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Abstract—This paper investigates cooperative forwarding
in large highly dynamic wireless networks. Unlike traditional
coordinated cooperative forwarding schemes that require a
large amount of neighborhood discovery and coordination
information to be exchanged before making the forwarding
decision, this paper proposes an uncoordinated cooperative
forwarding scheme where each node determines whether or
not to forward a received packet independently based on a
forwarding probability determined by its own location, the
density of nodes in the network and the locations of the desti-
nation and the transmitter from which it receives the packet,
without the costly or even impractical neighbor discovery
and coordination process. Analytical results are derived on
the successful transmission probability and the expected
number of forwarding nodes involved in the cooperative
forwarding process. On that basis, discussions are presented
on the optimal forwarding probability design that meets
a pre-designated successful transmission probability targé:
using minimum number of forwarding nodes. Simulations
are conducted to evaluate the performance of the proposed
scheme.

Index Terms—highly dynamic networks, multihop, unco-
ordinated cooperative forwarding.

I. INTRODUCTION

This paper considers the problem of cooperative for-
warding in large highly dynamic wireless networks, e.g.
vehicular ad hoc networks (VANET) or mobile ad hoc
networks (MANET). On a high level, the problem can be
described as: when a node in a large highly dynamic wire-
less network overhears a packet belonging to a particular
source-destination pair, with minimal information about
its neighborhood and environment, how the node makes
decision on whether it should collaborate to forward the
packet?

Of course, if every node overhearing the packet for-
wards the packet with a high probability, the packet can
be delivered to its destination with a high probability but
it may cause a large number of redundant transmissions
thereby wasting precious radio resources. On the other
hand, if the forwarding probability is low, the packet
may not eventually arrive at its destination. Therefore,
tradeoff between three main factors are involved in the
decision process: 1) the amount of information used in
making the forwarding decision. The more information
is used, the more overhead is incurred in collecting the
information. It was reported that current military prototype
MANETSs routinelv exnerience overhead on the order of

even 99 percent of the end-to-end packet transmissions [1].
Therefore overhead involved in the cooperative forwarding
decision is an important consideration; 2) the forwarding
probability which determines the number of nodes (or
equivalently transmissions) involved in the cooperative
forwarding process; and 3) the successful transmission
probability, i.e. the probability that the packet eventually
arrives at its destination within a designated amount of
time.

A major challenge for routing and forwarding in dy-
namic networks is that the nodes are constantly moving
and the network topology is highly dynamic. Therefore
the traditional layered approach, where the route between
a source and its destination is determined before the
actual data transfer, is unsuitable for dynamic networks.
«There are two common approaches to end-to-end packet
transmissions in highly dynamic networks: broadcast and
cooperative communication. Broadcast remains to be the
most reliable and possibly the most widely used approach
for packet transmission in highly dynamic networks [2],
[3] however it is well known to cause a large number of
redundant transmissions and significant wastage in radio
resources. Cooperative communication on the other hand
allows additional nodes in the vicinity of the route that
overhear the transmitted packet to assist in delivering the
packet to its destination, leveraging the broadcast nature
of the wireless medium to provide diversity against time-
varying link fades and outages [4].

A common feature in existing cooperative techniques is
the coordination required among the participating neigh-
bors. These coordinations typically include the discovery
of neighbors in the vicinity, the collection of channel
information to these neighbors, and the selection of the
best neighbor(s) whose cooperation will maximize the
performance improvement [2], [4], [5], [6], [7]. For the
well-known opportunistic routing schemes [8], coordina-
tion is required at every hop to decide the node that will
serve as the packet’s next hop towards the destination.
It was reported in [1] that the coordination overhead
may account for 99 percent of the end-to-end packet
transmissions. Due to associated coordination overheads,
existing cooperative communication methods are suitable
mostly for mesh or sensor networks with static or relatively
stable topologies. They are not useful when the topology is
very dynamic, due to either a high velocity (e.g. vehicular
networks) or a high density of the nodes (e.g. networks
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of mobile devices carried by people on a busy street or in
a conference hall). In fact, in highly dynamics networks,
the coordination overheads are incurred too frequently to
be practical even just to maintain an up-to-date view of
the neighbor topology, letting alone an up-to-date channel
state information to the neighbor nodes.

Motivated by the above observations, in this paper we
consider an uncoordinated cooperative forwarding scheme,
where nodes overhearing a packet make forwarding deci-
sions independently without prior coordination or mea-
surement of real-time channel information to its neigh-
bors, and even without being aware of their existence
(apart from the transmitter of the packet). Furthermore,
forwarding decision at each node is only based on the
location of that node, the locations of the destination and
the transmitter from which it receives the packet, and
some limited prior statistical knowledge about the local
environment, namely, the spatial distribution of the nodes
and radio propagation characteristics. A major challenge
in the uncoordinated cooperative forwarding scheme is
the design of the forwarding probability that on the one
hand minimizing the number of transmissions required
to deliver the packet to its destination, and on the other
hand guaranteeing a designated transmission success prob-
ability. In the literature, the forwarding probability has
been chosen to be a predefined fixed value [9], a linear
function of the distance between the transmitter and the
receiver [10], or be determined jointly by the distance
to the destination and nodes’ spatial distribution [2]. In
[4], theoretical analysis was presented on the successful
transmission probability using three uncoordinated for-
warding schemes in two-hop scenario where the source
and the destination are at most two hops away. Reference
[5] further obtained the optimal forwarding scheme in the
two-hop scenario. Despite the above advances in the field,
design of optimal uncoordinated forwarding scheme for
multi-hop scenarios, backed by solid theoretical analysis,
remains an open challenge. It is a focus of this paper to
tackle the challenge.

More specifically, the main contributions of this paper
are:

o Considering one-dimensional highly dynamic net-
works, with vehicular networks on a highway being
typical examples, this paper proposes an uncoordi-
nated cooperative forwarding scheme, where each
node receiving the packet makes forwarding decisions
independently of other nodes, using its own location,
the locations of the destination and the transmitter
from which it receives the packet, the spatial distri-
bution of nodes and radio propagation characteristics
only, without prior coordination with its neighbors
and even without being aware of their existence.

o Performance of the proposed uncoordinated forward-
ing scheme is analyzed. For a pair of source and
destination separated multiple hops away and with a
known distance, the expected number of forwarding
nodes and the successful transmission probability are
obtained.

o On the basis of the analysis, discussions are presented
on the optimal design of the forwarding probabil-

ity function to meet a pre-designated target on the
probability of successful transmission while using the
minimum number of forwarding nodes.

o Simulations are conducted to validate the perfor-
mance of the proposed uncoordinated cooperative
forwarding scheme.

The technique and analysis presented in this paper can be
useful for designing cooperative communication strategies
in large and highly dynamic networks.

The rest of the paper is organized as follows. In Section
II, we give an accurate definition of the network models,
explain the design of the uncoordinated cooperative for-
warding scheme and the problem formulation. Section III
presents performance analysis of the proposed uncoordi-
nated cooperative forwarding scheme and on that basis
discusses the design of the optimal forwarding probability
function. Section IV presents simulations and discussions.
Finally, Section V concludes the paper.

II. NETWORK MODEL

In this paper, we consider a one-dimensional (1-D)
dynamic network on a linear segment of L with a single
source-destination pair. The source and the destination are
placed at the two ends of the segment. Without loss of
generality, we assume that the source is located at the
origin and the destination is located on +x axis. All
other nodes apart from the source and the destination
are distributed on the segment following a homogeneous
Poisson distribution with known density p. Note that the
probability density function of the distance between a
pair of randomly chosen nodes in a 1-D network can be
readily obtained. Therefore, it is straightforward to extend
the results obtained in this paper to 1-D networks with
multiple source-destination pairs. Furthermore, in many
dynamic networks, the density of nodes remains quite
stable although the constituent nodes keep changing. For
example, in vehicular networks, during peak hours and
non-peak hours, the density of vehicles on a particular road
segment is quite stable and readily predictable. However
the particular vehicles on the road segment keep changing.
Therefore, in this paper we assume that each node knows
the density of the nodes in the network but not their
number and exact locations.

As commonly done in the literature [2], [4], [5], [1],
when we consider the transmission of a packet between a
source and a destination, movement of nodes during the
end-to-end transmission of the packet is not considered.
That is, we consider a snap-shot of the network at a
particular time instant. A typical end-to-end transmission
can be completed in the order of milliseconds, during
which the movement of nodes is comparatively small.

Furthermore, we consider that a pair of nodes are
directly connected if and only if their Euclidean distance
is smaller than or equal to R. That is, the well-known unit
disk connection model is considered. The unit disk model
is a simplified connection model that grossly captures
the fact in wireless communications that it is easier for
two nearby nodes to directly communicate with each
other, compared with two nodes separated by a larger
distance. Admittedly, connection model in real networks,



particularly in vehicular networks, is more complicated
than that presented in the unit disk model. Here the use
of the unit disk model helps us to ignore the impact of
physical layer details and focuses on the impact of the
topology aspect of the network, which is the main focus
of this paper.

We assume that each node knows its own location, this
can be obtained easily either from an embedded GPS
receiver, which is becoming increasingly ubiquitous in
many mobile devices and vehicles [4] or via one of the nu-
merous wireless localization techniques available [11], the
location of the transmitter from which the node receives
the packet of interest, the location of the destination, which
can be carried in the packet header, and the node density.
Using the above information, the node makes forwarding
decision independently without prior coordination with its
neighbors and even without being aware of their existence.
More specifically, the following rule is used in making a
forwarding decision when a node located at « € [0, L]
overhears a packet:

o The node located at x calculates the probability that
it will forward the packet using its own location,
the location of the transmitter, denoted by z, and
the forwarding probability function P; according to
Pj(x — z). The design of the forwarding probability
function Py will be explained later.

« If the node decides to forward the packet, it first waits
a random backoff time ¢. The back-off time follows
an exponential distribution [8] with mean % Then
three situations may possibly occur: (1) if it does not
overhear any transmission during the backoff period,
it will forward the packet as the new transmitter; or
(2) the node at z overhears the transmission from
a node located at y AND y > z. Recall that the
source is located at the origin and the destination is
located at L. Therefore, in this situation, there is no
need for the node at x to forward the packet. The
node simply drops the packet; or (3) the node at x
overhears the transmission from a node located at y
AND y < z. In this situation, the transmission by the
node at z may still help the packet to reach nodes that
have not received the packet before. Therefore the
node at x updates its forwarding probability using
the the node at y as the new transmitter: Py (x — y),
and makes decision on whether it will forward the
packet according to Py (z — y), independently of its
previous decision. If it decides to forward the packet,
it starts a new backoff process. Otherwise, it gives up
forwarding and discards the packet.

« The process naturally stops when the packet reaches
its destination, which occurs when a node located in
[L — R, L) receives the packet and transmits.

The design of the uncoordinated cooperative forwarding
scheme is intended to strike a balance among the amount
of information and coordination required to make a for-
warding decision, the transmission success probability and
the number of transmissions (or equivalently forwarding
nodes) required to reach the destination.

A node at x is said to be a k-hop receiver if when
the packet is received by the node for the first time, the
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Figure 1.
network.

An illustration of the transmitters in a 1-D highly dynamic

packet has been transmitted k£ times by nodes located
within [0, ) including the transmission by the source.
A node at x is said to be a k-hop transmitter if by
the time when the node transmits following the rules
described in the last paragraph, the packet has already
been transmitted k times by nodes located within [0, z)
including the transmission by the source. Following the
definition, the source is counted as the 0" hop transmitter.
Note that in our forwarding scheme, it is possible that a
k-hop receiver is a m-hop transmitter for m > k. Let z
be the location of the k-hop transmitter. It follows that
all nodes in (z;_1,2x—1 + R] are either k hop receivers
or m-hop receivers for m < k. Furthermore, for a fixed
value of k, there can be at most one node that is a k-hop
transmitter.

Let ¢x(x) be the probability that a node at x is a k-
hop receiver. Let M (z) be the number of transmissions
(or forwarding nodes) required to deliver the packet from
the source to a node located at x distance away using
our uncoordinated forwarding scheme. M (z) is a random
positive integer. Let Ps,.(x) be the probability that a
packet transmitted from the source successfully reaches
a node at x. We note the following relationship that will
be used in the latter analysis:

Pe(z) =Y ¢r(x) and E[M(z)] = > ker(z) (1)
k=1 k=1

Given the above definitions, the objective of the unco-
ordinated cooperative forwarding scheme design can be
written analytically as follows:

min E[M(L)]
Py (x) )
sit.  Peye(L)>1—¢

where ¢ is the a pre-designated small positive constant.

III. PERFORMANCE ANALYSIS OF THE
UNCOORDINATED COOPERATIVE FORWARDING
SCHEME

In this section, we analyze the performance of the
uncoordinated cooperative forwarding scheme proposed in
the last section where the performance is measured by two
metrics: Pg,.(L) and M (L). On the basis of the analysis,
we then investigate the design of forwarding probability
function Py(x) that minimizes the expected number of
transmissions while meeting the performance objective
that Py,.(L) > 1 —e¢.

Fig.1 illustrates the locations of the transmitters in the
1-D highly dynamic network, where z; is the location of
the k-hop transmitter and zp = 0 is the location of the
source.

Let i (z) be the probability that a node located at = (if
exists) is a k-hop transmitter. In the rest of this section, we



first obtain an analytical expression of ¢ (x) recursively
for k = 1,2,.... On that basis, we obtain ¢y (), Psy.(L)
and M (L).

Now we start with & = 1. A node at = is a 1-hop
transmitter if and only if the following conditions are met:

o The node has received the packet from the source.
This occurs with probability g () where g (x) is the
connection function. For the unit disk model, g (z) =
1 when 0 < < R and g (x) = 0 otherwise.

o The destination has not received the packet. This
occurs with probability 1 — g (L).

o The node decides to forward the packet. This occurs
with probability Pj(x).

o The node is successful in the competition in backoff
process and gets the opportunity to transmit. This
occurs with probability h depending on the backoff
process only. The value of h will be analyzed shortly
later.

Noting that the above four events are independent, it
follows that

p1(w) = hg (x) (1 — g (L)) Ps(z) 3)

Next we analyze h. Let ¢} be the (random) backoff timer
of the node at x. Conditioned on ¢} = ¢, the node at
x becomes successful in the backoff competition if all
other nodes, who have received the packet from the source
AND who decides to forward the packet, has a backoff
timer greater than ¢. Note the independence between the
event that a node receives the packet, the event that a
node decides to forward the packet and the event that a
node whose backoff timer is smaller than or equal to t.
Denote by Pr(¢t* < t) the probability of the event that
a randomly chosen node whose backoff timer is smaller
than or equal to ¢. Because the backoff timer follows an
exponential distribution with mean %, it readily follows
that Pr (t* < t) =1—e M,

Using the thinning theorem [12], the set of nodes, who
receives the packet AND decides to forward the packet
AND has a backoff timer smaller than or equal to t,
follows an inhomogeneous Poisson distribution with den-
sity pg (z) (1 — g (L)) Py(z) Pr (¢t* < t). The number of
such nodes follows an exponential distribution with mean
fOL pg (z) (1 —g (L)) Pf(z) Pr(t* < t)dx. Therefore the
probability that there is no such node is given by

e~ Jo pg(@)(1—g(L)) Py (x) Pr(t* <t)dx

Further using the Slivnyak—Mecke theorem [12], the con-
ditional event that there exists a node at x does not affect
the above probability. Note that the probability density
function (pdf) of ¢* is Ae~*. Therefore using the total
probability theorem

h— /°° o I pa(@)1=g (L) Py (@) (1= Yoy - Ngp (4
0
Since in the unit disk model, g(z) = 0 for z >

R, the above expression can also be written as
[ e Jo" ol (A=g(INPr (@) (1=e 7 )dw ) o=X gy Combin-

ing (3) and (4), it follows that
p1(x) =g () (1 —g (L)) Pr(x)

y /°° o I o)) (1= Yy Mgy (s)
0

Now we proceed to the case that k& takes more general
values other than 1. Let 2, k£ > 1 be the random location
of the k-hop transmitter. Assuming that the pdf of zj,
i.e. pr(x), is known. We shall derive the pdf of zpi1
conditioned on that z; = y or simplify referred to as
conditioned on zj,. Note that according to the design of our
uncoordinated cooperative forwarding scheme, when the
node at zj, transmits as the k-th hop transmitter, the node
essentially replaces the role of the source in the system.
Therefore it readily follows that

Prr1(@lz) = g (@ — 2) (1 — g (L — 2x)) Pr(z — 2x)
% /OO o~ 5 pa(y=2) Pr(y=21) (1= )dy y 2t gy ©)
0

Using the property that for a fixed value of k, there
can be at most one node who is a k-hop transmitter, the
unconditional probability can be obtained as

L
Pr1(T) :/ Or+1(zlzk)pr (2r) pd2i
0

=/0L~-~/0Lgok+1<m>

xor(2k|2k-1) - - pa(zalz1) 1 (21)p"d2y - - dzi, (7)

The destination is a k hop receiver if and only if it can
directly receive from a k— 1 hop transmitter. Note that the
term 1 — g (L — 2i) in pgy1(x|2;) allows us to rule out
the possibility that transmission continues after the packet
has reached its destination. Further note that for any fixed
value of k, there is at most one node that can be a k hop
transmitter. Based on the above observations, it follows
that when k£ > 1

L L
éx(L) :/0 er-1(y)pg (L —y) dy:/ chk—l(y)pdy

®)
and ¢, (L) = g (L).

Equation (8), together with (1), allows us to deter-
mine the transmission success probability Pg,.(L) =
Y peq k(L) and the expected number of transmissions re-
quired to reach the destination E[M (L)] = >-77, koy(z).

A. Design of Optimal Forwarding Probability Function

As manifested in (5), (6) and our discussion in Section
I, the forwarding probability function Py(z) plays an
important role in determining the performance of the
forwarding scheme. Based on the analysis in the last
section, in this subsection we analyze the design of the
optimal forwarding probability function for the optimiza-
tion problem in (2).

The analytical expressions for Py,.(L) and E[M(L)]
in their present form do not allow us to readily analyze
the optimal functional form of Py(x) that solves the
optimization problem in (2). However, for particular forms
of Ps(x), e.g. Ps(x) = c and Py(z) = ax, the optimum
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Figure 3. Successful transmission probability as a function of Py (x) =
c and L (R=250m, p=0.02 /m)

parameters for P(z) can be found using the method of
Lagrange multipliers and solved numerically.

In the following analysis, we consider the simple case
that Ps(x) = c as an example. The optimization problem
in (2). now reduces to finding the value of cop;:

Copt = argmin E[M(L)]
Py(z)=c ©)]
s.t. Poue(L)>1—¢

The Lagrangian of the optimization problem can be
written as

L(Ps(z) = ¢,;n) = EIM(L)] +1(1 = & = Poue(L)) (10)

The optimum value of ¢ can then be obtained by setting
the partial derivative of L(Ps(x) = ¢,n) with regards to
c and with regards to 1 to O respectively and solving the
equations. However in this paper, we resort to a simpler
method by using figures. Fig. 2 and 3 show the variation
of E[M(L)] and Ps,.(L) with the source-destination
distance L and the forwarding probability P;(z) = c.
Both figures are drawn using the analytical expression
of E[M(L)] and Ps,.(L). As shown in the figures, both
E[M(L)] and Ps,.(L) are non-decreasing function of c.
Based on the observation, it follows that the optimum
value of ¢ is the solution to the equation Pg,.(L) =1—¢,
which can be found numerically.

IV. SIMULATION

In this section, we use both simulations and numerical
results to establish the performance of the proposed un-
coordinated cooperative forwarding scheme and provide
some intuitively digestible results. Considering a 1D axis,
nodes apart from source and destination are deployed
following a homogeneous density p=0.06 /m. The trans-
mission range under unit disk model R is 250m [2]. The
distance between source and destination L varies from
250m to 1000m. The back off time follows the exponential
distribution with rate A=1. The lower bound of successful
transmission probability P/2%¢" (L) is 0.95. Note that each
point in the simulation is the average value obtained from
50000 random simulations. The limit of the maximum
number of hops K, is 20.

Fig. 6 shows the expected number of transmissions as
a function of the source-destination distance L using both
the constant forwarding probability P; (z) = 0.34 and
the linear forwarding probability Py (x) = 0.0025z. The
parameter setting of the forwarding probability functions
have been explained in the second paragraph of Section
IV. It can be observed that under the same or similar suc-
cessful transmission probability the uncoordinated cooper-
ative forwarding scheme employing the linear forwarding
probability requires less transmissions than that using a
constant forwarding probability.

First, we evaluate the probability that the destination
can be reached in % transmissions assuming both con-
stant forwarding probability P;(z) = ¢ = 0.34 and
linear forwarding probability Py (x) = az = 0.0025x
where = € [0, R]. The value of a and ¢ are determined
assuming that L=1000m and Ps,.(L) = 0.95. Because
the successful transmission probability increases with the
decreasing L which has been proved by Fig. 3, the success-
ful transmission probability is undoubtedly not less than
0.95 when L varies from 250m to 1000m conditioned on
P;(z) = ¢ =0.34 (and Py () = axr = 0.0025z). With
the same or similar successful transmission probability
Psyc(L), we only need to compare the expected number of
transmissions under two forwarding probability functions.

The probability that the destination can be reached in
k transmissions under two forwarding probability func-
tions are shown in Fig. 4 and Fig. 5. The parameter

Pf(x)=c=0.34, Psuc(L)=0.95

Sim k=2
Sim k=3 []
Sim k=4
Sim k=5 [|
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2 os
=
0.4
0.3
0.2

0.1

Source-destination L (m)

Figure 4. Probability that the destination at L is a k-hop receiver
(Pf(x) = c=0.34).
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Figure 5. Probability that the destination at L is a k-hop receiver
(Pf(x) = az = 0.0025z).
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Expected number of transmissions
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Source-destination L (m)

Figure 6. Expected number of transmissions.

setting of the forwarding probability functions have been
explained in the second paragraph of Section IV. The
confidence interval is too small to be distinguishable and
hence ignored. Unsurprisingly, the numerical result and the
simulation result match very well. A visual comparison of
Fig. 4 and Fig. 5 appears to suggest that a less number of
transmissions is required when using a linear forwarding
probability Py (x) = 0.0025z compared with that using a
constant forwarding probability Py (x) = 0.34. This result
is consistent with our intuition that the linear forwarding
probability results in the fact that the node which is farther
away from the transmitter is in a better position to transmit
to the destination and results in less number of total
transmissions.

Fig. 8 compares the performance of uncoordinated
cooperative forwarding schemes, measured in the expected
number of transmissions E[M(L)], using three different
forwarding probability functions, i.e. Py(z) = ¢, Py(x) =

0, 0< bR
’ sT< . In the figure, the
1, bR<z <1

three cases are labeled as uncoordinated Case 1, unco-
ordinated Case 2 and uncoordinated Case 3 respectively.
For comparison, we also provide the expected number of
transmissions using the shortest path routing. Obviously,
the shortest path routing needs global knowledge of the
network and it serves as a benchmark for the best perfor-
mance here. This is labeled as Case 4 in Fig. 8.

ax and Pj(z) =

0.2 L .

300 400 500 600 700 800 900 1000

Source-destination L (m)
x 10°
25 - - - . . =
I /

15 . . . . . .

300 400 500 600 700 800 900 1000

Source-destination L (m)

300 400 500 600 700 800 900 1000
Source-destination L (m)

Figure 7. Optimal value of ¢, a and b conditioned on Psyc(L) = 1—¢ =
0.95.

Fig. 7 shows the optimal value of ¢, a and b correspond-
ing to the different values of L under the constraint that
Pyuo(L) = 1 —€ = 0.95, which justifies that the forward-
ing probability should be higher with an increasing value
of L in order to guarantee a high successful transmission
probability. Interestingly, Case 3 where P;(z) is set as
a step function provides the best performance among all
three cases, close to that of Case 4 (a benchmark for the
best performance), as shown in Fig.8. It is part of our
future work to dig into the findings and provide analytical
support for the optimum choice of Py(x).

Fig. 9 compares the expected number of transmis-
sions E[M (L)] of the proposed uncoordinated forwarding
scheme and the coordinated greedy forwarding algorithm
[13]. The greedy forwarding algorithm chooses the node,
which has received a copy of the packet and would
like to forward, closest to the destination in each hop
as the forwarding node. Greedy forwarding algorithm
is comparatively easy to implement however relies on
coordination between nodes to determine the set of nodes
who have received packet and would like to forward, and
to determine which node among them is closest to the
destination.The three sub-figures compare the performance
of the proposed uncoordinated scheme and the greedy
algorithm, using three different forwarding probability
functions as mentioned above, i.e. Py(z) = ¢ (Case 1),
0, 0<z<ObR
1, bR<z <1
(Case 3) respectively. From Fig. 9, we can see that the
proposed uncoordinated scheme has a similar performance
as the greedy forwarding algorithm but saving a large
amount of coordination overhead.

Pf(z) = ax (Case 2) and Pf(z) =

V. CONCLUSION AND FUTURE WORK

This paper proposed an uncoordinated cooperative for-
warding scheme for 1-D highly dynamic networks. The
performance of the proposed scheme, measured in terms
of the transmission success probability and the expected
number of transmissions, is analyzed. On that basis, design
of the optimum forwarding probability function is dis-

cussed. Given a particular form of the forwarding proba-
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Figure 8. Expected number of transmissions using three forwarding
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Figure 9. A comparison of expected number of transmissions using
the proposed uncoordinated schemes and using coordinated greedy
forwarding scheme under three forwarding probability functions

bility function, our analysis can be used to numerically de-
termine the optimum parameter settings for the forwarding
probability function that minimizes the expected number
of transmissions while meeting the performance target
on the transmission success probability. Furthermore, the
performance of the uncoordinated cooperative forwarding
scheme employing three commonly used forwarding prob-
ability functions, i.e., the constant forwarding probability,
the linear forwarding probability and the step function
forwarding probability, are compared. Our preliminary
study appears to suggest that by choosing the forward-
ing probability function to be a step function, the best
performance can be achieved. This finding is consistent
with our earlier work in [4] studying a two-hop scenario
in two-dimensional networks where the source and the
destination is separated by at most two hops. It is part of
our future work plan to dig into the result and provide

analytical support for the optimum choice of Py (z).
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