and
nameInfoList. Subsequently, the process would continue until
there is no any unchecked file in the selected directory.

Fig. 4. The processing flow in the filename based approach

2) Find the same file size among files: For the file size
based approach, the process would choose one file first in the
selected directory and store the file size value of the chosen file
as node_key. Then, the process would search all sizeTrees to
find out if there exists one sizeTree with the same node_key.
Once the sizeTree with the same node_key is found, the process
would insert the new sizeInfoList after that one in the existing
sizeTree, and change the value of is_dup to note that the
duplicated file with the same file size is found.

However, if there is no any existing sizeTree with the
calculated node_key, the process would create a new instance
of sizeTree and store the file information into nameList and
nameInfoList. Subsequently, the process would loop until there
is no any unchecked file in the selected directory.

Fig. 5. The processing flow in the file size based approach

Fig. 6. The processing flow in the MD5 hash value based approach

3) Find the same MD5 hash value among files: Since the
approach is an extension of file size based approach, the most
part of the MD5 hash based approach is identical to the file size
based one. Once the sizeTree with same node_key is found, the
process would calculate MD5_hash of the chosen file. After
that, the process would check if MD5_hash in the MD5List is
the same as the one of the chosen file. If yes, the process would
insert the new sizeInfoList after that one in the existing
sizeTree, and change the value of is_dup to note that the
duplicated file with the same MD5 hash value is found. If no,
the process would take the chosen file as a new file, insert the
new MD5List next to the old one, and then store the file
property of the new file into its own sizeInfoList.

4) Time Complexity of file deduplication algorithms:
Assuming that the storage devices have N files, the time
complextiy of the filename based approach would be O(N log
N), since the algorithm would maintain a tree structure when
checking each file, and the time complexity of manipulating a
tree structure is O(log N). Meanwhile, because of a similar
process flow, the complexity of the file size based approach
would also be O(N log N).

For the MD5 hash based approach, the time complexity can
be divided into two parts: the complexity of the first part is O(N
log N) since the MD5 hash based approach is an extension of
file size based one, and the complexity of the second part is O(n)
due to the MD5 hash value calculation process. Hence, The
complexity of the MD5 hash based approach would be O(N log
N) + O(n). In addition, the worst-case complexity of the second

part may be , since the MD5 hash values of all

files need to be calculated.

III. EVALUATION RESULTS

A. Evaluation Environment

To evaluate the performance of implemented schemes, we
used a typical network-attached storage (NAS) device as the
storage device to run the these three deduplication check
schemes. The NAS used in the evaluation is QNAP NAS
TS-269L, and its specification is shown in Table I.

TABLE I. EVALUATION ENVIRONMET SPECIFICATION

Unit Detail

CPU Intel® Atom� 1.86 GHz Dual-core Processor

HDD
TOSHIBA DT01ACA300, SATA III,

7200rpm, 3TB

Memory 1GB DDR3-1066 RAM

In the evaluation, we design three different testing scenarios
to test the three file deduplication schemes. The testing
scenarios are distinguished by the file size and named by KB,
MB, and GB. The diagram of testing scenario is shown in Fig.7.

For the KB scenario, the total file size of the first sub-folder
1K is 1 kilo-byte, the second sub-folder 10K is 10 kilo-bytes.
Respectively, the total file size of each under the i sub-folders is
S 10i, and the values of i are ranged from 2 to 99. There
are 15 group-folders in each sub-folder. Moreover, each
group-folder has 5 end-folders. In each end-folder, there are 1

group-wide duplicated file, 9 different files, and 1 fixed
duplicated filename file. For an example of a group-wide
duplication file, each end-folder which is the member of
group-folder 1 under the sub-folder 1K has one group-wide
duplication file (dup_file 1KG1). The total file amount of the
scenario is 82,500.

For the MB scenario, the total file size of the first sub-folder
1M is 1 mega-byte, and the second sub-folder 10M is 10
mega-bytes. The total file size of each under the j sub-folders is
S 50j mega-bytes, and the value of j is ranged from 1 to 19.
There are 5 group-folders in each sub-folder. Additionally,
each group-folder has 5 end-folders. In each end-folder, there is
1 group-wide duplicated file, 9 different files, and 1 fixed
duplicated filename file. The scenario contains 5775 files
totally.

For the GB scenario, the total file size of each sub-folder n
is S n gigabytes, and the value of n is ranged from 1 to 5.
There are only 2 group-folders in each sub-folder. Additionally,
each group-folder has 2 end-folders. In each end-folder, there
are a group-wide duplication file, 4 different files, and a
duplicated filename file. The total file amount in the scenario is
120.

dup_file
1K_G1Top

KB

MB

GB

1K

10K

…
…
…

990K

Group1

Group15

…
…

…

diff_files x9

diff_files x9

folder1

…
…

folder5

folder1

…
…

folder5

…
…

…

Group1

Group5

…
…

diff_files x9

diff_files x9

folder1

…
…

folder5

folder1

…
…

folder5

1M

10M

50M

950M

…
…

…

…
…

…
…

…
…

…
…

…
…

…
…

…

Group1

Group2

diff_files x4

diff_files x4

folder1

folder2

folder1

folder2

…
…

…
…5G

1G

…

dup_file
1K_G15

dup_file
1M_G1

dup_file
1M_G5

dup_file
1G_G1

dup_file
1G_G2

Duplication filename file
(empty file)

Fig. 7. The diagram of the testing scenario

B. Evaluation Results

The evaluation results conducted by the three file
deduplication schemes are shown in Table III. In table III,
"Filename" represents the filename based duplication approach;
"File Size" represents the file size based duplication approach;
"MD5" represents the MD5 hash based approach; MD5(Partial)
represents the scheme only using a partial of the file content,
which is listed in table II, to calculate the MD5 hash value,
while MD5(Full) uses the complete file content to calculate the
MD5 hash value.

TABLE II. PARTIAL HASHING SPECIFICATION

File size
The percentage of file

content used for hash value
computing

< 1MB 100%

≥ 1MB & < 1 GB 1%

≥ 1GB 0.1%

TABLE III. EVALUATION RESULT

 Filename File Size
MD5

(Partial)
MD5
(Full)

Time usage 1m19s 1m21s 5m37s 58m17s

CPU usage
ratio

8.2% 12.2% 24.9% 24.9%

Memory
usage ratio

6.1%
(60MB)

6.3%
(62MB)

8.6%
(85MB)

8.6%
(85MB)

In the table III, we can observe that the filename based
approach and the file size based approach perform faster
compared to the MD5 hash value based one, as the time
complexity of MD5 hash value based approach is greater than
other two ones. Besides, all evaluation results of the filename
and the file size based approaches are similar due to the
complexities of the filename based one and the file size based
one are identical. Further, the MD5 hash value based
approaches has the highest CPU utilization and memory usage
ratio.

IV. CONCLUSION

An effective file deduplication scheme can facilitate to save
space on the storage devices. We have successfully designed
and implemented three file deduplication schemes on the
storage device in this study. The system structures and
processing flows of three approaches are shown. Finally, we
use an instance of storage device to evaluate the three file
deduplication schemes, and the evaluation results have been
discussed.

Acknowledgement

The authors gratefully acknowledge the financial support
from the "Aiming For the Top University Program" funded by
Ministry of Education, Taiwan.

REFERENCES

[1] B. Hong, D. Plantenberg, D. D. Long, and M. Sivan-Zimet, “Duplicate
Data Elimination in a SAN File System,” In 21st IEEE Conference on
Mass Storage Systems and Technologies (MSST), pp. 301-314, Apr. 2004.

[2] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving
duplicate elimination in storage systems,” ACM Transactions on Storage
(TOS), vol 2(4), pp. 424-448, 2006.

[3] D. Meister, and A. Brinkmann, "Multi-level comparison of data
deduplication in a backup scenario," in Proceedings of 2nd The Israeli
Experimental Systems Conference (SYSTOR'09), pp. 1-12, May 2009.

[4] V. Henson, "An analysis of compare-by-hash," in Proceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS-IX), 2003, pp.
13-18.

[5] J. Malhotra, and J. Bakal, "A survey and comparative study of data
deduplication techniques," in Pervasive Computing (ICPC), 2015
International Conference on , pp. 1-5, Jan. 2015

[6] R. Rivest, RFC 1321: The MD5 Message-Digest Algorithm, Network
Working Group, Apr. 1992.

