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Abstract—Energy harvesting wireless network is an emerging
paradigm where the wireless nodes harvest energy to increase
their lifetime. Due to high potential for a large variety of
applications, such networks have drawn considerable attention
in both industry and academia. In this paper, we consider the
energy replenishment problem when the wireless nodes not only
harvest energy from the ambient environment but also may
receive energy from a mobile charger. We propose an optimal
energy replenishment strategy using stochastic inventorytheory
to derive the optimal amount of energy supplied by the mobile
charger. The simulation results show that our proposed scheme
not only optimizes the energy utilization, but also improves the
economic benefit of the wireless nodes.

I. I NTRODUCTION

An energy harvesting wireless network consists of wireless
nodes that are able to draw parts of their energy from the
external environment by energy harvesting technologies [1],
[2]. Recently, energy harvesting technologies have started to be
applied in wireless sensor networks to extend the network life-
time and decrease maintenance costs [3]–[6]. However, long-
term supply of energy in wireless sensor networks remains a
challenging performance bottleneck. Harvested energy is often
only available randomly, sporadically and in small amounts.
Consequently, some wireless nodes may easily become energy
deprived, calling for carefully designed energy management
policies for data transmission. In addition, as the amount
of data to be transmitted is increasing, the wireless nodes
need more energy to be able to fulfill their transmission
requirements [7].

Recent advances in wireless energy transfer justify the
use of energy replenishment in energy harvesting networks.
Energy replenishment schemes may utilize a mobile charger
to prolong the lifetime and improve the efficiency of wireless
networks [8]–[14]. A mobile charger can wirelessly transfer
energy to wireless nodes with rechargeable batteries [9],
[10]. Therefore, an energy harvesting wireless network with
a mobile charger brings a new and promising direction to a

large number of applications. The usage of mobile charger can
be extended to most energy harvesting networks.

Several studies have utilized mobile chargers to prolong the
lifetime of wireless sensor networks [8]–[14]. These studies
usually consider energy replenishment and data flow routingin
wireless nodes. A special node named Qi-ferry [9] is proposed
to carry energy and wirelessly charge the wireless nodes.
The authors solve a tradeoff problem of how many sensor
nodes a Qi-ferry is able to charge, and how far the Qi-ferry
must go back to recharge itself. In [8], a periodic charging
scheme of a wireless charging vehicle is introduced. The
authors propose an optimal traveling path to maximize the
charging coverage of the wireless charging vehicle, and also
formulate an optimization problem of data flow routing and
energy recharging. Some practical constraints of the mobile
charger are taken into consideration in [10], such as travel
times and speed. In [11] and [12], the problem of scheduling
multiple mobile chargers is studied to deal with the limited
performance of only one mobile charger. Additionally, the
scheme, that mobile chargers could not only charge the nodes
but also carry their data, is investigated in [13], [14].

The aforementioned schemes have their limitations in prac-
tice, since they only work well under their specific assumptions
and conditions. For instance, they may assume fixed generated
data rates [8], [13], [14], the same amount of replenished
energy [8], [9], [11], and the same size of energy storage for
all nodes [11], [14]. The data rate of each node depends on
the application running on the node and changes over time
[10]. The amount of energy replenished from mobile chargers
may be different for each node, but can be estimated from
the demands of applications. In addition, it is not appropriate
to assume that the energy in a battery is stored without any
cost. Actually, the energy stored in a battery suffers with self-
discharging.

In this paper, we consider a much more practical scenario,
in which there are energy storage cost in the nodes’ batteries
(e.g., self-discharging). Besides, the nodes should pay for the
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replenished energy from the mobile chargers. In this case, the
wireless nodes should not replenish too much energy because
of the energy storage cost and the payment to the mobile
charger. However, if the nodes replenish insufficient energy,
they will lose their chance to transmit data and earn economic
benefit. By considering above practical scenarios, we are
motivated to propose an optimal energy replenishment strategy
for wireless nodes to work with mobile chargers in an energy
harvesting wireless network. The wireless nodes can make an
optimal decision using stochastic inventory theory to replenish
optimal amount of energy from the mobile chargers. The
simulation results indicate that our proposed scheme optimizes
the energy utilization and also improves the economic benefit.

The main contributions of this paper can be summarized as
follows.

∙ We derive a practical system model of energy harvesting
wireless networks by considering three crucial conditions:
the time-varying rate of generated data, the different
amount of replenished energy for nodes and the cost of
energy stored in batteries.

∙ We consider the energy replenishment problem through
the framework of stochastic inventory theory, which is
a new perspective for solving the problem of energy
replenishment in energy harvesting wireless networks.

∙ We propose a strategy that not only optimizes energy
utilization, but also improves the economic benefit of the
wireless nodes. When requesting energy replenishment,
the nodes consider the externally harvested energy to
avoid replenishing and paying for excessive energy, which
also optimizes battery energy utilization.

The rest of this paper is organized as follows. In Section
II, we describe the system model including the energy con-
sumption model of the nodes and the energy replenishment
from the mobile charger. We formulate the optimal energy
replenishment problem as an inventory problem in Section III.
We present simulation results to evaluate the performance in
Section IV. Finally, we draw the conclusion in Section V.

II. SYSTEM MODEL

A. Network model

Fig. 1 shows an energy harvesting wireless network consist-
ing of N wireless nodes distributed over a two-dimensional
area. The wireless nodes represent sensors, devices or ma-
chines, which may carry out sensing tasks and then transmit
real-time sensing data to the base station (BS). Each wireless
node has a rechargeable battery (or super-capacitor). The BS
is deployed in a fixed location, and is a sink node for all node-
generated data. Within the coverage area of the BS, all wireless
nodes can directly transmit their data to the BS without relays.
When nodei runs out of energy, it can replenish energy from
a mobile charger instead of passively waiting for harvesting
energy from the environment. The harvested energy is often
available sporadically and in small amounts. Therefore, itis
much more reasonable for wireless nodes to request energy
replenishment from the mobile charger in most cases.
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Fig. 1: A detailed example of an energy harvesting wireless
network with a mobile charger.

A wireless charging vehicle works as a mobile charger to
charge the nodes in the energy harvesting wireless network.
The mobile charger keeps real-time communications with the
BS to ensure information consistency [15]. Since the mobile
charger is driven by petrol or electricity, it can travel with a
constant speed and its traveling path is unconstrained. While
traveling, the mobile charger can also receive requests viathe
BS. Compared with the travel time, the request delivery time
and the charging time are negligible [11]. To maximize the
energy wireless transfer efficiency, the mobile charger charges
only one node each time. After finishing the point-to-point
charging tasks, the mobile charger will return to the service
station (its starting point) to recharge itself, and get ready for
the next charging tour. A detailed example of the charging case
is shown in Fig. 1, where wireless nodes will send requests
to the BS based on their application demands and residual
energy. The major notations used in this paper are listed in
Table I.

B. Dynamic energy consumption model

The energy consumption rate of wireless nodes changes
with applications and time. In this paper, the sensing data



TABLE I: Notations and Descriptions

Notations Descriptions Notations Descriptions

Eℎ,i energy harvested from environment ofi Ei current residual energy ini
−

E ℎ,i average total amount of energy harvested from environment Ere,i energy replenished from mobile charger

�i the mean arrival rate of data ei energy consumption ofi per unit time

Di distance betweeni and the based station tr,i time interval between sending out request and receiving energy

pr cost of energy replenishment from mobile charger pe the benefit from transmitting sensing data

pl loss of missing transmitting sensing data ps storage cost of per energy unit ini

Ci average total amount of transmitted data ofi Li average total amount of missing data ofi

Si average total amount of storage in battery ofi Pi the amount benefit ofi

arrival process of a wireless nodei follows a poisson process
[16]. The mean arrival rate of data is�i bps, which is more
reasonable under most scenarios than that of many existing
work, whose arrival rate of data is fixed and given. Similar to
[12], each node can monitor its residual energy and estimate
the demand of its applications. In other words,�i can be
estimated ahead of time according to historical records of
applications.

As the size of request messages is very small, nodei mainly
consumes its energy in transmitting data to the BS. According
to [17], the energy consumption of nodei per unit time is
denoted as

ei = �i�i, (1)

where�i is the energy consumption cost per unit data, which
is given by

�i = �1 + �2D
m
i , (2)

where�1 and�2 are two given constants.Di is the distance
between nodei and the BS, andm is the loss index of the
transmission path. In an energy harvesting wireless network,
nodei can harvest the energy from the ambient environment,
which is denoted byEℎ,i. The process of energy harvesting
is assumed to be stationary ergodic and mutually statistical
independent between different wireless nodes. For the sake
of simplicity, the process of energy harvesting is a sequence
of independent identically distributed (iid) random variables,
where the amount of energy harvested takes values from the
set� = [0.25, 0.5, 0.75, 1]�J with equal probability every time
unit [18]. When the nodes run out of energy, they will apply
for energy replenishment from a mobile charger. LetEre,i be
the energy supplied by the mobile charger to nodei. Then
nodei can be charged with the energy,Ecℎ,i, which satisfies

Ecℎ,i = �Ere,i. (3)

Here,� is the efficiency of the wireless energy transfer [9].

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate the energy replenishment prob-
lem using stochastic inventory theory for an energy harvesting
wireless network with a mobile charger. We also discuss a sce-
nario to illustrate the optimal energy replenishment strategy.

A. Energy replenishment problem formulation

When nodei requests energy replenishment, the mobile
charger will arrive at the location of nodei and then begin
to charge it. The time interval between sending out a request
and receiving energy,tr,i, is called the time interval of replen-
ishment for nodei. Thetr,i is a random variable modeling the
task schedule of the mobile charger [10]–[12]. The distribution
characteristics of the time interval of replenishments canbe
estimated from the historical records by statistical methods.
We assume thattr,i takes value from[tr,min, tr,max], and that
the probability density function is given asf(tr,i). Because of
the dynamic nature of the time intervals of replenishmentstr,i,
nodei may run out of energy and be idle.

We consider that the cost of energy replenishment from a
mobile charger ispr per unit energy. Meanwhile, a wireless
node can earn some benefits by transmitting their sensing real-
time data to the BS. The benefit ispe per unit of data. The
data is required to be transmitted in time. When a wireless
node runs out of energy, the wireless node will miss data
transmission and suffer loss. The loss of a missing data
transmission event is denotedpl per data unit. Moreover,
the nodes in an energy harvesting wireless network typically
utilize a super-capacitor to store energy nowadays. The energy
storage cost can not be ignored as the super-capacitors are
expensive in terms of cost per watt [19]. The cost of energy
storage isps per unit time.

During two consecutive energy replenishment time intervals,
nodei can earn economic benefit from data transmissions. On
one hand, it is unwise for nodei to request too much energy
from the mobile charger each time, because nodei has to pay
more. The energy storage cost is increased with the increasing
energy stored in the battery or super-capacitor. On the other
hand, if it requests only a small amount of energy, it should use
more time to finish data transmissions and earn less. Hence,
node i should request a certain amount of energy, based on
both predicted energy demand caused by data transmissions
and on the dynamic nature oftr,i.

As shown in Fig. 2, in an energy harvesting wireless
network, every wireless node is like a salesman that has
its own energy storage system (a battery or super-capacitor).
The transmitting data is similar as products. Nodei not only
harvests energy from the environment but also requests energy



replenishment from the mobile charger (like a manufacturer) to
transmit data. It is similar to the scenario that a salesman stores
and sells his products to the customers (i.e., base station),
and then earns from them. He also has to pay for the raw
material from the manufacturer. The problem of maximizing
the wireless nodes’ economic benefit can be formulated into an
inventory control problem. Here, the inventory control problem
is similar as that of how much energy a salesman should
order to satisfy the demand of his products in each time
period. We utilize this optimal inventory approach to solve
the energy storage problem. The application demands of the
wireless nodes are stochastic. Similarly with the scenarioin
[20], each node should make an optimal decision to control its
inventory of energy in order to maximize its economic benefit.
The wireless nodes should determine the optimal amount of
replenished energy from the mobile charger. By the products-
inventory model of energy replenishment, an optimal energy
replenishment strategy is then proposed to decide the amount
of replenished energy.

B. An optimal energy replenishment strategy using stochastic
inventory theory

In an energy harvesting wireless network, we defineΔti
to be the energy consumption duration of nodei between the
last time of battery replenshment from the mobile charger and
when running out of energy. On average, if nodei consumes
ei energy every time unit, the energy consumption timeΔti
is given by

Δti =
Ei + Ecℎ,i +

−

E ℎ,i

ei
, (4)

whereEi is the current residual energy in the battery of nodei.
−

E ℎ,i is the average total amount of energy harvested from the
environment within the energy consumption timeΔti. Ecℎ,i is
the total charged energy from the wireless charging vehicles.
As the energy harvested from ambient environment is taken
from the set� = [0.25, 0.5, 0.75, 1]�J with equal probability
each time unit, the average total amount of harvested energy

is
−

E ℎ,i = 0.625Δti. From eqn. (4), it is clear that the
longer energy consumption time results from requesting more
replenished energy. If the time interval of replenishmenttr,i
is larger than the energy consumption timeΔti, nodei will
be short of energy to transmit data and will be idle until it
receives enough energy to work again.

Fig. 2 shows that it is important for a salesman to choose
the optimal inventory level to satisfy the demand of sending
products in an inventory system. The salesman should also
avoid redundant inventory in each time period. The economic
benefit of a node depends on the following factors: the amount
of energy replenishment, the inventory in the wireless node,
the amount of transmitted data and the loss of missing data
transmission. Generally, when increasing the loss of missing
data transmission or the replenished energy, the economic
benefit of nodes will decrease. On the other hand, the eco-
nomic benefit can be improved by increasing the amount of
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Fig. 2: The model of an optimal energy replenishment
strategy using stochastic inventory theory.

transmitted data. We solve the optimal energy replenishment
problem by using stochastic inventory theory.

In our life, if a salesman has insufficient inventory, he could
not send products to his customers. Then his customers will
choose to leave, which results in a loss for the salesman.
Analogously, if nodei is short of energy, the event of missing
data transmissions happens. The average total amount of
missing data,Li, is expressed as

Li =

tr,max∫

Δti

f(tr,i)(tr,i −Δti)dtr,i. (5)

Apart from the missing data, the rest of the sensed data
from a node can be successfully transmitted before running
out of energy. The average total amount of transmitted data
for nodei is given by

Ci =

Δti∫

tr,min

�itr,if(tr,i)dtr,i +

tr,max∫

Δti

�iΔtif(tr,i)dtr,i. (6)

There are two items in eqn. (6). The first item is the average
value of data transmission whentr,i ≤ Δti. The second item
is the average value of data transmission whentr,i > Δti.

To transmit the aforementioned data, the average total
amount of energy is represented as

Ri = �iCi. (7)

The cost of energy includes both the replenished energy
and the current energy inventory. During each time period,
the amount of stored energy is varying with the amount of
replenished energy. Clearly, more replenished energy brings
bigger energy inventory. Then, the total amount of storage in
energy inventory,Si, is represented by

Si = �i(
Δti∫

tr,min

f(tr,i)
tr,i∫
0

�i(Δti − t)dtdtr,i+

tr,max∫
Δti

f(tr,i)
Δti∫
0

�i(Δti − t)dtdtr,i).

(8)

Given all the price parameters and known variables, the av-
erage total economic benefit of nodei in our energy inventory
model,Pi, is expressed by,

Pi = peCi − plLi − psSi − prRi. (9)



From eqn. (5), (6), (7) and (8), we know that eqn. (9) is
a function of the variableΔti. To maximize the economic
benefit, the optimal energy consumption time,Δt∗i , is the key
point. The objective function is defined as

Δt∗i = arg
0≤Δti≤tmax

r

max(Pi(Δti)). (10)

The optimal amount of requested energy for replenishment,
E∗

r,i, can be found by deriving the above equations.

C. A case study for the optimal inventory solution

Similarly to the case in [12], we consider that the replen-
ishment time intervaltr,i follows a uniform distribution. The
steps of an optimal inventory solution are as follows.

∙ Step 1: The probability density functionf (tr,i) is de-
noted by,

f (tr,i) =
1

tr,max − tr,min
, tr,i ∈ [ tr,min, tr,max ] .

(11)
∙ Step 2: According to eqn. (11), the average total amount

of transmitted dataCi, the total amount of stored energy
Si and the total amount of missing dataLi can be
expressed as follows, respectively,

Ci =
�i

tr,max − tr,min
[Δtitr,max − 0.5(Δti

2 + t2r,min)],

(12)

Si =
�i�i

tr,max−tr,min
[
Δti(tr,maxΔti−t2r,min

)

2 −

Δti
3−t3r,min

6 ],
(13)

Li =
0.5�i

tr,max − tr,min
(Δti − tr,max)

2
. (14)

∙ Step 3: To maximize the benefit,Pi, we can use the
derivative method. Taking the first order partial derivative
of Pi with respect toΔti, we obtain

∂Pi

∂Δti
= �i

tr,max−tr,min
[(pe − �ipr + pl)(tr,max −Δti)

−�ips(Δtitr,max − 0.5Δt2i )].
(15)

Then the second order partial derivative is given by,

∂2Pi

∂Δt2
i

= −
�i

tr,max−tr,min
[pe − �ipr + pl + �ips(tr,max

−Δti)]

= −
�i

tr,max−tr,min

Δi.
(16)

Here,Δi = [pe − �ipr + pl + �ips(tr,max −Δti)].
∙ Step 4: If Δi is smaller than 0, we know thatPi can

be maximized, andΔt∗i can also be found by deriving
∂Pi

∂Δti
= 0 in eqn. (15).

IV. N UMERICAL RESULTS

In this section, we evaluate the performance of the proposed
optimal energy replenishment strategy in an energy harvesting
wireless network by simulations.

We consider an energy harvesting wireless network con-
sisting of 50 wireless nodes randomly deployed in a square
area of1 × 1 km2. The base station is located in the middle
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of this area. The energy consumption constants are set to
�1 = 50nJ/b and�2 = 0.0013pJ/(b ⋅m4). The loss index of
the transmission path ism = 4 [17]. The replenishment time
interval is randomly chosen from the interval [1, 50].

Fig. 3 shows the transmitted data, missing data and energy
storage during different energy consumption timesΔt for all
nodes in an energy harvesting wireless network with a mobile
charger. The lines with circles represent the case when the
data arrival rate� = 1 bps. The lines with square represent
� = 5 bps and the lines with diamond are� = 10 bps.
Fig. 3(a) shows the transmitted data during differentΔts. It
is clear that the longer energy consumption timeΔt brings
the larger amount of transmitted data. Also, a larger data
arrival rate results in a larger amount of transmitted data.
Fig. 3(b) shows that the total amount of missing data is
decreasing whenΔt increasing. Notice that the energy storage
is increasing in the same scenario, showing that the nodes
have more energy. In summary, when the energy consumption
time increases (i.e., the nodes received more energy in the
last energy replenishment), the energy storage in the batteries
is larger. The wireless nodes have more energy to support
data transmission, which results in more data transmitted.The
amount of missing data will be less in this scenario.

Fig. 4 shows the average economic benefit of nodes with
respect to the energy consumption time when the data arrival
rate is � = 5 bps. From this figure, we know that the
average economic benefit is also influenced by the following
price parameters:pr, ps, pl and pe. The Δt∗ increases with
increasingpe, and decreases when increasing thepr, pe and
ps. The Δt∗ is decided by the pricing model, which brings
the best economic benefit to nodes.

Fig. 5 shows the performance comparison between our
optimal energy replenishment strategy and the maximal energy
replenishment strategy. We evaluate the average economic
benefit of 50 nodes with different data arrival rate during
same time period. The horizontal axis represents the average
data arrival rate of all the nodes. The vertical axis is the
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average economic benefit of all the nodes. In the maximal
energy replenishment strategy, the wireless nodes replenish
the maximal capacity of energy to their batteries or super-
capacitors. Then, when the average data arrival rate increases,
the average economic benefit of nodes is increased as well. Our
optimal energy replenishment strategy is about 30% higher
than that of the maximal energy replenishment strategy when
� = 8 bps. The reasons are as follows. Our scheme can opti-
mize the total amount of energy replenishment to avoid high
cost in energy storage. Additionally, the nodes also consider
the external harvested energy from the environment to avoid
replenishing too much energy from the mobile charger. In
summary, our proposed strategy optimizes energy utilization,
and also maximizes average economic benefit of wireless
nodes.

V. CONCLUSION

In this paper, we consider optimal energy replenishment in
energy harvesting wireless networks with a mobile charger.
Stochastic inventory theory is used to maximize the economic
benefit of the nodes. The proposed strategy allows the wireless
nodes to make optimal decisions to replenish energy from the
mobile chargers. As a consequence, a node can work collabo-
ratively with the mobile charger. Simulation results indicate
that the proposed strategy is efficient in maximizing both
energy utilization and data transmission in energy harvesting
wireless networks with a mobile charger.
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