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Abstract. To solve the problem that enterprise investment analysis is challenging to
analyze efficiently and accurately, this paper proposed a new method based on artificial
intelligence method to process amounts of data and make behavioral predictions. Efficient
investment promotion has a great impact on the future economic benefits of a company or
industrial park. The data used in this paper is derived from the CCCC Industry Operational
Platform. Firstly, a multidimensional feature set of enterprise data is gathered and defined
that a shareholding ratio greater than 50% indicates investment behavior by the enterprise.
Secondly, normalization methods are adopted to organize the multidimensional feature set,
reducing differences in magnitude between variables and optimizing model computational
efficiency. Finally, the SCN algorithm is utilized to predict enterprise investment behaviors.
Finally, taking two industries as the training data. The experiment shows that the precision
of predicting the investment behavior of scientific research enterprises reaches 93.95%,
and the precision of predicting the investment behavior of information transmission
enterprises reaches 90.45%. Meanwhile, comparative experiments have proven that the
method proposed in this article not only directly improves the efficiency of the enterprise
investment analysis process, but also enhances the accuracy of enterprise investment
analysis.
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1 INTRODUCTION

As for investment in Chinese industrial parks, enterprise investment is both the driving force
behind and the outcome of government investment attraction. Therefore, it is crucial to
understand why enterprises decide to invest, in order to identify which types of enterprises are
more likely to do so. Business professionals in industry research and park investment have
historically relied on traditional analytical methods to evaluate industry trends and forecast
enterprise investment behavior. This approach is time-consuming and prone to human error,
leading to imprecise analytical outcomes. Recently, several scholars have explored the practical
applications of machine learning and deep learning methodologies in macroeconomic and
microeconomic analyses, highlighting their predictive superiority over other econometric
models [5,9,10].
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Based on previous research, this paper proposes a model that combines artificial intelligence
algorithms with enterprise behavior analysis. The training dataset is obtained from the CCCC
Industry Operational Platform and contains multi-dimensional information on enterprises. This
model seeks to enhance the accuracy and efficacy of enterprise behavior analysis by using
advanced machine learning techniques.

Effective features used to identify potential investors and provide investment attraction
personnel with insights to screen prospective customers. After constructing the dataset, quantile
transformation [11] is utilized to map the data into a uniform distribution for standardized
feature weights. In addition, PCA [6] is used to aggregate and reduce the dimensions of the
features, eliminating irrelevant information. To facilitate iterative optimization of the model,
SCN is employed as the backbone network. This approach replaces traditional business
personnel with AI methods to analyze enterprise investment behavior, which enhances
analytical efficiency and accuracy while minimizing potential subjective factors. The proposed
model achieves an accuracy of 93.95% in analyzing investment behavior for scientific research
enterprises and 90.45% for information transmission enterprises, resulting in an overall
accuracy of 92.7%. The main contributions of this study are:

1. Establishing the method which enterprise investment behavior data set, which gathers and
integrates the enterprise characteristic set of investment behavior and non-investment behavior.

2. A feature optimization scheme for numerical value and dimension, which reduces
dimension and optimizes multi-dimensional features of enterprises, significantly improving the
reasoning speed and accuracy of the model.

3. Enterprise investment behavior prediction model applicable to enterprise data sets shows
robust prediction performance for investment behavior after training, and can be used to predict
whether other enterprises will have investment behavior.

2 BASIC OF ANALYSIS MODEL

For  the  input  data  set Y = {X୧ ∈ R୊}୧ୀଵ,ଶ,…,୬ , where n  is the number of enterprise records
included in the data set and each enterprise contains F pieces of information. Given the unique
nature of enterprise data, no similar feature data sets are available for training and learning
currently. Therefore, we first integrate the terminal data of the CCCC
Industry Operational Platform to construct an enterprise feature set as the input of the model.
Furthermore, nonlinear mapping methods were employed to normalize and standardize the scale
of enterprise data. Finally, the output of this method was used as the SCN algorithm's input to
fit and obtain classification results on enterprise investment behavior. To facilitate subsequent
discussions, all data objects are represented as matrices. Typically, data is represented as X୧ ∈
R୒×୊, and features are represented as Fଡ଼ ∈ R୒×େ.

2.1 Dataset construction

The data collected in the data terminal of the CCCC Industry Operational Platform often
accompanied with noise. To solve this problem, the commonly used data cleaning techniques
in big data are employed to clean the massive enterprise data [4]. The main objectives of data
cleaning process were as follows: (1) detecting and removing abnormal data; (2) detecting and



removing nearly duplicate data; (3) cleaning data that does not conform to the final format; (4)
cleaning data with relational issues. As shown in Figure 1.

Figure 1. general view of data cleaning from data source

Before data cleaning, selecting scientific research-oriented and information transmission-
oriented enterprises as the target of our research to avoid inaccurate prediction results caused
by prior knowledge errors due to differences in investment planning concepts in various
industries. (1) To deal with incomplete data, we graded fields and utilized computational
analysis methods to fill in low-weight fields. If a business record does not contain a high-weight
field, we deleted it from the dataset in order to prevent inaccurate information from affecting
model fitting. (2) Concerning erroneous data, we utilized deviation analysis in statistical
methods to eliminate outliers, followed by filtering rules in the database to exclude values that
did not meet requirements. The following formula summarizes this process:

∑ ቤ௫೔
ೖିெೖ

ெ஺஽ೖ
൘ ቤ೙

ೖసభ

௡
> 2                                                      (1)

In the equation (1), a single field value ௜ hasݔ ݇ dimensions, ݊ is represents the dimensions of
enterprise data, ௜ is the median ofܯ ݇ dimensions, and is the median absolute deviation ܦܣܯ
value [3]. Records that meet the above equation are removed as outliers to improve the
effectiveness of the dataset. (3) To eliminate duplicate data, we utilized predefined duplicate
identification rules to remove redundant enterprise records. (4) For inconsistent data formats,
we processed each field with a fixed field format.

After the data was cleaned, enterprise information datasets of 10,000 records each were
constructed for information transmission-oriented and scientific research-oriented enterprises,
and each record contained 39 field information as the initial feature set.

2.2 Feature optimization method

In this study, there is a large difference in the order of magnitude of enterprise feature sets, with
features such as registered capital reaching tens of thousands while others such as the number



of insured persons or intellectual property remain in the units or tens. When a feature's variance
is significantly larger than that of other features, it can dominate the learning algorithm and
hinder its ability to discover patterns elsewhere. To address this issue, feature normalization can
be employed to make features between different dimensions comparable in value, thereby
greatly enhancing the accuracy of the classifier.

Traditional linear regression models make assumptions about the linear distribution relationship
of the different dimensions of the enterprise feature set. However, such an assumption is not
valid considering the presence of peaked or heavy-tailed distributions and significant
heteroscedasticity. The model presented in this paper utilizes the quantile transformation
method that employs a nonlinear mapping technique to transform the original data into a
uniform distribution with values ranging between 0 and 1. By applying the quantile
transformation, the abnormal distributions can be smoothed out and the absolute relationship of
values can be mapped to relative relationships.

In this paper, represents the enterprise feature set, denoted as ݔ ݔ = ଷݔ,ଶݔ,ଵݔ} … , ௡}, whereݔ
݊=39. Here, ,ଵ represents the number of years since establishmentݔ ଶ represents the amount ofݔ
registered capital, and so on. The formula for the quantile transformation method is as follows:

௞ܲ = 1 + (݊ − 1) ∗ ௞݌  (2)

ܳ௞ = ⌊௉ೖ⌋ݔ + ାଵ⌊௉ೖ⌋ݔ) − (⌊௉ೖ⌋ݔ × ( ௞ܲ − ⌊ ௞ܲ⌋) (3)

ܺை௣௧ = (ܺ)ଵିܩ = ܺ − ܳ଴
ܳ௞ −ܳ଴ൗ (4)

In the equation, ௞݌ ∈ ଷ݌,ଶ݌,ଵ݌ … ௞݌,  are pre-defined quantiles, such as quartiles
(0.25,0.5,0.75). In equation (1), ௞ܲ  is the position of the ݇-th quantile in the sorted feature set.
In equation (2), the corresponding quantile ܳ௞ is calculated based on ௞ܲ . In equation (3), the
dataset  X  is  mapped  to ܷ(0,1). The processed enterprise feature set ܺை௣௧  is  inputted  as  the
optimized feature into the SCN algorithm model for analysis.

2.3 Basic of Stochastic Configuration Networks

Stochastic Configuration Networks (SCN) [7] is a type of supervised neural network with
random weights. It differs from conventional BP networks in that it can begin with a small
network that requires minimal human input. With randomly selected input weights and
thresholds, the SCN can gradually increase the number of hidden layer nodes while updating
the weights and thresholds until the termination condition of training accuracy is met. This
approach enables more automatic and flexible network configuration compared to traditional
methods.



Figure 2. illustration of the SCN structure

As shown in the Figure 2, the SCN model has ܮ − 1 hidden layer nodes, ,input layer neurons ܯ
output layer neurons.  X represents the input sample matrix of the network and is obtained by ܭ
normalizing the features.

ܺ = { ଵܺ, ܺଶ,⋯ , ܺே} = ൦

ଵଵݔ ଵଶݔ ⋯ ଵேݔ
ଶଵݔ ଶଶݔ ⋯ ଶேݔ
⋮ ⋮ ⋱ ⋮

ெଵݔ ெଶݔ ⋯ ெேݔ

൪ (4)

In equation (4), and ܯ ܰ represent the number and dimension of input samples, respectively. In
this study, ܯ  represents the number of enterprises in the feature set, and ܰ  represents the
number of enterprises feature types, with ܰ = 39. ܺ௡ = ଵ௡ݔ) , ⋯,ଶ௡ݔ , ெ௡)் is theݔ ݊-th input
sample, and ௡ܶ = ଵ௡ݐ) , ଶ௡ݐ ,⋯ , ௄௡)் is the expected output of theݐ ݊-th sample. As in equation
(5), the weight matrix between the input layer and the hidden layer is denoted by ܹ.  It  is
important to note that all numerical data have been normalized before computing.

ܹ = { ଵܹ, ⋯ , ேܹ} = ൦

ଵଵݓ ଵଶݓ ⋯ ଵ௅ିଵݓ
ଶଵݓ ଶଶݓ ⋯ ଶ௅ିଵݓ
⋮ ⋮ ⋱ ⋮

ெଵݓ ெଶݓ ⋯ ெ௅ିଵݓ

൪ (5)

The threshold matrix with hidden layer nodes is defined as ܤ ܤ = [ܾଵ, ܾଶ,⋯ ܾ௅ିଵ]், where ௝ܾ
represents the threshold of the ݆-th hidden neuron. ݃(•) is the activation function of the hidden
layer neurons, and ݃௝ = ൣ݃ଵ௝, ݃ଶ௝ ,⋯݃௝ே൧

்
 represents the output of the ݆-th hidden layer neuron.

Specifically,

g௝ = g൫ݓ௝்ܺ + ௝ܾ൯ = ଵ

ଵା௘௫௣ቀି௪ೕ
೅௑ା௕ೕቁ

(6)

Where in equation (6), ௝ is the connection weight between the input node and theݓ ݆ −th hidden
node. The output matrix of the hidden layer nodes is denoted as equation (7).



߅ = [gଵ, gଶ,⋯ , g୐ିଵ]୘ = ൦

gଵ,ଵ gଵ.ଶ ⋯ gଵ,ே
gଶ,ଵ gଶ,ଶ ⋯ gଶ,ே
⋮ ⋮ ⋱ ⋮

g୐ିଵ,ଵ g୐ିଵ,ଶ ⋯ g୐ିଵ,ே

൪ (7)

The connection weight between the ݆ −th hidden node and the ݇ −th output node is denoted as
.௝௞, and the complete matrix is denoted as equation (8)ߚ

ߚ = ଶߚ,ଵߚ] ,⋯ ்[௅ିଵߚ, =

⎣
⎢
⎢
⎡
ଵ,ଵߚ ଵ.ଶߚ ⋯ ଵ,௄ߚ
ଶ,ଵߚ ଶ,ଶߚ ⋯ ଶ,௄ߚ
⋮ ⋮ ⋱ ⋮

௅ିଵ,ଵߚ ௅ିଵ,ଶߚ ⋯ ⎦௅ିଵ,௄ߚ
⎥
⎥
⎤

(8)

The actual output of the network is represented by ߍ = ⋯,ଶ݋,ଵ݋] ௄]். Thus, the output of the݋,
randomly configured network with the structure of ܯ − ܮ) − 1) ܭ−  can be denoted as
equation (9).

ߍ = ܪ்ߚ (9)

Given the objective function ݂:ℝெ → ℝ௄, the current output of the network is

௅݂ିଵ(ܺ) = ܪ்ߚ =

∑ ௝்ܺݓ௝݃௝൫ߚ + ௝ܾ൯(ܮ = 1,2,⋯ ; ଴݂ = 0)௅ିଵ
௝ୀଵ (10)

The current residual of the network is

݁௅ିଵ = ݂ − ௅݂ିଵ

= ൣ݁௅ିଵ，ଵ，݁௅ିଵ，ଶ,⋯݁௅ିଵ，௄൧ (11)

In equation (10) and (11), if the output residue ‖݁௅ − 1‖ of the current network fails to meet the
preset error requirements, the network will select new hidden layer neuron nodes based on
inequality constraints to obtain the parameters ݃௅ (ݓ௅  and ܾ௅) of the ܮ −th hidden layer node.
Inequality constraints are used to select hidden layer node parameters in the SCN, and they are
represented as:

௅,௄ߦ = ቀ(௘ಽషభ,ೖ(௑)೅•௚ಽ(௑))మ

௚ಽ(௑)೅•௚ಽ(௑)
− (1− ݎ − ்(ܺ)௅)݁௅ିଵ,௞ߤ • ݁௅ିଵ,௞(ܺ)ቁ ≥ 0 (12)

In equation (12), ݃௅ = ݃௅(ݓ௅்ܺ + ܾ௅)  denotes the output of the ܮ − th hidden node, ݁௅ିଵ
represents the output residue when constructing ܮ − 1  hidden layer nodes, 0 < ݎ < 1  can
change during the parameter selection process, and ௅ߤ = ଵି௥

௅ାଵ
 is a non-negative real number

sequence. From this constraint, it can be seen that the selection of network parameter weights
and thresholds is related to the distribution of the given training samples. The output weight of
the ܮ −th hidden layer node of the network can be obtained based on formula (14), which is
denoted as follows:



௅ߚ ,௞ = ൻ௘ಽషభ,ೖ,௚ಽൿ
‖௚ಽ‖మ

, ݇ = 1,2, ܭ… (13)

After calculating the ܮ −th hidden layer node, the output of the network is obtained as follows:

௅݂(ܺ) = ௅݂ିଵ(ܺ) + ௅்ܺݓ)௅݃௅ߚ + ܾ௅) (14)

The next step is to verify the output error ݁௅ of the network and evaluate whether it complies
with the predetermined error criteria. If it satisfies the requirement, the construction of the SCN
is considered finalized. Otherwise, the network incorporates additional hidden layer neuron
node parameters according to inequality constraints, as shown in equation (13), in order to
minimize the output error, until the stopping condition is reached.

3   EXPERIMENTS

This section presents experiments conducted on the enterprise feature set created in section 2.1,
aiming to evaluate the efficiency of the feature optimization method and backbone network
structure for machine learning. Quantitative analysis was employed, and various models were
compared based on evaluation metrics that included training accuracy, testing accuracy, and
testing time. The hyperparameters used in the SCN model for this section were set as follows:
the maximum number of generated hidden nodes is 300, and the maximum number of random
configurations is 100 times. In the table presented in this chapter, A represents normalization
[0,1], B represents normalization [-1,1], C represents Z-score normalization, D represents
equidistribution mapping, E represents PCA (20Dim), F represents PCA (40Dim), G represents
SVM, H represents TextCNN, I represents MLP and J represents SCN.

3.1 Feature optimization method

In this section, SCN was used as the backbone network for all models, based on the dataset of
scientific research-oriented enterprises. Unreasonable feature distribution can lead to problems
such as local optima and gradient disappearance in prediction results, making feature
optimization an essential part of this model. Regarding data normalization, we compared and
studied the min-max normalization [2], z-score normalization [1], and quantile transformation.
Table 1 shows the optimization results of all methods on the scientific research enterprise
dataset. Without feature optimization, the accuracy reached 79.7% after training the dataset
using SCN, which is 3.7 percentage points lower than the training accuracy, indicating
overfitting. By introducing feature optimization methods, the prediction accuracy improved by
7.1 to 13.2 percentage points. The scaling ratio has little effect on the final prediction result.
When using non-linear mapping quantile transform, it is less affected by outliers and has better
results in training time and training accuracy. Unlike linear mapping, non-linear mapping data
can fit to an optimal solution more quickly, reducing the overall training time by one-third.

Table 1: Results of different feature optimization methods based on SCN

Method Train Acc (%) Eval Acc (%) Total Time (s)
None 83.43 79.7 73.8
Normalization [0,1] 88.8 86.8 86.66



Normalization [-1,1] 88.6 87.35 86.63
Z-Score Normalization 88.85 86.2 84.06
Equidistribution Mapping 93.6 92.9 55.04

Moreover, we used PCA for optimizing feature aggregation. We aimed to assess the effect of
manually collected data dimensions on the prediction outcomes of our models. The evaluation
results are detailed in Table 2. When using PCA alone to minimize the dimension of features,
there is no discernible impact on the accuracy of the model. However, excessive dimension
reduction carries the risk of losing key information and deteriorating the performance of our
model. Subsequently, the study demonstrated that that applying PCA to optimize dimensions
after already improving the features in terms of magnitude can elevate prediction accuracy for
the four normalization methods by 1-2 percentage points. These results endorse the
dependability of extracting and aggregating the principal components of the feature set. In
addition, ignoring feature coordinates with near-zero variance as a feature optimization tactic is
deemed sound.

Table 2: Results of introducing PCA.

Optimized Method Train Acc Eval Acc
A B C D E F % %

81.43 78.7
√ 80.4 77.9

√ 80.9 78.9
√ 88.8 85.8

√ 86.8 86.35
√ 87.85 86.1

√ 93.4 92.9
√ √ 89.5 86.7

√ √ 88.3 87.3
√ √ 89.93 87.75

√ √ 93.4 92.75
√ √ 90 87.25

√ √ 89.89 87.8
√ √ 90.59 88.36

√ √ 94.97 93.95

3.2 Experiments and Analysis

As enterprise data is characterized by rapid growth and change over time, selecting a backbone
model requires careful consideration of robust generalization performance while striking a
balance between generalization and accuracy. In this section, we compared and evaluated our
model, which was implemented based on the feature optimization method discussed in section
3.1, with SVM, TextCNN and MLP. The evaluation dataset was divided into three categories,
including scientific research enterprises (10,000), information transmission enterprises (10,000),
and a combination of scientific research and information transmission enterprises (20,000). The
evaluation criteria were training accuracy and prediction accuracy.



3.2.1 Original Model Effect

To  assess  the  performance  of  the  model  that  combines  feature  optimization  with  SCN,  we
trained each subsequent model in this section on the combination dataset without any
optimization technique. Table 3 shows that we used this dataset as a reference point for
subsequent model optimization and comparison. The specific model hyperparameters for SVM,
TextCNN, and MLP will be described in subsequent chapters.

Table 3: Results of different native models.

Method Train Acc (%) Eval Acc (%) Total Time (s)
SVM 88 74 428.7

TextCNN 91 84 185
MLP 74 73.3 4.8
SCN 79.6 77.6 72

3.2.2 SVM vs OURS

SVM is a commonly used supervised classification algorithm in machine learning. In this
experiment, we set the following hyperparameters for the SVM: a penalty coefficient of 100,
L2 loss as the loss function, the RBF Gaussian Kernel function as the kernel function, and a
kernel function coefficient of 0.001. Based on the evaluation results presented in Table 4, the
accuracy of the model proposed in this paper outperformed SVM in all three datasets. Although
SVM had similar generalization performance to our proposed model structure, introducing PCA
dimensionality reduction did not enhance the effectiveness of the SVM algorithm.

Table 4: Comparison results with SVM under datasets.

DataSet Method Backbone Train Acc (%) Eval Acc (%)

Scientific
Research
（10000）

D

×
SVM 93.4 92.8
SCN 93.6 92.9

E
G 93.14 93
J 93.4 92.75

F
G 93.45 93.38
J 94.97 93.95

Scientific
research

+
Information
transmission
（20000）

D

×
G 91.1 90
J 92.1 89.65

E
G 90.7 89.7
J 91.89 90

F
G 91.1 90.04
J 92.55 90.45

3.2.3 TextCNN vs OURS

The TextCNN employs the CONV1D layer for effective feature extraction from input samples
of dimension 1. This paper introduces TextCNN as an alternative network solution for
evaluation purposes. Regarding the experiments, the network hyperparameters were set as



follows: cross-entropy loss as the loss function, Adam algorithm as the optimizer, the activation
function is RELU, and the training epochs being set to 40.

Table 5: Comparison results with TextCNN under datasets.

DataSet Method Backbone Train Acc (%) Eval Acc (%)

Scientific
Research
（10000）

D

×
TextCNN 93.29 92.45

SCN 93.6 92.9

E
H 92.56 92.57
J 93.4 92.75

F
H 93.2 93
J 94.97 93.95

Scientific
research

+
Information
transmission
（20000）

D

×
H 92.27 92.33
J 92.36 92.15

E
H 91.62 91.72
J 92.32 91.79

F
H 92.27 92.41
J 92.94 92.7

According to the results in Table  3, TextCNN is a well-established deep neural network,
exhibiting performance superiority by a margin of 10 percentage points compared to other
models. Nonetheless, it has been observed to suffer from overfitting issues on enterprise datasets.
Table 5 compares the TextCNN's performance after feature optimization, revealing that
TextCNN is relatively insensitive to such efforts. It can be inferred that, owing to the high
dimensionality of deep models, small-size training data cannot suffice to constrain their
numerous parameters, and overly elongating the training process may not necessarily enhance
the performance, but rather exacerbate the overfitting issue. By contrast, SCN network features
a simpler architecture and can adapt to enterprise datasets more quickly, and yields superior
results to TextCNN.

3.2.4 MLP vs OURS

Multilayer Perceptron (MLP) is often used as the final classification layer in deep learning due
to its simple structure and small parameter count. In this experiment, the hyperparameters of
MLP are set as follows: the lbfgs optimizer of the quasi-Newton method is used as the optimizer,
the sigmoid function is used as the activation function, and the number of nodes in the hidden
layer is set to 128.

Table 6: Comparison results with MLP under datasets.

DataSet Method Backbone Train Acc (%) Eval Acc (%)

Scientific Research
（10000） D

× MLP 95.5 91.8
SCN 93.6 92.9

E I 93.2 92.2
J 93.4 92.75

F I 93.4 92.8
J 94.97 93.95



Scientific research
+

Information
transmission
（20000）

D

× I 92.2 91.5
J 92.36 92.15

E I 91.5 91.35
J 92.32 91.79

F I 92.29 92
J 92.94 92.7

According to Table 3, MLP achieved a classification accuracy of 73.3% in only 5 seconds.
While its accuracy may not be as high as other models, MLP still holds potential. In this section,
we introduce feature optimization to evaluate the overall effect of MLP. The results are shown
in Table 6, indicate that MLP has good generalization performance on the three datasets.
However, the inability to fit a large volume of data with parameters limits its overall accuracy
compared to the SCN model. Given that enterprise data will continue to change and expand in
the future, the MLP structure cannot sustain a robust classification performance when the dataset
expands significantly.

4 CONCLUSIONS

This paper proposes a method to analyze enterprise investment behavior by using feature
optimization and joint SCN on a dataset, allowing investment promotion personnel to make
objective and informed judgments when evaluating investment targets. This approach combines
the fields of artificial intelligence and industry research, using big data processing methods and
machine learning algorithms to efficiently analyze massive amounts of enterprise data. The goal
is to assist business personnel in making efficient and data-driven investment decisions.

In comparative experiments, the method realizes the balance between generalization and
accuracy, especially the optimization of overall training time. At the same time, the SCN model
combines the fast-fitting advantages of the MLP network with incremental learning to address
the former shortcomings in prediction accuracy. Adoption of the feature optimization methods
for the enterprise feature set has significantly improved most models, particularly the SCN
model, which saw a 15.2 percentage point increase in accuracy and a 30% acceleration in fitting
time. Finally, the joint SCN model, along with the feature optimization, has resulted in an overall
prediction accuracy of 93% for investment behavior in enterprises.

Under the same conditions of data usage, the method can be applied to numerous application
scenarios within the context of big data. In the future expansion and improvement of enterprise
datasets are expected to enhance the final model performance further.
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