
Scheduling Hybrid Spark Jobs Based on Deep
Reinforcement Learning

Kun Chen1,a, Jia Wang1,b*

chenkun@stu.xju.edu.cna

Corresponding author.Email:jw1024@xju.edu.cn*b

Xinjiang Key Laboratory of Multilingual Information Technology, School of Information Science and
Engineering, Xinjiang University, China1

Abstract. As a popular big data computing framework, Spark requires effective job sched-
uling to optimize resource utilization and execute applications efficiently. However, the
hybrid jobs (jobs with and without deadlines) and the heterogeneous clusters bring great
challenges for job scheduling. In this paper, a job scheduling based on deep reinforcement
learning is proposed. A weight-based job sorting strategy is designed to obtain better job
scheduling. The proposed method is evaluated with large-scale real-world data. Experi-
mental results show that more jobs can satisfy deadline constraints and the cost of cluster
utilization is reduced.

Keywords: Spark, DRL, hybrid job, utilization cost

1 INTRODUCTION

Job scheduling is critical to the performance of Spark framework [1]. In production scenarios,
there are various types of tasks, including jobs with tight deadlines [2], such as stream pro-
cessing and real-time analytics. Deadline constraints in these applications need to consider in
order to ensure the accuracy and timeliness of applications. Therefore, different types of jobs
are considered in job scheduling to minimize utilization costs with deadline constraints.

In this paper, the scheduling problem of regular and deadline-constrained jobs in the heteroge-
neous Spark cluster is studied to optimize the bi-objective of the cluster utilization cost and the
success rate of deadline-constrained jobs. A weight-based job sequence is designed, which sorts
jobs based on their priorities. A deep reinforcement learning model is proposed to assign jobs
to resources effectively.

The main contributions are as follows: 1) A job sequence method is proposed by sorting jobs
with their priorities. 2)A job scheduling is designed for scheduling hybrid jobs in heterogeneous
clusters. 3) The effectiveness of our approach is demonstrated in optimizing the cluster utiliza-
tion cost and the success rate of deadline-constrained jobs through large-scale real-world data.

The rest of this paper are as follows: Section 2 introduces the related work. The problem is
formulated in Section 3. Section 4 describes the proposed algorithm. Section 5 conducts exper-
iments, followed by our conclusion in Section 6.

ICBBEM 2023, May 19-21, Hangzhou, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.19-5-2023.2334333

2 RELATED WORKS

Many researches have been on Spark job scheduling, which can be categorized of heuristic al-
gorithms and reinforcement learning methods. Some of studies always focused on the forecast-
ing of resource or utilization [3, 4, 7], some deal with single type of job or homogeneous envi-
ronment [5, 6], which ignoring the optimization of cluster utilization cost and the percentage of
jobs completed within deadlines. In other words, these studies are not meet practical require-
ments. The scheduling problem of hybrid jobs and heterogeneous clusters remains a challenge
that needs to be studied.

Recent researches have shown the benefit of deep reinforcement learning algorithms in job
scheduling, such as those used in cloud platforms [9], continuous data stream processing. How-
ever, the effectiveness in hybrid jobs and heterogeneous clusters has not been studied. In this
paper, the scheduling problem of regular and deadline-constrained jobs in the heterogeneous
Spark cluster is studied to optimize the bi-objective of the cluster utilization cost and the success
rate of deadline-constrained jobs.

3 PROBLEM DEFINITION

Define a Spark cluster ℂ = ൛ܿଵ, ܿଶ, … , ఓܿ , … , ܿேൟ. For node ఓܿ , the CPU capacity is ఓݑܿ , the
memory capacity is ݉݁݉ఓ , the cost per unit time is ఓ݅ݎ , the execution time of all jobs is ݏݑ ఓ݁.
The set of executors submitted to node ఓܿ is ݔ݁ ఓ݁. For executor the CPU requirement is ,ߪ ݁௨ఙ

and the memory requirement is ݁
ఙ .

The set of jobs submitted by users is ܯ ॵ = { ଵ݆, ݆ଶ, … , ݆ఛ , … , ݆ெ}. Assume the number of execu-
tors required for ݆ఛ is ఛ. The arrival time of theܧ ݆ఛ is ܽఛ, the running time is ఛ and the finishݎ
time is ఛ݂. Define ݀ఛ is the deadline of ݆ఛ. Once a job is submitted to the cluster, or a job is
finished, the scheduler need to make scheduling decisions. Equation (1)-(3) must satisfied dur-
ing job scheduling.

∑ ൫݁௨ఙ × ఙఓ൯ఙ∈௫ഋݔ ≤ ఓݑܿ (1)

∑ ൫݁
ఙ × ఙఓ൯ఙ∈௫ഋݔ ≤ ݉݁݉ఓ (2)

∑ ఙఓഋ∈ℂݔ = ఛܧ (3)

Where if executor is placed on node ߪ then ,ߤ ఙఓݔ = 1, otherwise ఙఓݔ = 1.

After scheduling, the resource cost is calculated as follows:

ܥ = ∑ ഋ∈ℂ ఓ݅ݎ × ݏݑ ఓ݁ (4)

Define our goal Target as shown in Equation (5), where ,is a fixed number ݐ݊ܽݐݏ݊ܥ is theܦ
success rate of deadline-constrained jobs and .௨ is the number of jobs with the deadlineܦ

ݐ݁݃ݎܽܶ = × ݐ݊ܽݐݏ݊ܥ (ೌೣି
ೌೣ

+
ೠ

) (5)

4 PROPOSED ALGORITHM

4.1 WEIGHT-BASED JOB SEQUENCE

Assume the total resources in the cluster are ܲܥ ௧ܷ௧ andܯܧܯ௧௧. The required executors
for ݆ఛ are The resource requirements are .ߪ ܴ௧௧, defined as follows:

ܴ௧௧ = ቀ ೠ

+

ொெ
ቁ × ఛܧ (6)

The urgency of ݆ఛ at time is defined as ݐ ௧ܷ
ఛ, shown as follows:

௧ܷ
ఛ = ൝

ܷ௫/݀ఛ − ݐ) + (ఛݎ if ݀ఛ ≠ 0 and ݀ఛ − ݐ) + (ఛݎ < 0
ܷ௫ if ݀ఛ ≠ 0 and ݀ఛ − ݐ) + (ఛݎ ≥ 0
0 other

(7)

We set the priority of ݆ఛ asܹ݁݅ఛ, which is calculated as follows:

ܹ݁݅ఛ = ௧ܷ
ఛ × ߣ + ܴ௧௧ × (1 − (ߣ (8)

Where .is the deadline weight of the job ߣ

At time jobs are sequenced according to their priorities. The job with the highest priority need ,ݐ
to schedule firstly.

4.2 JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING

Table 1. The definition of immediate reward

Event Reward
If job scheduling is done ݀ݎܽݓܴ݁ = 1
If the current node does not have enough resources, and the
scheduler still chooses to place the job on the current node

݀ݎܽݓܴ݁ = −200 .
At the same time, the episode
is terminated

If the current scheduler chooses to skip this placement ݀ݎܽݓܴ݁ = −1
If the job execution completes ݀ݎܽݓܴ݁ = 10

Deep neural network is used to learn optimal policies in DRL. It can effectively process prob-
lems with high-dimensional state spaces and those with partially observable scenarios. Since
Policy Gradient is a popular strategy in DRL, the job scheduler is solved by Policy Gradient.
The corresponding state, action, and reward are defined as follows:

State: Includes state of the cluster ଵ௨ݑܿ)] ,݉݁݉ଵ
௨), … , ே௨ݑܿ) ,݉݁݉ே

௨)] and current
scheduling job ,ఛܧ)] ݁௨ఙ ,݁

ఙ)] .Where ఓ௨ݑܿ ,݉݁݉ఓ
௨ indicates the currently available

CPU resources and memory resources of ఓܿ , respectively. .ఛ is reduced after each placementܧ

Action: the scheduler selects an action to allocate resources for a job. The scheduler can place
job executors on any node in the cluster or choose to skip this assignment.

Reward: immediate rewards are shown in Table 1. We define the final optimization goal ݐ݁݃ݎܽܶ
as the final reward.

5 PERFORMANCE EVALUATION

5.1 Environment

Table 2. Cluster node detailed configuration

Type Quantity Number of CPU cores Memory (GB) Price
c5.xlarge 4 4 8 $ 0.17/h

c5.2xlarge 4 8 16 $ 0.34/h
c5.4xlarge 4 16 32 $ 0.68/h

The resource configuration of the cluster in the simulated environment is referenced to Amazon
EC 2.1. The configuration information and cost of each cluster node are shown in Table 2. We
evaluated the efficiency of our proposed algorithm by job set from BigDataBench, where con-
sists of three different types of jobs WordCount, Sort, and PageRank. Three job sets with job
number 100, 50 and 20 are investigated. With the consideration of deadlines, the proportions of
deadline-constrained jobs in each job set are 60% and 40% respectively. In a words, there are
six different job set in experiments. Assume J-60-100 means the job set with 100 jobs and 60
jobs with deadlines. Other five job set have similar meaning.

5.2 Evaluation

Fig. 1. Influence of parameters

We conducted multiple experiments to assess the impact of λ values on the scheduling algo-
rithm. Results in Figure 1 showed that increasing λ emphasized jobs with deadline constraints,
leading to better performance in meeting these constraints. The effect of λ on the value ݐ݁݃ݎܽܶ
varied depending on the number of jobs. For J-60-100 and J-40-100, which had more jobs, the
parameter settings significantly impacted the ,In contrast, for J-60-20 and J-40-20 .ݐ݁݃ݎܽܶ
which had fewer jobs, the effect of parameter settings on the .was relatively minor ݐ݁݃ݎܽܶ

Fig. 2. Comparison with other algorithms

We compared our proposed hybrid job scheduling algorithm, HJS, with three other algorithms:
Spark's default scheduling algorithm (FIFO+RR) [4], the earliest deadline priority algorithm
[10], and a DQN-based algorithm proposed in the literature [8]. We calculated the Target value
for each set of experiments based on the experimental results. The experimental results are
shown in Figure 2. Our algorithm outperformed the other algorithms in scheduling hybrid jobs
while controlling cluster usage costs and improving the success rate of deadline-constrained
jobs. The average Target value of our algorithm was 16% higher than Spark's default scheduling
algorithm, 8% higher than the deadline-based scheduling algorithm, and 14% higher than the
reinforcement learning algorithm based on reducing task completion time and reducing cluster
usage cost.

6 CONCLUSIONS

Hybrid Spark jobs scheduling in heterogeneous clusters is demonstrated in this paper. Jobs are
sequenced by their priorities. A deep reinforcement learning model is proposed to assign hybrid
jobs to resource by using Agent to optimize one or more objectives with deadline constraints.
Experiment results demonstrate the effectiveness of the proposed approach in scheduling hybrid
jobs.

ACKNOWLEDGMENT: This work is supported by the Scientific Research Foundation of
Higher Education (No.XJEDU2022P011), the "Heaven Lake Doctor" project
(No.202104120018) and the Doctoral Scientific Research Foundation of Xinjiang University
(No.620320029) .

REFERENCES

[1] Li, X., Wang, L., Li, Y., Li, C., & Wu, L. (2019). Improving Job Scheduling in Heterogeneous
Hadoop Clusters Using Weighted Fair Sharing. IEEE Access, 7, 40420-40431. doi:10.1109/ac-
cess.2019.2903045.
[2] Zhao, Z., Liu, Q., Wu, W., Zhang, W., & Yu, X. (2018). Spark mixed jobs scheduling with
deadline constraints based on weighted job ordering. Future Generation Computer Systems, 86, 899-
912. doi:10.1016/j.future.2018.04.059.

[3] Islam, M.T., Srirama, S.N., Karunasekera, S., & Buyya, R. (2020). Cost-efficient dynamic
scheduling of Big Data Applications in apache spark on cloud. Journal of Systems and Software, 162,
110515. doi:10.1016/j.jss.2019.110515.
[4] Fu, Z., Tang, Z., Yang, L., & Liu, C. (2020). An optimal locality-aware task scheduling algo-
rithm based on bipartite graph modelling for Spark Applications. IEEE Transactions on Parallel and
Distributed Systems, 31(10), 2406-2420. doi:10.1109/tpds.2020.2992073.
[5] Wu, J., Zhang, L., & Shen, H. (2014). Biobjective Task Scheduling for Distributed Green Data
Centers. IEEE Transactions on Computers, 63(5), 1201-1213. doi: 10.1109/TC.2013.29.
[6] Huang, Y., Wei, X., Li, B., & Li, H. (2017). Energy-Aware Scheduler for HPC Parallel Task
Base Applications in Cloud Computing. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2017: 213-222. doi: 10.1109/ICDCS.2017.77.
[7] Tian, C., Zhou, H., He, Y., & Zha, L. (2009). A Dynamic MapReduce Scheduler for Heteroge-
neous Workloads. In: 2009 Eighth International Conference on Grid and Cooperative Computing.
IEEE, 2009: 218-224. doi: 10.1109/GCC.2009.19.
[8] Islam, M. T., Karunasekera, S., & Buyya, R. (2022). Performance and Cost-Efficient Spark Job
Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments. IEEE Trans-
actions on Parallel and Distributed Systems, 33(7), 1695-1710. doi: 10.1109/TPDS.2021.3124670.
[9] Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J., & Wang, Y. (2017). A Hierarchical
Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learn-
ing. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2017: 372-382. doi: 10.1109/ICDCS.2017.123.
[10] Wang, P., Guo, K., Li, J., Li, Y., & Sun, N. (2019). Efficient Real-time Earliest Deadline First
based scheduling for Apache Spark. Journal of Systems and Software, 157, 110409. DOI:
10.1016/j.jss.2019.110409.

