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Abstract—Software Defined Networks (SDN) emerged as a new
network paradigm to address the customization and flexibility
problems in traditional computer networks. In SDNs, a logical
centralized programmable controller manages the whole net-
works by installing rules onto switches. It is widely regarded that
one controller is restricted on both performance and scalability.
To address these limitations, pioneering researchers advocate
deploying multiple controllers in SDNs where each controller
is in charge of a set of switches. This raises the switch-
controller association problem on one switch shall be managed
by which controller. In this paper, we specially investigate
minimum cost switch-controller association (MC-SCA) problem
on how to minimize the number of controllers needed in an
SDN while guaranteeing the flow setup time. A quadratic integer
programming model is first proposed and then transformed into
an equivalent integer linear programming model to describe
the MC-SCA problem, which is then proved as NP-Hard. We
further propose a heuristic algorithm and extensively prove its
high efficiency via simulations.

I. INTRODUCTION

Software Defined Networking (SDN) emerged as a new
network architectures and become a hot topic in the literature.
By providing programmable hardware in SDNs, the networks
can be dynamically configured and managed thanks to the
separation of control plane and data plane. The control plane
is moved to an external entity called controller. The controller
is responsible for determining the forwarding rules on the
forwarding devices through a control channel. Therefore, the
controller is often regarded as the central brain and plays an
important role in SDNs.

The most common SDN implementation adopts a central-
ized network control, where a controller manages and operates
the network from a global view. Whenever a switch receives
a new flow and finds no matching entry in the flow table,
it immediately requires the controller to install appropriate
forwarding rules along the desired flow path. However, in
a large-scale SDN deployment, this rudimentary centralized
approach has several limitations on both performance and
scalability. On one hand, a single controller usually has a
limited capacity and hence cannot handle large number of
flows originating from all the infrastructure switches. In this
case, some request packets may have to be dropped, incurring
negative effect to the network performance. On the other
hand, the latencies between the single controller and the

switches situated at geographically distributed locations are
highly varied. To some switches far away from the controller,
long flow setup time may be introduced. This severely limits
the network performance, especially to SDN-based wireless
area networks (WANs).

To address these limitations, pioneering researchers advo-
cate deploying multiple controllers that work cooperatively to
manage network traffic flows [1], [2]. Much effort has been
devoted to addressing various problems related to multiple-
controller in SDNs. For example, Heller et al. [3] study the
controller placement problem and analyze the impact of the
controller locations on the average and worst-case controller-
to-switch propagation delay. The controller placement problem
is then extensively studied from different aspects, e.g., [4]–
[8]. The controller placement solutions are applied in pre-
deployment period. When multiple controllers are deployed,
it is also essential to consider the association between the
controllers and switches, i.e., switch-controller association,
as it also affects the performance of the network. Specially,
to make the network cost-efficient, one feasible solution is
to minimize the number of activated controllers. Of course,
no matter how many controllers are actually used, it is first
required that the flow setup time is guaranteed. Therefore,
we are motivated to investigate the flow setup time aware
switch-controller association problem aiming at minimizing
the number of controllers, i.e., minimum cost switch-controller
association (MC-SCA) problem. The main contributions of
this paper are as follows.

• We formulate MC-SCA with the consideration of trans-
mission time between switches and controllers into a
quadratic integer programming (QIP) problem, which
is then transformed into an equivalent integer linear
programming (ILP) problem. We also formally prove that
MC-SCA is NP-hard.

• A heuristic algorithm is proposed. Its high efficiency is
extensively validated by the fact it much approaches the
optimal solution.

The rest of this paper is organized as follows. Section II
provides a brief overview of related work. Section III elab-
orates our system model. Problem formulation and heuristic
algorithm are proposed in Sections IV and V, respectively.
Section VI shows our performance evaluation results. Finally,
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Section VII concludes our work.

II. RELATED WORK

A. Controller in SDNs

As it is widely agreed that single controller SDN suffers
from the performance and scalability, researchers therefore
advocate multiple controllers in SDNs to address these limi-
tations. When multiple controllers shall be deployed, the con-
troller placement problem is raised. Heller et al. [3] first study
the controller placement problem and show the implications
of changing the number of controllers for the latency between
switches and controllers. Schmid et al. [5] describe a local
network view of the controllers and discuss the design of a
distributed control plane. In [7], it is demonstrated that the
switch-over time depends on the latencies between networking
devices and the controllers. Hu et.al [6] present four controller
placement algorithms to maximize the reliability of controller
placement. Tootoonchian et al. [4] show that long propaga-
tion delays among controllers limit the network convergence
time, and affect the controller ability to respond to network
events. Bari et al. [9] attempt to solve the dynamic controller
provisioning problem through an ILP and design algorithms
to minimizes flow setup times by dynamically changing the
number of controllers and their locations. Recently, Rath et al.
[10] use game theory for dynamically mapping the switches to
controllers for reducing the average controller-switch latencies
and balancing loads on controllers.

B. Modeling, Analysis and Optimization in SDNs

Some efforts are also contributed to the modeling, analysis
and optimization in SDNs. Hu et al. [11] build performance
models for response time to evaluate the scalability of three
controller structures, including centralized, decentralized and
hierarchical. Jarschel et al. [12] abstract the OpenFlow archi-
tecture as a feedback-oriented queuing system model, divided
into an M/M/1 forward queuing system and an M/M/1−S
feedback queuing system. This model is derived for the
forwarding speed and blocking probability of an OpenFlow
switch combined with an OpenFlow controller, which can be
used to estimate the packet sojourn time and the probability of
lost packets in such a system. Their study also gives hints to
developers and researchers on how an OpenFlow architecture
performs for given parameters. Yao et al. [13] study the issue
of controller capacity defined as the number of switches a
controller can manage. To this goal, they model the flow set-up
requests from switches to controller as a batch arrival process
Mk/M/1 and derive the expression of average flow service
time, which is used to evaluate the controller capacity.

III. SYSTEM MODEL

We consider an SDN shown in Fig. 1. Following the
OpenFlow model [14], the network consists of a controller
plane and a data plane. The controller plane is formed by a
set I of controllers. The data plane is composed of a set J of
OpenFlow switches which forward data flow according to the
flow table. Without loss of generality, we assume that a switch

Fig. 1. Network Model

TABLE I
NOTATIONS

I a set of controllers I
J a set of switches J
i controller i ∈ I
j switch j ∈ J
ci a binary variable representing whether controller i ∈ I

is activated
eij a binary variable representing whether switch j is

associated with controller i
T the maximum allowable flow setup time required by a switch
dij the transmission latency between switch j and controller i
λj arrival rate of a packet sent by switch j
µi the processing capacity of controller i

can be reached from any controller. The transmission latency
between a controller i ∈ I and a switch j ∈ J is denoted as
dij .

To further state our problem, we first elaborate the flow
setup process as follows. In SDNs, each switch has a flow
table where each entry corresponds to the operation rule (e.g.,
forwarding, discarding, packet header altering, etc.) for a flow.
When a packet arrives at the OpenFlow switch, the switch
extracts its header information and then matches it with the
flow table entries. If the matching is successful, the switch
executes the forwarding decision instantaneously. If the switch
does not contain a matching rule, the packet is sent to the
associated controller requesting for an action to execute. The
controller will determine the rule to handle the packet and
respond to the switchs request with an action to perform on
all packets of this flow. A controller i ∈ I can only manage
the switches that associate to it.

From the perspective of controller, the flow setup requests
may accumulate at the egress of controller and form a request
queue. Following the SDN model presented in [12] and [13],
we assume that a switch j ∈ J generates flow setup requests
following Poisson process with rate λj . The requests are
processed by controller i ∈ I with exponentially distributed
service time with average value 1/µi, where µi is the average
service rate.

The main symbols used in this paper are summarized in
Table I.

IV. PROBLEM FORMULATION

In this section, we first formulate the MC-SCA problem
into a quadratic integer programming (QIP) problem. We then
linearize the QIP into an equivalent ILP problem. We also
prove the NP-hardness of the MC-SCA problem.
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A. QIP Formulation

To represent the association relationship, we first define a
binary variable eij to denote whether switch j is associated
with controller i as:

eij =

{
1, if switch j is associated with controller i,
0, otherwise.

(1)

1) Completeness Constraints: According to SDN philos-
ophy, a switch must be associated with one controller such
that it can be manipulated according to the communication
requirements. That is,∑

i∈I
eij = 1,∀j ∈ J. (2)

Note that a switch can be associated with a controller i ∈ I
provided that i is activated. To this end, we define a binary
variable ci to denote whether controller i is activated or not
as follows:

ci =

{
1, if controller i is activated,
0, otherwise.

(3)

We must guarantee that each switch is assigned to an activated
controller, i.e.,

eij ≤ ci,∀i ∈ I, j ∈ J. (4)

2) Flow Setup Time Constraints: As we know, the first
packet (i.e., flow setup request) of a flow arriving at a switch
j ∈ J but with no entry matching in the flow table must go
through the associated controller of j, say i ∈ I , to obtain the
rule for the flow. The flow setup time has a critical impact
on the system performance as the flow can pass j only after
the rule is ready. A controller takes charge of the flow setup
requests from all the switches in its management domain.
A flow setup request queue is formed at each controller as
illustrated in Fig. 2. The request from any switch can be
regarded as an individual and independent Poisson process.
As the sum of a set of independent Poisson processes is still a
Poisson process and the request handling time is exponentially
distributed, we can describe the process of handling flow
setup requests on a controller using M/M/1 queuing model.
Therefore, the queuing time at a controller i can be calculated
as

1

µi −
∑

k∈J λkeik
,

where
∑

k∈J λkeik denotes the sum Poisson process arrival
rate. To ensure that the queue is steady, a hidden condition
must be met is that the sum of the arrival rate of all switches
shall not be beyond the service rate provided by a controller.
Therefore, we have:

µi −
∑
k∈J

λkeik > 0 (5)

From the perspective of a switch, the flow setup time
shall also take the transmission latency between its associated
controller. To ensure the network performance, the total flow
setup time experienced by any switch shall not exceed T , i.e.,

eijdij +
1

µi −
∑

k∈J λkeik
≤ T, ∀i ∈ I, j ∈ J. (6)

...
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Fig. 2. Request Queue at an SDN Controller

When µi −
∑

k∈J λkei,k > 0, (6) can be transformed into

µieijdij +
∑
k∈J

Tλkeik − dij
∑
k∈J

λkeijeik ≤ Tµi − 1,

∀i ∈ I, j ∈ J.
(7)

3) QIP Formulation: We intend to minimize the number of
activated controllers, which can be expressed as∑

i∈I
ci

Summarizing the above together, we can formulate the MC-
SCA problem as:

min :
∑
i∈I

ci,

s.t. : (2), (4), (5), (7),
ci ∈ {0, 1}, eij ∈ {0, 1},∀i ∈ I, j ∈ J,

which is a QIP as there are quadratic terms, e.g., eijeik.
Theorem 1: The flow setup time aware minimum cost

switch-controller association problem is NP-Hard.
Proof: Let us consider a special case of the MC-SCA

problem by excluding the queuing time at each controller. In
this case, whether a switch can be associated with a controller
is only determined by the transmission time between them.
For example, for a controller j ∈ J and a switch i ∈ I , only
when dij ≤ T , i can be associated with j. We shall find out
the number of activated controllers that are able to ensure the
completeness constraints in (2) that any switch is associated
to a controller. This is exactly a minimum set cover problem
[15], which has been proved as NP-Hard.

B. QIP to ILP Transformation

We notice that it is possible to linearize the quadratic terms
eijeik by introducing new auxiliary variables

xijk = eijeik,∀i ∈ I, j, k ∈ J

which can be equivalently replaced by the following linear
constraints

xijk ≤ eij ,∀i ∈ I, j, k ∈ J (8)

xijk ≤ eik,∀i ∈ I, j, k ∈ J (9)

xij ≥ eij + eik − 1,∀i ∈ I, j, k ∈ J (10)

The constraint (7) can be then rewritten in linear form as

µieijdij +
∑
k∈J

Tλkeik −
∑
k∈J

λkxijkdij ≤ Tµi − 1,

∀i ∈ I, j ∈ J
(11)
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Algorithm 1 Allocation-Merge Algorithm
Input: controller set I , switch set J , the transmission delay

dij , i ∈ I, j ∈ J , the maximum allowable setup time T ,
flow request rate λj , j ∈ J , the processing rate µi, i ∈ I

Output: the number of activated controllers
1: Initialize three arrays: e[i, j], c[i], s[j], i ∈ I, j ∈ J as 0
2: Select the controller with the smallest transmission latency
dij for each switch

3: e[i, j]← 1, c[i]← 1, s[j]← 1
4: for all i ∈ I do
5: Calculate m = µi −

∑
k∈J λkei,k

6: if m > 0 then
7: for all j ∈ J do
8: Calculate t = ei,jdi,j +

1
m

9: if t > T then
10: e[i, j]← 0, s[j]← 0
11: end if
12: end for
13: else
14: Exclude the switches with the smallest arrival rates

from i until m > 0
15: end if
16: end for
17: ∀i ∈ I , if no switch assigned to i, c[i]← 0.
18: for all j ∈ J and s[j] = 0 do
19: Associate j to an activated controller provided that (5)

and (6) are satisfied.
20: end for
21: Merge the activated controllers provided that (5) and (6)

are satisfied.

Thus, an ILP formulation for the MC-SCA problem can be
obtained as

min :
∑
i∈I

ci,

s.t. : (2), (4), (8)− (11),
ci ∈ {0, 1}, eij ∈ {0, 1}, xijk ∈ {0, 1},∀i ∈ I, j, k ∈ J.

V. HEURISTIC ALGORITHM

It is still computationally prohibitive to solve the ILP
problem to get the optimal solution in large-scale SDNs. To
address this problem, we propose a heuristic algorithm named
“Allocation-Merge Algorithm” in this section.

Allocation-Merge Algorithm assigns switches to controllers
according to the transmission latency under the constraints.
The overall algorithm is presented in Algorithm 1, which
mainly consists of three phases, initial association (lines 1-
17), reassociation (lines 18-20) and merging (line 21). In
the initial allocation phase, we first greedily associate each
switch to the controller with the smallest transmission latency,
provided that the setup time constraints are not violated with
the consideration of queueing time by checking constraints
(5) and (6). Therefore, after the initial association, there are
some switches remaining in un-associated state. We shall then
try to associate each of them onto an appropriate controller.
In order to minimize the number of activated controllers, we

first try to associate an un-associated switch to an activated
controller. If no activated controller can accommodate the
switch without violating constraints (5) and (6), we activate
an inactive controller and associate the switch to it. After the
second phase, we ensure that all the switches are successfully
associated to appropriate controllers with guaranteed flow
setup time. However, we notice that the performance can be
further improved as some controllers are with small request
load after the initial two phases. Therefore, we then try to
merge the activated controllers with light loads to reduce the
number of the controller. We iteratively merge two controllers
into one provided that the flow setup time constraints are
not violated. Finally, we obtain the controller activation and
switch-controller association decisions.

VI. PERFORMANCE EVALUATION

In this section, we present our simulation-based perfor-
mance evaluation results on the efficiency of our proposed
algorithm, by comparing it (i.e., “AMA”) against the opti-
mal solution and another greedy-based heuristic algorithm
“GA”.The optimal results “Optimal” are obtained by solving
the ILP using commercial solver Gurobi optimizer [16]. The
basic idea of the greedy algorithm is to assign as many
switches as possible to an activated controller without violating
the resource capacity constraints and one controller is activated
in each iteration. The whole process works as follows. At
first, we decreasingly sort both the switches and the controllers
according to their request rates and processing rates, respec-
tively. We then iteratively activate the controllers and assign as
many switches as possible to the activated controller in each
iteration. At the same time, constraints (5) and (6) are checked
to see whether the setup time constraints are satisfied or not.
The iterative process stops when all switches are assigned.

To extensively investigate the performance of our heuristic
algorithms, we vary the values of the number of controllers |I|,
the number of switches |J |, the arrival rate of the flow request
λ (here we consider uniform request rate for all switches),
the maximum allowable flow setup time T in different group
of simulations. 20 simulation instances in each group are
conducted to get the average number of activated controllers.
In each simulation instance, the transmission time between
switches and controllers is randomly generated.

We first check how the maximum allowable setup time T
affects the number of controllers. Fig. 3 presents the simulation
results. In this group of simulations, we fix |I| = 10, |J | = 20,
λ = 8, µ = 50 and vary T from 1 to 30. The results
are presented in Fig. 3(a). In Fig. 3(b), we set |I| = 10,
|J | = 20, λ ∈ [5, 10], µ ∈ [40, 60] and T from 1 to 30. From
both Fig. 3(a) and Fig. 3(b), we can see that our proposed
algorithm much approaches the optimal one and outperforms
the greedy one, under any settings. Besides, it can be also
noticed that the minimum cost shows as a decreasing function
of the maximum allowable setup time. One more interesting
thing is that all three algorithms converge and have the same
number of controllers when the maximum allowable setup time
is big enough. This is because, longer queuing time is tolerable
with larger value of T . In this case, more requests can be
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Fig. 3. On the effect of the maximum allowable flow setup time
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Fig. 4. On the effect of the number of switches

allocated to one controller and hence less activated controllers
are needed. In order to further study the performance of our
algorithms, we extend the scale of the network under the
setting of |I| = 25, |J | = 100, λ = 8, µ = 50 and T from 1
to 30. Due to the complexity of obtaining the optimal results,
only “AMA” ad “GA” are reported in Fig. 3(c). We can still
see that “AMA” still performs better than “GA” in large-scale
networks.

Then, we study the effect of the number of switches to the
minimum number of the activated controllers using different
settings. Similar to the study on the value of maximum allow-
able setup time, three group of settings are also considered. In
the first group of simulations, we fix |I| = 10, λ = 8, µ = 50,
T = 8 and vary the number of switches from 1 to 30 and show
the results in Fig. 4(a). In the second group of simulations,
we further vary the values of the flow request arrival rate
λ ∈ [5, 10], the processing rate of controller µ ∈ [40, 60] and
show the results in Fig.4(b). Fig.4(c) gives the results under
the settings of |I| = 25, λ = 8, µ = 50, T = 10 and |J | from
1 to 100. Once again, we can see that our algorithm performs
much close to the optimal one and has obvious advantage over
the greedy one. We also notice that the number of activated
controllers needed increase with the number of switches. This
is attributed to the fact that more controllers must be activated
to ensure the setup time if there are more switches.

Next, Fig. 5 gives the results on the effect of the arrival
rate under the setting of T = 8, |I| = 10, |J | = 20, µ = 50
and λ from 1 to 15. From the figure, we can still see the
high efficiency of our proposed Allocation-Merge Algorithm.
In addition, it also shows that the number of the activated
controllers increases with the increasing of the arrival rate. It
is straightforward to know that more requests imply that more
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Fig. 5. On the effect of flow setup request arrival rate

controllers shall be activated to handle them.
Finally, in order to extensively show the the efficiency of

our proposed algorithm, we carry out a group of experiments
by randomly setting the request arrival rates on all switches
in [5, 10], the processing rates on the controllers in [40, 60]
and maximum allowable setup time in [5, 15] in different sim-
ulation instances. We plot the cumulative distribution function
(CDF) of the number of activated controllers for 200 instances
in Fig. 6, from which we still see the high efficiency of
our algorithm under any random settings. After extensively
validating the efficiency of our algorithm, we further conduct
a group of experiments to check the computation time of
different algorithms. The results are reported in Table II.
Obviously, both greedy and our heuristic algorithm require
much less running time than solving the ILP to get the optimal
solution. “AMA” needs only a little more running time than
“Greedy”.
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TABLE II
RUNNING TIME

Instances Optimal Heuristic Algorithm Greedy Algorithm
50 206.400718887 0.00139172755833 0.000393690880978
100 400.420835177 0.0026170858729 0.000931541952999
200 718.891972255 0.00520450670253 0.00142874264548
300 1279.7988438 0.00856356298393 0.00310085783613

VII. CONCLUSION

In this paper, we investigate the MC-SCA problem on
how to minimize of the number of activated controllers with
guaranteed flow setup time. By modeling the flow setup
request process on a controller using an M/M/1 queue, we
first formulate the MC-SCA into a QIP problem and further
linearize it into an ILP problem. We also prove that the MC-
SCA problem is NP-Hard. To address the computation com-
plexity, we propose a heuristic algorithm. Through extensive
simulations, the high efficiency of our algorithm is validated
as it much approaches the optimal performance.
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