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Abstract—This paper presents a joint radio resource allocation 

scheme in LTE/LTE-A systems. In order to maximize system 

throughput while satisfying the minimum user rate requirement, 

the resource allocation is modeled as a convex optimization with 

constraints in this paper, which is proved to be NP-hard. Hence, a 

heuristic approach based on joint Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) is proposed. The proposed 

method exploits the benefits of GA and PSO so that it could avoid 

the low speed problem of genetic algorithm and the local optimum 

trap concern in particle swarm optimization algorithm. 

Simulation results show that the proposed algorithm can 

overcome the disadvantages of genetic algorithm and particle 

swarm optimization algorithm, and achieve better performance, 

e.g., a faster convergence and global optimum. 

 

Key words—LTE, Radio Resource Management (RRM), 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA) 

I. INTRODUCTION 

Radio communication technology developments have 
advanced rapidly in the past few years. After the third 
generation (3G) of radio communication based on CDMA [1], 
the Long Term Evolution-Advanced (LTE-A) (or 4G) and 
beyond becomes more and more influential. The LTE-A 
employs Orthogonal Frequency Division Multiplexing Access 
(OFDMA) in its downlink transmission channels [2] and aims to 
provide high data-rate, low-latency, packet-optimized 
radio-access and flexible bandwidth deployments. 

The radio resource allocation in OFDMA systems has 
attracted tremendous researches. In the systems, the radio 
resources such as power and bandwidth are limited while the 
channel condition of each user may vary from time to time. 
Given channel state information (CSI), the available system 
resource is allocated to users according to certain performance 
metrics such as throughput and the traffic requirements [3]. 
Three traditional allocation algorithms, i.e., Max C/I, Round 
Robin (RR) and Proportional Fair (PF) Scheduling are widely 
deployed in practice [4]. However, all these algorithms could 

not take care of Quality of Services (QoS) very well. Moreover, 
under the constraints of the user minimum rate requirements and 
total resource, various resource allocation algorithms have been 
proposed to maximize the overall data rate or minimize total 
transmission power. The authors in [5] proposed a 
Lagrangian-based algorithm to maximize system throughput 
while ensuring fairness in LTE downlink (DL) transmission. A 
Lagrangian-based relaxing algorithm is introduced to minimize 
system total power consumption subject to user transmission 
rate constrains in [6]. Moreover, a multiuser adaptive radio 
resource allocation method is proposed in [7] to maximize the 
overall throughput while satisfying user minimum rate 
requirement. In [8], it is proved that the total capacity is 
maximized when each resource block (RB) is assigned to the 
subscriber with the best channel gain and power distributed 
through water-filling algorithm. 

In general, the computational complexity of existing 
OFDMA resource allocation algorithms are high. Some 
heuristic algorithms with lower complexity have been proposed 
to find optimal solutions of the problems [9] [10]. In [9], a 
method using genetic algorithm (GA) to solve resource 
allocation problem is proposed. The approach in [10] is based on 
particle swarm optimization (PSO) for solving optimal power 
allocation problem. GA algorithm tries to develop a viable 
solution for an optimization problem through the operating of 
crossover operator and mutation operator on a population of 
candidate solutions to generate new points in the search space. 
However, the GA has disadvantages of the slower convergence 
speed and the probability of generating bad genetic factors while 
performing crossover and mutation operation. The PSO 
algorithm does not execute the crossover and mutation 
processes as done in GA. It searches for the optimum solution 
by swarm following the best particle. Though PSO algorithm 
has faster convergence speed in solving problems, it may 
converge to local optimum in later evolution stage easily.  

In this paper, we propose an improved algorithm named 
Genetic Algorithm based Particle Swarm Optimization 
(GA-PSO) which combines GA and PSO together so that the 
advantages from the both can be exploited jointly. The proposed 
GA-PSO algorithm is used for resource allocation under the 
minimum user rate requirements and the maximum transmission 
power constraints. 
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The rest of this paper is organized as follows. In Section II 
we present the system model and the problem formulation. In 
Section III, the proposed resource allocation algorithm is 
detailed. In Section IV, simulations are carried out to evaluate 
the performance of the proposed algorithm. Finally, the paper is 
summarized with concluding remarks in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

The radio resource defined in the LTE system includes the 
resource blocks (RB), the specific modulation and coding 
schemes (MCS), the power allocation schemes and the antenna 
options. In other words, we have five resource domains, i.e., the 
time, the frequency, the code, the power, and the space domain, 
respectively. A RB, which is composed of 12 consecutive 
sub-carriers occupying 180 kHz in the frequency domain (FD) 
and one time slot of 0.5ms duration in the time domain (TD), is 
the minimum frequency-time resource unit that can be 
scheduled. A time slot (TS) hosts 6 or 7 OFDM symbols in the 
DL or SC-FDMA symbols in the UL. This allows us to 
formulate the RB allocation in a matrix-like structure. However, 
in line with other standards, LTE standards do not explicitly 
specify the Radio Resource Management (RRM) schemes 
because different service-providers and operators have different 
spectrum allocations. Furthermore, this open structure facilitates 
the creation of new innovative algorithms. As mentioned, there 
are five resource domains in LTE, we only consider RB and 
power allocation in this paper for simplicity. 

We consider the downlink LTE network of a single cell and 
𝐾 active users sharing N RBs, with the total transmit power 
constraint Ptotal. It is assumed that the channel coherence time is 
longer than the time slot. Our objective is to optimize the RB 
and power allocation so as to achieve a much higher overall 
system throughput under the given Ptotal and the minimum user 
rate requirements constraint Rk,min. 

Assumed that each RB is exclusively assigned to at most 
one user in each time slot to avoid interference among different 
users in a cell. Denote instantaneous transmission power and 
channel power gain from the eNB to the kth user on the nth RB 
as pk,n and gk,n, respectively, and then the maximum 
instantaneous transmission rate of the kth user on the nth RB is 
then  
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where N0 and B0 represents the single-sided noise spectral 
density and the bandwidth of a RB, respectively. Consequently, 
the throughput of the user k is defined as 
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where ρk,n can only be either 1 or 0, indicating whether the nth 
RB is occupied by user k or not. 

Based on cooperative game theory, the RRM problem in 
this paper can be modeled as the following optimization 
problem, 
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subject to: 
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The optimization problem in (3) involving both continuous 

variables pk,n and binary variables ρk,n is called a binary and 
mixed integer programming problem which is NP-hard. 
Furthermore, the nonlinear constraints in (4) makes it even 
more difficult in finding the optimal solution. 

In a system with K user and N RBs, our goal is to allocate 
the N RBs and the power Ptotal to the K users under the 
constraints in (4) to maximize the total system throughput. It’s 
clear that joint RB and power allocation with one step is most 
intuitive. However, the computational complexity prevents the 
system from obtaining the optimum solution. In this paper, we 
develop a complexity significantly reduced resource allocation 
algorithm while maintaining the near optimum performance. 
The proposed method divided the RB allocation and the power 
distribution into two steps. 

Moreover, an alternative approach [9] to lessen the 
difficulty of the optimization problem in (3) is to relax the 
constraint ρk,n={0,1} that one RB can only be exclusively used 
by one user. As a result, a sharing factor of the nth RB by user k 
is introduced and is denoted by ρk,n , which can be any value 
amid the half-open interval of (0,1] now as follows 
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III. EXISTENCE AND UNIQUENESS OF THE GLOBAL OPTIMAL 

SOLUTION 

Formula (3) shows that the objective function is a linear 
combination of ρk,n and rk,n, now we choose it as the utility 
function. In order to prove it is convex, we should demonstrate 
its component functions, i.e. Rk, is convex basically. 

First we relax ρk,n by  
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where a and b are control parameters, the empirical values of 
a=-10 and b=0 in this paper. That is, we use (6) to relax the 
expression ρk,n={0,1} into the expression (5) as mentioned 
above. 

Based on (3), the throughput of the kth subscriber, Thk, is 
defined as 
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now let  
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we could have 

 
 

,

2
(x) 0 0

1

x

k n

x

r e
f x

e






     


，   (9) 

 
 

 

2

,

3

1
(x) 0 0

1

x x

k n

x

r e e
f x

e

 



 
    


，   (10) 

Based on the convex programming theory, f(x) is a strict 
monotonous concave function among the region (0, +∞). We 
can see from literature [11] that Rk in equation (2) is a rigorous 
concave function of ρk,n and pk,n. According to the property of 
concave function we know that if f(x) satisfies both concave 
and non-decreasing simultaneously, and g(x) is a concave 
function, then the composite function h(x)=f(g(x)) is also a 
concave function, too. Hence, we can conclude that the 
throughput of the kth user is a concave function. 

As we can see, the following constraint in (11) is convex, 
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equivalently, 
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Thus it can be known that the kth user’s throughput Thk is a 
continuous and differentiable concave function of ρk,n and pk,n. 

IV. SUBOPTIMAL RB AND POWER ALLOCATION 

As aforementioned, to obtain the optimal solution of (3), the 
RBs and power allocation needs be considered simultaneously. 
However, the computational complexity prohibits the 
simultaneous optimization from practice.  Furthermore, the 
scheduler in base station complete its scheduling procedure on 
the basis of previous feedbacks of CSI, in order that the channel 
feedback could reflect the CSI within time constraint accurately, 
the scheduler has to compute the optimal RB assignment and 
power allocation with great rapidity  as the wireless channel 
could vary rapidly. On this account, low-complexity 
suboptimal algorithms are much preferred because of the 
cheapness and delay-sensitive implementations, and separating 
RB allocation and power allocation is one of the suboptimal 
ways, because variable numbers in the objective function is 
almost reduced by half. The following section A discusses a RB 
allocation scheme, and the optimal power distribution based on 
GA-PSO will be presented in section B.  

A. RB allocation 

In this section, we develop an optimal RB algorithm, in 
which power is assumed to be distributed equally across all 
RBs in initialization stage. This algorithm is depicted in the 
following Algorithm 1, where Ωk is the set of RBs assigned to 
the user k, and 𝒦 = {1, 2, …, 𝐾} and 𝒩 = {1, 2, …, 𝑁} denote 
the sets of active users and all RBs, respectively.  

The principle of the proposed optimal RB algorithm can be 
summarized in a word that each subscriber employs the RBs 
with high channel-to-noise ratio as much as possible. When the 

required minimum throughput is satisfied, the rest RBs will not 
be allocated to the subscriber any more. Thus the RB allocation 
scheme strikes a compromise between the maximum 
throughput and system fairness considerably. 

TABLE I  ALGORITHM 1 

Algorithm 1: RB Allocation Algorithm 

Initialize: Set Ωk = ∅, Rk = 0, for k =1, 2, …, K.  

  repeat 

(a) find k satisfying gk,n ≥ gj,n, for j∈𝒦;  

(b) let Ωk = Ωk∪{n}, 𝒩=𝒩−{n}, update Rk 

according to equation (1) and (2). 

(c) if Rk ≥ Rk,min, then 𝒦=𝒦−{k}  

  until 𝒦 = ∅ or 𝒩 = ∅ 

Output: the RB allocation matrix ρ = {ρk,n} 

 

B. Power Distribution for given RB Allocation 

Based on the existing GA and PSO algorithms, this section 
describes the design and implementation of the proposed 
GA-PSO algorithm to solve the power allocation problem. 

As is well-known, PSO has faster convergence speed but in 
later evolution stages it may converge to local optimum values 
easily. This is also known as premature convergence. On the 
other hand, the crossover and mutation operation of GA can 
maintain population diversity and extend the region of search 
so that it is not easy to fall into local optimum solutions but it 
converges slowly. So we propose a new algorithm GA-PSO 
combining the two algorithms together to overcome their 
disadvantages while their advantages are retained, too. 

The PSO is a swarm intelligence algorithm that has been 
proved to be an effective approach in obtaining global optima 
and it has been applied in various areas successfully, such as 
neural network training, traveling salesmen’s problem and so 
on. PSO emulates the behavior of bird flocking in which each 
bird represents a particle. The flight of each individual is 
influenced by the experience both itself and its companions. All 
particles have their own positions, velocity, and fitness values. 
In the actual optimization problems each particle represents a 
feasible solution of the objective functions. There are generally 
two updating formulas in PSO algorithm: velocity updating and 
position updating. The two updating formulas are given below, 
respectively 
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where v(t+1) is the updated velocity of a particle; w(t) is a 
parameter named inertia weight used to control the impact of 
the previous velocities on the current velocity; c1 and c2 are 
called acceleration coefficients; r1 and r2 are two random 
variables obeying uniform distribution between the closed 
interval [0,1]; v(t) is the current velocity and x(t) is the current 
position of the particle. The pBest represents the best value of 
the particle that it has achieved at iteration t and gBest 
represents the global optimum value of the population after 
each iteration.  

In GA, for two chromosomes (also called particles here) 
selected with crossover possibility pc, we apply arithmetical 
crossover operators on them simultaneously to generate one 
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offspring by combining their features. Mutation is an important 
part of the genetic search, through producing spontaneous 
random variation in different particles it helps to prevent the 
population from stagnating at local optimum solutions. For a 
chosen particle with mutation probability pm, each element will 
be replaced with a random new value. Fitness function is a 
particular objective function that could quantify the optimality 
of all the solutions, i.e., all particles in GA so that they could be 
measured and sorted. In this paper, equation (3) above is 
defined as the fitness function. 

 The proposed GA-PSO algorithm is depicted in Algorithm 
2 in detail below. 

TABLE II  ALGORITHM 2 

Algorithm 2: Power Allocation Optimization Algorithm 

step1: Parameter setting. Set iteration times L, particle swarm 

scales m, and algorithm parameters including inertia 

weight, learning factor, boundary values of positon and 

velocity, respectively. 

step2: Population initialization. Initialize swarm with a group 

of random particles (solutions), calculate the fitness 

value of each particle, Set pBest of each particle and 

select the best of them as gBest. 

step3: Update the velocity and position of each particle 

according to equations (13) and (14). 

step4: Calculate the fitness value of each particle. 

step5: Introduce genetic operators. Firstly, sort the swarm 

according to particles fitness values, and let the first 

third particles go into the later updating generation 

directly; secondly, employ crossover operator act on the 

first third particles and then replace the middle third 

particles with them; finally, perform mutation operation 

on the last third particles. The introduction of crossover 

and mutation operators facilitates the algorithm to avoid 

falling into local optimum effectively. 

step6: Update the pBest of each particle and gBest. 

step7: If termination condition is satisfied, go to step 8; 

otherwise, go to step 3. 

step8: Stop and regard the gBest as the final solution. 

V. SIMULATION RESULTS  

A. Simulation of Benchmark Functions 

In the simulation, four traditional test functions, including 
Spherical, Rosenbrock, Griewank and Rastrigin, are used to 
evaluate the effectiveness of GA-PSO. They are regarded as 
objective fitness functions respectively to evaluate the 
algorithm performance, which means we consider them as our 
optimal target, and their values as the fitness values. The 
solution of the four functions are zero. Spherical and 
Rosenbrock are unimodal functions with only one minimum 
value, while Griewan and Rastrigin are multimodal functions 
with many local minimums. Their expressions are given as 
follows. 

f1：Spherical function 
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f2：Griewank function 
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f3：Rastrigin function 

    2

3

1

100cos 2 10 , 100 100
n

i i i

i

f x x x x


         (17) 

f4：Rosenbrock function 
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Then, the GA, the PSO, and the proposed GA-PSO, are 
applied to the four benchmark functions severally to find their 
fitness values. Necessary parameters are set as follows: set the 
maximum iteration number at 100, swarm scale m at 30, the 
number of swarm at 100, inertia weight wstart at 0.9 and wend at 
0.4, c1 and c2 at 1.4962, crossover possibility pc at 0.65, 
mutation probability pm at 0.05.  

Corresponding simulation results are shown below. 

 

 
Fig. 1.  GA, PSO, GAPSO test function Spherical 

                                        

 
Fig. 2.  GA, PSO, GAPSO test function Griewank 
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Fig. 3.  GA, PSO, GAPSO test function Rastrigin 

 
Fig. 4.  GA, PSO, GAPSO test function Rosenbrock 

 

Fig. 1 to Fig. 4 show the simulated fitness value curves of 
the four benchmark functions with GA, PSO and GA-PSO, 
respectively. From the four figures the following observations 
can be summarized. For convergence velocity, in terms of how 
many generations it needs to reach the optimal solution 0, GA 
converges the slowest, followed by PSO, and GA-PSO is the 
fast one. Especially in Griewank test as shown in Fig.2 it is the 
most significant that GA-PSO only needs 10 iterations to reach 
convergence, but PSO needs 20, and GA needs more than 100 
generations. 

As to convergence precision, in terms of how closely an 
algorithm could reach its best solution convergence, we can get 
the same observation. Especially in Rosenbrock test as shown 
in Fig.4, we can see that GA-PSO can reach 0 exactly after the 
30th iterations, PSO reaches a solution 20 when in the 60th 
generation and keeps unchanged later on, GA gets a solution 30 
after the 95th generation and keeps constant from then on, that 
indicates that PSO and GA have fallen in local optimal and will 
not obtain the optimal solution 0 anymore. 

Thus, we can conclude that the performance of GA-PSO is 
the best among the three algorithms in searching solution. It 
could obtain better results than GA and PSO in doing both local 
search and global search, no matter in convergence velocity or 

precision aspect. Thus, the proposed algorithm GA-PSO has 
better application foreground in searching global optimum and 
avoiding premature convergence, meanwhile.  

B. Simulation of the objective function 

To evaluate the performance of GA-PSO in obtaining 
system throughput, simulations are carried out in TD-LTE 
system. The key parameters are listed in Table I. A rectangular 
area of 50km×50km is considered, and it is covered by a eNBs 
set according to wrap-around model [12] with 7 eNBs in it. 
Each UE randomly chooses one of the four services uniformly, 
including VoIP, web-browsing, file-download and video, with 
data rates being 64kbps, 128kbps, 384kbps and 1024kbps, 
respectively. 

TABLE IIISystem parameters 

Parameters Value 

Carrier frequency 2.6 GHz 

System Bandwidth 20 MHz 

Transmission time interval 1 ms 

Antenna gain 15 dBi 

Maximum transmit power of eNBs 46 dBm 

Maximum transmit power of UEs 23 dBm 

Noise power -106 dBm 

Propagation model Free space propagation 

 

When applying the three algorithms above to solve the 
fitness function, we can obtain their numerical results as shown 
in Fig.5.  

 
Fig. 5. Convergence of fitness function 

 

We can see that the fitness function converges after the 20th 
generation when using GA-PSO, the 30th generations when 
applying PSO, and the 150th generations when employing GA. 
On the other hand, when the three algorithms converge, 
GA-PSO has the largest fitness value of nearly 1.862, which 
means that system throughput here can reach 1.862Mb/s. It is 
known that the larger the achievable system capacity, the lower 
the outage probability of the received signal. Thus, we can 
reach a conclusion that the proposed algorithm achieves better 
performance than GA and PSO in both convergence speed and 
performance.  
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increase, the population gathers constantly and the population 
variety drops gradually meanwhile, which will lead to a 
decrease of convergence or even stop at the end. The advantage 
of GA is that it has higher population diversity. But in doing 
random searching in the entire solution space, it does not utilize 
the historical optimizing results, and hence leads to a lower 
convergence speed. The proposed GA-PSO exploits the 
advantages of both algorithms. It brings genetic and mutation 
operation in PSO, which could increase the population diversity 
so that to reduce the probability of falling into local optimum 
solutions, this improvement finally brings enhancement to its 
searching capability and convergence performance. 

 
Fig. 6.  The throughput versus the number of users 

 

The resource allocation simulation for throughput versus 
the number of users is shown in Fig.6. For comparison, three 
classical well-established resource management algorithms 
including round robin (RR), maximum carrier-to-interference 
ratio (Max-C/I), and proportional fairness (PF) are compared. 
We discuss the system throughput when using GA-PSO and the 
three resource management algorithms in the given simulation 
condition. 

In allocating radio resource with different schedulers, 
different results are obtained. Max C/I scheduler serves the 
subscriber with the maximum C/I, i.e., the user with the best 
channel conditions, to maximize the whole system throughput, 
so its obtained throughput can be considered as the throughput 
upper bound of all scheduler algorithms. In RR scheduling each 
user has equal chance to access the system resource, and user 
channel condition is not considered at all. Through RR has the 
best fairness but the lowest throughput among all scheduling 
algorithms, so it is regarded as the reference lower bound. PF 
strikes a balance between system throughput and fairness, so its 
obtained throughput lies between Max C/I and RR. The 
throughput of the algorithm proposed here also lies between 
that of the upper bound Max-C/I and lower bound RR. 

VI. CONCLUSION 

In this paper, we first propose an optimal radio resource 
allocation problem to maximize the overall system throughput 
in LTE system. We formulate the problem as a mixed binary 
and integer programming optimization problem. For 
simplification, RB and power allocation are carried out 

separately. The proposed GA-PSO algorithm exploits the 
combined advantages of GA and PSO is applied in power 
allocation procedure. Simulation results show that the proposed 
algorithm could achieve better QoS and faster convergence rate 
as compared with traditional PSO and GA approaches.  
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