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Abstract. With the continuous advancement of computer, microelectronics and wireless 

communication technologies, low-power sensor nodes that integrate various functions 

such as information acquisition, storage, processing and wireless communication in a tiny 

volume are rapidly developing. A wireless sensor network consists of a large number of 

inexpensive sensor nodes deployed in a monitoring area, forming a multi-hop network by 

means of self-organisation. The aim is to sense, collect and process information about the 

sensed objects in the coverage area and send it to the observer. Sensor networks have 

greatly changed the way humans interact with the outside world and improved their ability 

to understand the world, and can be widely used in national defence and military 

construction, industrial and agricultural production, environmental monitoring, medical 

care and other fields. In terms of data management and usage, it is generally accepted that 

the data collected by the nodes are transmitted directly to the base station or sink for 

processing and maintenance. However, it was found that this centralised approach to data 

management is bandwidth intensive, the aggregation point is prone to constitute a network 

bottleneck due to a single point of failure or attack, and lacks the practical deployment 

capability to accommodate the growth of sensor networks and some new applications. 
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1 Introduction 

In the last decade, with the advancement of sensor technology, microelectronics, modern 

networks and wireless communications, the generation and development of Wireless Sensor 

Network (WSN) has been promoted and facilitated. As WSN is a hot research direction 

involving multiple disciplines and highly integrated knowledge, it can be applied in defence and 

military construction, industrial and agricultural production control, commercial operation 

services, medical monitoring, intelligent transportation and urban management, natural disaster 

prevention and emergency rescue, environmental health monitoring, remote regulation and 

control of harsh environments, etc [1]. It has attracted widespread attention from industry and 

academia, and is considered one of the key information technologies to be developed in the 21st 

century [2]. 
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2 Adaptive data security storage research 

The integrity verification scheme proposed in this paper is based on dual-grained linear codes. 

Some basics of dual-grained linear codes are briefly introduced [3].  

The internal linear code of the data, or internal code for short, is calculated using algebraic 

functions inside the data. The form is as follows: 

𝛺𝑎(𝑥) = ∑ 𝑎𝑖−1𝑥𝑖

𝑘

𝑖=1

 

Here each data x has k symbols, denoted as 𝑥𝑖. The length of the symbol is p. a is an element of 

the original domain in 𝐺𝐹(2𝑝). In addition 𝑘 ≤ 2𝑝 − 1. 

Data interaction linear codes, or interaction codes for short, are computations between data using 

algebraic operations of the following form: 

𝑃(𝑦1, 𝑦2, … , 𝑦𝑛 = ∑ 𝛽𝑖−1𝑦𝑖

𝑛

𝑖=1

 

where each data 𝑦𝑖(𝑖 ∈ [1, 𝑛]) has k symbols of symbol length p and 𝛽𝑖 is a different element 

chosen at random from the finite field 𝐺𝐹(2𝑝) satisfying 𝑖 ∈ [1, 𝑛], 𝑛 ≤ 2𝑝 − 1. 

An important property of dual-grained linear codes is that the interaction code of an internal 

code is equal to the internal code of an interaction code. That is: 
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𝑛

𝑗=1
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𝑘

𝑖=1

𝑥𝑖𝑗) = ∑ 𝑎𝑖=1

𝑘

𝑖=1

(∑ 𝛽𝑖−1

𝑘

𝑗=1

𝑥𝑖𝑗) 

The internal code is calculated by the data holder and the interaction code is calculated by the 

data distributor and then distributed to the authenticator [4]. For ease of description, the internal 

codes are referred to later as digest and the interaction codes as parity [5].  

3 Analysis 

In this paper, simulation experiments are conducted to verify the effectiveness of the scheme [6]. 

Figure 1 shows the results of the comparison of the detection rates of the different schemes for 

the case where the number of captured nodes x is incremented from 100 to 500. 



 

Fig. 1. Comparing the detection rates of various schemes 

Figure 2 compares the storage, computational, communication and time overheads of each of 

the four schemes. As can be seen from the graphs, the SAID option has better indicators than 

the other three options. This is due to the fact that SAID selects neighbouring nodes for storage 

and can continuously verify the integrity of the data, saving computational and communication 

overhead [7]. The CADS scheme, on the other hand, is based on discrete logarithms and requires 

the introduction of complex calculations. Random walk uses a network-wide broadcast, which 

has the highest communication cost, and the Dynamic migration solution constantly adjusts the 

location of the data, which consumes a significant communication overhead. This also reaffirms 

the validity and feasibility of the programme. 

 
(a) Storage consumption                         (b) Communication consumption 



 
(a) Calculated overhead                                                    (b) Time overheads 

Fig. 2. Comparing the overheads of the various options 

4 Data Retrieval Process 

4.1 Experimental results and performance analysis 

Figure 3(a) compares the data hiding probability with the number of captured nodes. As can be 

seen from the figure, the larger 𝑁′ is, the lower the data hiding probability is, and vice versa. 

This is because as the number of captured nodes in the cell increases, the probability of data 

being leaked increases [8]. 

 
(a) Hidden probabilities                                 (b) Communication overheads 

Fig. 3. Symbol distribution versus the number of captured nodes 𝑁′ 

Figure 3(b) illustrates that the communication overhead of the three symbol distribution 

schemes is independent of the number of captured nodes 𝑁′. As can be seen from the previous 

analysis, the factors that affect the communication overhead are the number of nodes and the 

density of nodes. 



 

Fig. 4. Effect of n on the RSD scheme. Fig. 5. Impact of x on the NSD programme. 

Figure 4 shows the impact of n on the RSD scheme. As can be seen from the graph, the larger 

the n, i.e. the greater the number of storage nodes, the higher the data hiding probability and 

communication overhead. This is because we choose the (𝑛, 𝑘)  encoding scheme for the 

stretching factor to maintain a certain relationship, as n increases, so does k, requiring the 

retrieval of more symbols, making the data hiding probability higher. From this diagram we can 

further conclude that by changing the value of (𝑛, 𝑘) a better flexibility of data leakage can be 

guaranteed. 

Figure 5 shows the impact of x on the NSD scheme. It can be seen the data hiding probability 

and communication overhead increase as x increases. Similar to the RSD scheme, as x increases, 

more storage nodes are selected, and thus the data hiding probability and communication 

overhead increases. 

 

Fig. 6. Impact of h on the HSD programme.Fig. 7. Decoding success rate versus number of iterations 

Figure 6 shows the effect of h on the HSD scheme. In this we can see the same pattern as in 

Figures 4 and 5. In general, the larger h is, the higher the probability that the HSD scheme will 

be able to find enough storage nodes, and for a certain stretch factor, a larger n equals a larger 

k. The greater the number of symbols that the attacker needs to capture, the greater the number 

of symbols that the attacker needs to capture. The higher the probability of data hiding, the 

higher the corresponding communication overhead [9]. 



The following addresses the efficiency of decoding under the condition that the data is modified 

after some nodes have been captured. Figure 7 shows the distribution of nodes accessed when 

the algorithm terminates. The bar chart gives the average value after 1000 simulations and the 

curve indicates the analytical results. In the experiment 𝑛 = 127, 𝑘 = 31 and 𝑞 = 0.2 were 

chosen so that 100 simulation runs gave adequate statistics [10]. 

In Figure 8, set 𝑘 = 31 constant, n from 127 to 205 and q from 0 to 0.9. Give the probability 

𝑃𝑠𝑢𝑐 of successful decoding for different n versus the probability of error q. It can be seen that 

𝑃𝑠𝑢𝑐 decreases as q increases. Clearly the more erroneous data there is, the lower the probability 

of successful decoding of the data. In addition when k is constant the larger n is the higher 𝑃𝑠𝑢𝑐 

is. indicates that the larger n the more redundant symbols, the more accessible symbols can be 

found when decoding fails. 

  

Fig. 8. Decoding success rate versus error rate.     Fig. 9. Number of visits versus error rate 

In Figure 9, we set 𝑛 = 127 constant, k from 31 to 61, and q from 0 to 0.9. gives the average 

number of visits as a function of the probability of error q. The graph shows that the greater the 

error probability the greater the number of visits required. 

5 Conclusion 

This paper studies the problem of secure storage of distributed WSN data and first proposes an 

integrity-verified data storage scheme. Before the data is collected, the nodes holding the data 

slices can verify their integrity and exclude the upload of incorrect data, saving communication 

overhead and processing time for the user. On this basis, an adaptive data storage solution has 

been designed that allows for adaptive storage of data according to the characteristics of the 

network and security requirements. An efficient data retrieval algorithm is also designed, with 

optimal communication and computation. Excellent retrieval efficiency in the event of node 

failure, random errors and data contamination, ensuring data availability and reliability. The 

former is suitable for environments with dense network deployments, a high number of 

neighbouring nodes and a relatively low level of security requirements. The latter is suitable for 

environments with a high level of user capability and a high level of network security. Both 

solutions have their advantages and both can be applied to resource-constrained sensor 

networks. 
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