
SSDS-MC: Slice-based Secure Data Storage in Multi-

Cloud Environment

Peng Xu1, 2, Xiaqi Liu1, 2, Zhenguo Sheng3, Xuan Shan1, Kai Shuang1

1. State Key Lab. Of Networking and Switching Technology, Beijing University of Posts and Telecommunications, China

2. Science and Technology on Information Transmission and Dissemination

in Communication Networks Laboratory, Shijiazhuang, China;

3. University of Sussex, UK.

xupeng@bupt.edu.cn, liu_xiaqi@foxmail.com, z.sheng@sussex.ac.uk, shanxuanbupt@gmail.com, shuangk@bupt.edu.cn

Abstract—With the easy access to cloud technologies and rich

applications, more people tend to store their data in cloud.

However, the data in the cloud have to face the privacy and

security challenges. To enforce the privacy and security protection

of data in the cloud, Slice-based Secure Data Storage in Multi-

Cloud Environment (SSDS-MC) is proposed in this paper.

Specifically, user data are divided into multiple slices, which are

stored separately into different cloud. The advantages of SSDS-

MC are two-fold: i) each cloud service provider does not have all

the slices of the user data and thus cannot retrieve the full user

data by the slice stored in his cloud, which can further protect the

privacy and security of user data; ii) each slice can be duplicated

and uploaded to multiple cloud, which improve the availability of

data in case the slice gets lost or damaged in one place.

Keywords- cloud; data slice; privacy; security

I. INTRODUCTION

Cloud storage is a crucial part of cloud computing system for
data storage and management [1], which provides APIs for easy
access of the data [2]. Its service can access to external users
through the cluster application, network technology and
distributed file system, etc. In essence, user can connect to the
cloud through the network at any time, from any place, and using
any device [3] [4].

In the traditional storage service mode, an enterprise needs
to buy servers, network communication equipments, storages
equipments and human resources to build and maintain the data
center, especially in the fields of IoT (Internet of Things) [5]. In
contrast, cloud storage gives users more scalability and
convenience on data storage [6]. Users only need to pay fees in
accordance with the needs of the storage capacity, rather than to
understand how to create and operate storage services.
Nowadays, there are many public cloud storage services
provided by famous internet companies, such as the Amazon
Cloud Drive [7], Apple iCloud [8], Box [9], Microsoft SkyDrive
[10] and Baidu cloud disk, etc.

However, in order to obtain a cloud storage service, the user
data must be transmitted over the cloud environment. In a
distributed environment of cloud storage, the user has little
knowledge of where the data is stored, which makes data out of
control from users. Thus, users have to rely on the cloud
providers for their data privacy and security. Twinstrata's survey
in 2012 showed that only 20% of people are willing to put their

private data in cloud storage [11].Cloud providers are facing the
trust crisis, which limits the development of cloud applications
[12]. Amazon recommends users protect data security in the
cloud storage service by adopting additional encryption,
authentication and other security technologies [13].

In order to guarantee the privacy and security of user data,
while facing the problems mentioned above, we propose the
Slice-based Secure Data Storage in Multi-Cloud Environment

(SSDS-MC). This paper is organized as follows. SectionⅡ

introduces related work about secure cloud storage. In Section

Ⅲ, the architecture and procedures of SSDS-MC are specified.

Then some key issues such as file slicing, data distribution are

introduced in section Ⅳ. The experiment and the conclusions are

given in the end.

II. RELATED WORDS

Security is an important criterion to measure the quality of
cloud storage service. Many researchers have done a lot of work
to solve the above problems.

Tang introduced the key management server in FADE
system, which encrypts data twice to settle assured delete based
on associated strategies and aging and provides policy-based file
assured deletion with a minimal trade-off of performance
overhead [14].

Shraer proposed a core set trust system in Venus. Venus is a
service for securing user interaction with untrusted cloud storage
to guarantee integrity and consistency for applications accessing
a key-based object store service [15].

Bessani proposed the cloud in cloud idea in DEPSKY,
DEPSKY improves the availability, integrity and confidentiality
of information stored in the cloud through the encryption,
encoding and replication of the data on diverse clouds that form
a cloud-of-clouds, which mitigate the impact of the problem on
data confidentiality and vendor data lock-in to a certain extent
[16].

As can be seen from the existing research results, data
encryption and access control mechanisms are widely used to
protect the security and privacy of user data in the cloud storage.
Data encryption is able to prevent unauthorized dissemination,
but the system needs to provide other complex mechanisms to
manage encryption keys and these management mechanisms

QSHINE 2015, August 19-20, Taipei, Taiwan
Copyright © 2015 ICST
DOI 10.4108/eai.19-8-2015.2260679

might lead to other usability problems [17]. For example, in
FADE, if the key management server is destroyed or tampered,
all data is no longer accessible. DEPSKY also requires a secret
sharing scheme. Access control mechanisms can prevent a user
without the permission to access the data in proper channels, but
because the access control component is running in
untrustworthy cloud environment, that may not guarantee the
correct implementation of user-defined access control policy.
For that reason, Venus has to provide security functionality to
users through extra tripartite framework.

III. DESIGN OF SSDS-MC

This section presents the SSDS-MC system. It starts by
presenting the system architecture, and then introduces the
procedures of SSDS-MC system.

Architecture of SSDS-MC is shown in figure 1. It is
composed of four main components, which are Data Processing
(DP), Data Distribution (DD), Data Collection (DC) and
Metadata Table (MT).

Figure 1. Architecture of SSDS-MC

 Data Processing (DP): This module as shown in figure
2 has two functions: when uploading files, this module
is responsible for encrypting the file using Data
Encryption Algorithm and slicing files before
uploading them to multi-clouds following Data Slicing
Policy; when downloading files, this module is
responsible for recovering encrypted files from slices
downloaded from multi-clouds and decrypting them
into the original files;

Figure 2. Procedure of Data Processing(DP)

 Data Distribution (DD): This module is used to
upload data slices to multi-clouds following certain
Data Distribution Policy;

 Data Collection (DC): Data Collection functions as
downloading data slices from multi-clouds based on the
information in Metadata Table. SSDS-MS stores
multiple backups separately for each data slice to allow
users to get backup data slice when the default one is
unavailable. Every time, DC first downloads slices
from default cloud;

 Metadata Table (MT): MT records the mapping
information of files, their corresponding slices and slice
storage information. Metadata in the MT is described
in Table I.

TABLE I. METADATA IN METATABLE

Belonging File Info. File name;

…

Slice Sequence Number/Number of Slices

Slice Checksum

Cloud Provider Info. For Default block Cloud Provider
Interface

Address;

Account info.;
Directory Info.

…

Cloud Provider Info. For Other backups Cloud Provider
Interface

Address;
Account info.;

Directory Info.

…

Last Update Time YY/MM/DD

The procedures of SSDS-MC system includes uploading and
downloading files.

In SSDS-MC, Data uploading procedure is listed as follows:

1) By utilizing the data encryption algorithm, DP encrypts

a file and the private key is assigned by the user.

2) DP slices the encrypted file into multiple data slices

following data slicing policy.

3) DP calculates the checksum of each slice, which would

be used to verify the downloaded slices. The slice information

and the corresponding checksum is supposed to be recorded

into MT.

4) DP would follow data distribution policy to generate

certain data distribution information for each slice of user data

and the data distribution information is also recorded in the MT.

5) File slices are stored to the uploaded queue of DD after

being sliced. Every time, DD takes some of the slices from the

upload queue and follows MT to upload data slices into cloud.

Because a user file is sliced into multiple slices and all these

slices could be uploaded simultaneously, which effectively

improves the upload speed of user data.

Furthermore, procedure of data downloading is shown as

follows:

1) DC queries default download information from MT and

download all data slices from multi-clouds. File slices are

saved in collection queue. Once a default server of certain slice

is unavailable, DC will try to lookup backup slice information

from MT and complete the download task.

2) DP collects slices from collection queue, calculates their

checksum and compares them to the data in MT, if the checksum

for some slices is incorrect; re-executing the downloading

assignment is required.

3) DP stitches all the slices to an encrypted file and

decrypting it with private key.

IV. KEY ISSUES OF SSDS-MC

As mentioned above, there are many key issues that are
supposed to be solved in SSDS-MC, such as data encryption
algorithm, data slicing policy and data distribution policy.

A. Data Encryption Algorithm

Data Encryption Algorithm can guarantee that others are not
able to recover the user data even if they get several slices of user
data.

There are two main categories of cryptography depending on
the type of security keys used to encrypt/decrypt the data. These
two categories are asymmetric and symmetric encryption
techniques [18] [19]. Symmetric encryption is faster, while it is
less secure than asymmetric encryption. In the SSDS-MS system,
a large number of data required to encryption and decryption,
thus we incline to select a symmetric encryption algorithm,
which is faster in general [19]. However, an asymmetric
encryption can be used to manage keys of symmetric encryption.
In this way, we combine the advantages of Asymmetric and
Symmetric encryption techniques [18] [19].

In this paper, three secret key encryption algorithms are
considered.

 DES: (Data Encryption Standard), was the first
encryption standard to be published by NIST (National
Institute of Standards and Technology). DES uses a 56-
bit key, and maps 64 bit input block into a 64-bit output
block. The key actually looks like a 64-bit quantity, but
one bit in each of the 8 octets is used for odd parity on
each octet [20]. However, there are many methods can
attack the weaknesses of DES, which made it an
insecure block cipher [21]. The procedure of DES
encryption algorithm is shown in figure 3.

Figure 3. The Procedure of DES

 3DES: 3DES is a proposal based on DES, which
standardized in ANSI X9.17 & ISO 8732 and in PEM
for key management. It is backwards compatible with
existing single DES (when K1=K2=K3). The 3DES
algorithm uses either two or three 56-bit keys. Thus, the
length of effective key is summed up to 168 bits [19].
3DES is defined by the following function:

C = 𝐷𝐸𝑆𝐾3{𝐷𝐸𝑆−1

 𝐾2{𝐷𝐸𝑆𝐾1(𝑃)} (1)

Where P = Plaintext,

C = Ciphertext

DES-1

K = DES decryption using key K

 AES: (Advanced Encryption Standard), is also known
as the Rijndael(pronounced as Rain Doll) algorithm,
which is a symmetric block cipher that can encrypt data
blocks of 128 bits using symmetric keys 128, 192, or
256. AES was introduced to replace the DES [22].
Brute force attack is the only effective attack known
against this algorithm [23]. Procedure of AES is
represent in Figure 4.

Figure 4. The Procedure of AE

TABLE II. COMPARISON OF ENCRYPTION ALGORITHM

 DES 3DES AES

Developed time 1977 1978 2000

Block size 64bits 64bits 128,192 or 256bits

Key length 56bits K1=K2=168bits,K3=112bits 128,192 or 256bits

Number of rounds 16 48 9,11 or 13

Security Proven inadequate More security than DES Considered secure

TABLEⅡ lists the comparison of these kinds of symmetric

encryption algorithm, from the key length, safety and other
aspects [24].

To ensure the safety, in the prototype proposed in this paper,
AES with a key of 128bits is involved.

B. Data Slicing Policy

In SSDS-MC, a file is sliced into many slices. To slice data
into fixed-size slices might keep the implementation of SSDS-
MC simple. When the slice size is too small, the file is sliced into
more slices, which might consume unnecessary transmission
resources for more connections with cloud providers. Once the
data slices are too large, computing tasks for data slices would
occupy too more memory resources. Therefore, different slice
size should be applied based on the file size. Data Slicing Policy
is used to decide the slice size for each user file when uploading
it.

In general, the more slices, more safety the data is, but more
resources consumption are required to complete the calculation
task. In that case, we recommend slicing data and upload slices
at the same time when the file is too large. To be specific, the
system read bytes of a certain size from the file stream and
distribute to data centers immediately, which can avoid PC to a
read a completely large file into memory, multi threads also can
be adopted to the system.

It is difficult to determine a certain value as the optimal fixed
size as different environment may provide different computing

capability. In the experiment mentioned in the Ⅴ section, we

first slice a 100M file for different size, i.e. 100kb、1M and

10M , then observe and analysis experimental data in system
performance and security to find a relatively better number as
the fixed size.

C. Data Distribution Policy

Data Distribution Policy decides which cloud a certain data
slice should be stored. There are many chances that cloud servers
might lose or corrupt data leading to data unavailability. The
same problem may also be caused by unavailable of cloud
services. Therefore, multiple copies of each slice should be
distributed to multi-cloud in SSDS-MC, which allows users to
access another copy of the data slice from another cloud when
the default copy is unavailable. It means that Data Distribution
Policy should select multiple clouds for each data slice and set
one cloud as default.

On deciding the default cloud, many factors like transform
speed and fees for buying the storage service supposed to be
taken into account. It can be an option that picking out the
nearest cloud as default. Alternatively, select the cloud with least

money expend as the default storage. It is more logical to select
the default cloud service in accordance with the percentage of
user expected. Data Distribution Policy should avoid all default
data saved in one cloud service, which will reduce the security
of the system.

V. EXPERIMENT

The prototype of SSDS-MC is implemented with python. A
library called PyCrypto provide APIs for various encryption
algorithm. The prototype slices data after data encryption. Codes

of the prototype contain two parts: ⑴ File Reading Module and

Slice Outputting Module, which can read a file as binary stream

and slice it based on the fixed size we set. ⑵Encryption Module.

This module encrypts binary plaintext using the AES algorithm
and outputs ciphertext.

A. Best-fixed Size

In order to find out the best-fixed size in the experiment
environment, we conduct an experiment to record time cost on
slicing a file into a series size. We consider 100M and 1G as two-
file size magnitude. Time cost on splitting a file into different

sizes shown in tableⅢ. The experimental environment is a PC

with 4G memory and 2.5 Hz.

TABLE III. TIME COST ON SPLIT WITH DIFFERENT SIZES

File Size 100kb 1M 10M

100M 1.591s 0.156s 0.14s

1G 39.13s 20.436s 21.543s

It can be seen from the results, when a file is split into too
many pieces, there will be a large time-consuming for system to
accomplish task, thus decreasing system availability.
Nevertheless, when it is cutted into very few blocks, we did not
see significantly reduce on time-consuming. For a specific
computing environment, there is a relatively appropriate fixed
size when considering the system performance and safety
requirement together.

In the following experiment, we chose 1M as the fixed size
slice.

B. Performance on Data Processing

The second set of experiment is conducted to find out time
consumption on data processing, the results are shown in Figure
5.

Figure 5. Time Cost On Slicing a File and Joining a File

Time-consuming for file processing increases with the size
of the file. When a single file size is not more than 300M, the
time consumption less than one second. While when the file size
is close to 1G, time-consuming has a significantly increase
(consuming as high as 43s).

The results depicted in the figure show that time cost of data
processing has little effect on system efficiency when processing
small files. In such a situation, SSDS-MC can enhance the
storage security by exchanging with minimal loss on time
depletion. However, when the file size exceeds a certain
threshold, the cost becomes unable to ignore. Therefrom, we
conclude that SSDS-MC is more suitable for storing small files,
which need safety insurance, such as documents and pictures,
while it does not applicable for video, and other large files.

C. Performance on Uploading and Downloading

We use one PC to simulate the cloud though a real cloud
server may have a stronger computing power. Another PC will
behave as a user connecting to the cloud through FTP protocol
to simulate a real Internet environment.

In the experiment, we upload and download files by two

methods： (1). Upload and download a complete file, (2).

Upload and download its slices by opening six threads for this
task.

First, we measure the CPU usage of both two methods when
the file size are 100M, 200M and 400M. The result in Figure 6
reveals that the maximum CPU occupies (curve peak) for two
methods has a very small gap. To be more precisely, upload and
download slices occupancy CPU less (from 1% to 2% percent)
than a complete file. However, upload and download slices takes
more time. It is no surprise to notice that because upload and
download slices expend more time on establishing connections.

(a). CPU usage in upload and download a file of 100M

(b). CPU usage in upload and download a file of 200M

(c). CPU usage in upload and download a file of 400M

Figure 6. CPU usage in uploading and downloading

We also recorded time comparison of above two ways.
Figure 7a and figure 7b correspond to the process of uploading
and downloading. We can know that compared to upload and
download a complete file directly, process its slices spend more
time. In addition, the time gap growing with file size. This once
again confirms our previous conclusions: SSDS-MC is more
suitable for storing small files that need safety insurance. We
strongly recommend that each slice be uploaded to the cloud or
downloaded from the cloud simultaneously, which could
improve the upload and download speed largely.

(a). Time comparison of a 200M file

(b). Time comparison of a 400M file

Figure 7. Time Cost on downloading and uploading

VI. CONCLUSION

In this paper, an innovative solution “Slice-based Secure
Data Storage in Multi-Cloud Environment” for secure data
storage based on data slicing is proposed. It is verified by the
prototype that SSDS-MC can addresses several advantages for
small files as follow:

 Privacy and Security of Data: SSDS-MC deals with
this problem by data slicing and storing slices into
multi-clouds. Meanwhile, SSDS-MC encrypts files
before slicing them. Therefore, each cloud service
provider could not recovery user data with incomplete
and encrypted user data.

 Availability of Data: SSDS-MS stores multiple
backups separately for each data slice to allow user get
backup data slice when the default one is unavailable.

We can get a conclusion by experiment that SSDS-MC is suit
for storing small files that require security and privacy, because
it can help protect data, meanwhile the data pre-process and
uploading or downloading process do not have noticeable
influence on system efficiency. For large files, SSDS-MS can
still provide a solution if the data security requirements higher
than the efficiency of the system.

In the future, we will further study how to combine SSMS-
DS with a feasible Data Distribution Policy.

ACKNOWLEDGMENT

This work was funded by the open project of Science and
Technology on Information Transmission and Dissemination in
Communication Networks Laboratory (ITD-
U14003/KX142600010).

REFERENCES

[1] ShiQiang,ZhaoPengyuan. Analysis of critical technologies on cloud
storage security. Journal of the Hebei Academy of Sciences, Vol.28 No.3,
Sep.2011.

[2] Armbrust, M et al. Above the Clouds: A Berkley View of Cloud
Computing. UC Berkley Technical Report, 2009.

[3] C. Wang, Q. Wang, K. Ren, and W. Lou: Ensuring data storage security
in Cloud Computing. IWQoS 2009: 1-9

[4] M. Chen, L. Hu, Y. Zhang, T. Taleb and Z. Sheng, “Cloud-based Wireless
Network: Virtualized, Reconfigurable, Smart Wireless Network to Enable

5G Technologies”, ACM/Springer Mobile Networks and Applications
(MONET) Special Issue on Networking 5G Mobile Communications
Systems, 2015.

[5] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. Mccann, and K. K. Leung
“A Survey on The IETF Protocol Suite for The Internet-of-Things:
Standards, Challenges and Opportunities”, IEEE Wireless
Communication Magazine, vol.20, no.6, pp.91,98, December 2013.

[6] B. Butler. Personal Cloud Subscriptions Expected to Reach Half a Billion
This Year. In Network World, September 7 2012

[7] Amazon Simple Storage Service (S3): aws.amazon.com/s31

[8] iCloud. https://www.icloud.com/.

[9] Box. https://www.box.com.

[10] Microsoft OneDrive. https://onedrive.live.com/.

[11] Twinstrata,http://www.twinstrata.Com, Oct. 05 2012.

[12] Network security lab of china telecommunications.Cloud computing
security - technology and applications.Beijing:Publishing house of
electronics industry,2012.

[13] S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services:
EC2, S3 and SQS. In Tech Report TR-08-07, Harvard University, 2008.

[14] Y. Tang, P. Patrick.C. Lee, John C.S. Lui, Radia Perlman, “FADE：
Secure overlay cloud storage with file assured deletion,” Proc. The 6th
Int Conf on Security and Privacy in Communication Networks, pp. 380–
397, 2010.

[15] S. Alexander, C. Christian, C. Asaf, K. Idit, M. Yan, S. Dani, “Venus:
verification for untrusted cloud storage,” Proc. The 2010 ACM Workshop
on Cloud Computing Security Workshop, pp. 19–30, 2010.

[16] B. Alysson, C. Miguel, Q. Bruno, A. Fernando, S. Paulo,“DEPSKY:
dependable and secure storage in a Cloud-of-Clouds,”Proc. The 6th Conf
on Computer System, pp. 31–46, 2011.

[17] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, Jin Li, "Toward Publicly
Auditable Secure Cloud Data Storage Services‖, IEEE Network, 2010.

[18] M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption—How to
encrypt with RSA” Advances in Cryptology-EUROCRYPT’94.

[19] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security
Treatment of Symmetric Encryption: Analysis of the DES Modes of
Operation”, Proceedings of FOCS97, IEEE, 1997.

[20] National Bureau of Standards - Data Encryption Standard, FIPS
Publication 46, 1977.

[21] Singh, S Preet and Maini, Raman. “Comparison of Data Encryption
Algorithms”, International Journal of Computer Science and
Communication, vol. 2, No. 1, January-June 2011, pp. 125-127.

[22] NIST, "Advanced Encryption Standard Call", NIST, 1997.
http://www.nist.gov/aes/

[23] NIST Advanced Encryption

[24] Singhal, Nidhi and Raina, J P S. “Comparative Analysis of AES and RC4
Algorithms for Better Utilization”, International Journal of Computer
Trends and Technology, ISSN: 2231-280, July to Aug Issue 2011, pp.
177-181.

