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Abstract—This study proposes a series of trading strategies for maximizing total return
of Gold and Bitcoin assets over the past five years, while considering transaction
commission. The authors preprocess the data by treating the floating prices of Gold and
Bitcoin as two stocks, removing missing values, and using time series model LSTM to
predict future prices. The LSTM model shows daily price changes in more detail and is
selected as the optimal model. Monte Carlo Simulation and Markowitz model are used to
find the effective weights of asset combinations, and Dynamic Programming strategy is
applied to create an Optimal Action Model for finding the best trading dates. The overall
model is found to be sensitive to transaction commission change.

Keywords—Long Short-Term Memory; Monte Carlo Simu- lation; Discrete
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1. INTRODUCTION

1.1 Problem Background

A profitable volatile assets trading strategy is vital to Market traders. It is always applied to
optimize capital allocation to maximize the overall performance, such as expected return.
Return maximization is based on the estimates of a stock’s potential return and risks. In
general, investors make stock in- vestment decisions by predicting the future direction of
stocks’ ups and downs. In the modern financial market, successful investors are good at using
high-quality information to make investment decisions, and they can make quick and effective
decisions based on the information they have already had. Thus, the field of stock investment
attracts the attention of financial practitioners and ordinary investors, and researchers in
academics.

1.2 Restatement of the problem

In this problem, we are given two data sets: the Bitcoin and the daily Gold prices from
9/11/2016 to 9/10/2021 and are asked to develop a model using only the price data up to that
day to decide if the trader should buy, hold, or sell their possessions in each day.

The initial possession we will start with on 9/11/2016 is $1, 000, and we are trying to
maximize the total return in our portfolio, which consists of cash, Gold, and Bitcoin in U.S
dollars, on 9/10/2021. We will accomplish the following tasks according to the given data:
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• Develop predicted models for the price of Gold and Bitcoins.

• Develop a trading strategy using our predicted model to maximize total return.

2. DATA PREDICTION

2.1 Data Preprocessing

First, we preprocess both Bitcoin and Gold data sets. When looking at the Gold data, we find
that  there  are  missing  values  (NA  value)  in  the  price  column  of  the  Gold  data.  Considering
that the Gold data has only two dimensions (date and price) and the original Gold data has only
ten missing values for 1265 rows, we simply ignore the missing values. In other words, we only
calculate 1255 Gold data.

Based on our initial data analysis, we can consider the daily floating values of Bitcoin and
Gold as two stocks. As predictions in stock trading require the consideration of previous
data, we choose to use time series models as our primary forecasting models. We fit, analyze
the long short- term memory (LSTM) models. To better compare and evaluate the strengths and
weaknesses of the models, we chose to use the Bitcoin data, which is more variable than the
Gold data, as our training and testing data. We used the first 80% of this data (index numbers
from 1 to 1460) as training data and the last 20% (index numbers from 1461 to 1826) as
testing data to visualize the comparison between predicted and true values. Also, in order to
come up with a more accurate model, we choose not to do any trading operations in the first
five days but just record the data. In other words, our predicted values start from the sixth day.

3. LONG SHORT-TERM MEMORY (LSTM)

3.1 Introduction to the Model

Long Short-Term Memory (LSTM) is a special type of Recurrent Neural Network (RNN)
capable of learning long- term dependencies. In RNN, because there is a recursive effect, the
state of the hidden layer at the last moment is involved in the computation process at the
present moment. That is to say, the selection and decision are made regarding the previous state.
LSTM inherits this advantage.

3.2 Adjustment of the Model

Before feeding the data into the model as training data, we need to normalize the original
data. There are two reasons for doing the normalization. First, normalization can improve
the speed of the gradient descent method to solve the optimal solution. Since LSTM is
developed based on RNN, the essence of LSTM is to minimize the loss by gradient descent
method to obtain the optimal solution. Applying normalization to the data in the gradient
descent method can help the model reach the convergence state faster. Second, normalization
has the potential to improve accuracy. According to the characteristics of the original data (the
values are relatively concentrated), we do not consider standard deviation normalization and
nonlinear normalization. Instead, we choose linear normalization.



Before training a model for machine learning, we need to choose the right hyperparameters. In
LSTM models, a few essential hyperparameters are shown below:

• Epoch: this is the total number of model forward or backward propagation iterations.

• Number of hidden layers: the number of hidden layers of the neural network. Although
our input data is of low dimensionality (Value is the only dimension), we still choose the
number to be 10 to get better predictions.

• Batch Size: this is the number of training samples during one forward or backward
propagation before the weights are updated. The batch size must be the common factor of the
training and test sets. Since the length of our training and test sets is 1455, we choose a
factor of 97.

• Time step:  the  lag  length  between the  training  and test  sets.  In  this  case,  we choose  5,
which means that the overall data is considered with a lag of 5 days.

Figure 1 is when we take Epoch equal to 15 and when Epoch is equal to 20. We can see that
the training loss and validation loss are almost equal. When Epoch exceeds 20, the model will
be overfitting, so we finally determine Epoch to be 20.

In the time series, cross-validation is not easy to do. We cannot choose random samples and
assign them to either the test set or the train set. The reason is that we may choose a value
from the future to test a value from the past. That situation makes no sense. In simple words,
we want to avoid future-looking when we train our model.

3.3 Model Outcome

The visualization of the final LSTM model is shown on the left graph of Figure 2. In the plot,
“raw” represents the original data, “train” means the fitted values of original training data, and
“test” indicates the prediction values of the model. For the LSTM model, we can hardly see
any original data, which means the overall performance of the model is great. The right graph
of Figure 2 shows the partial enlargement. Although there are still some subtle differences
between the original and predicted data from day to day, the overall trend is successfully
simulated.

4. MODEL ASSESSMENT

4.1 Evaluation with MSE

To evaluate the model more logically and accurately, we use Mean Square Error (MSE) to
evaluate the model, an essential metric of the model accuracy because it calculates the mean
of the sum of squared difference between all predicted values and true values. We then apply
LSTM to the Gold data, fit  the model and visualize the predictions (Figure 3). The MSE for
this model is quite low, which indicates that the accuracy of the predicted Gold prices is high.



Fig. 1. Learning Curves of the LSTM Model when Epoch = 15 and Epoch = 20

Fig. 2. Plot of Predictions using the LSTM model

5. OPTIMAL PORTFOLIO MODEL

Financial markets are fraught with uncertainty. Since we have to decide the time to trade
stocks based on the results of our forecasting models, thus we should consider increasing
return rates while reducing the risk of our investments. The core task in our investment
optimization is to find out how an investor can allocate the assets to achieve maximizing



(cumulative) returns for a given risk. In this section and next section, we will introduce our
optimal portfolio model for predicting optimal weights and optimal action model for
predicting time to trade.

Fig. 3. Plot of Predictions of the Gold Data using the LSTM model

We first get the predicted price of each stock to get the daily return in these five years. When
deciding how to allocate the funds and trade stocks, we need to set the appropriate weights for
each stock trading. In other words, when trading stocks, we should allocate money by
using 50% for Gold and 50% for Bitcoins or using 30% for Gold and 70% for Bitcoins.
Regarding this problem, we have the following three weighting schemes.

5.1 Exploring the optimal portfolio of stocks

Considering how to balance the returns and risks when choosing the investment combination,
we can introduce the Markowitz model to analyze the data and determine the best weights for
predicted data.

1) Monte Carlo Simulation: Markowitz model [5] works well here because the
background of the problem perfectly fits the prerequisite of the model. The investor
considers each investment choice based on the probability distribution of the returns of the
securities over a given holding time. The investor estimates the risk of a portfolio of securities
based on the expected rate of return. The investor’s decision is simply a sentence about the
risk and return of the security. At a certain level of risk, the investor expects to benefit the
most. Moreover, we decide to introduce Monte Carlo Simulation to create random weights to
compare the outcome from different weights. [4]

When we use Monte Carlo Simulation to analyze, we randomly create a set of weights to
calculate the returns and standard error of the return and repeat this progress many
times(10000 times in our model). [3] Through this method, we take in each return and
standard error into the model as a point to construct the scatter plot, Figure 4.

The nature of investment is to choose the balance between risks and returns, and Figure 4
depicts the two elements. Each point in the graph shows a portfolio combination, the x-axis
shows the standard deviation of risks, and the y-axis is return rates. [2] Markowitz investing



combination rule considers the wise investor is always maximizing the returns given fixed
risk, or minimizing the risk given fixed return. It is shown in the graph as red edge, whose
points on edge are the most effective investment combinations. Now we find out a series of
most-effective investment weight combinations. However, we need to choose a strategy to
find a final weight for Gold and Bitcoins. Here we introduce and compare two strategies:
Investment risk minimization portfolio (minimize the risks) and Optimal portfolio (maximize
the returns with uncertain risks).

Fig. 4. Simulation Result

Fig. 5. GMV Portfolio

2) Investment risk Minimization Portfolio: One strategy is to find the highest return in
the lowest risk situation, which is called Global minimum volatility(GMV) portfolio [1]. We
successfully find this combination and draw it in the Figure 5.

3) Optimal portfolio of Investments: Since we use the optimal portfolio of investments
here,  we  have  to  admit  that  certain  risks  will  show  up,  while  An  wise  investor  can  always
burden certain risks to strive for a higher return. Thus, we will introduce Sharpe Ratio1

here to help us balance return and risks for each investment combination.

1The ratio is the average return earned in excess of the risk-free rate per unit of volatility or total risk.
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where Rs is  the  Sharpe  Ratio, Rp is expected rate of return, Rf is interest Rate with no
risk, σr is the standard deviation of excess returns. The numerator calculates the spread, the
excess return of an investment compared to a benchmark representing the entire investment
portfolio. The denominator standard deviation represents the return volatility and responds to
the risk, as higher volatility predicts higher risk. We can simply divide the mean of the excess
return by the standard deviation, which is the Sharpe ratio measuring return and risks, and
multiply it by 252 (there are 252 trading days in a year) to get the annualized Sharpe Ratio.

Then, we add Sharpe Ratio as the third variable into the return-risk scatter plot, Figure 6, and
we use color to show Sharpe Ratio here. We find that the upper edge has higher Sharpe Ratio
here. Thus, we should figure out the combination with greatest Sharpe Ratio in the scatter plot
and find the weight of that combination.

Fig. 6. Sharpe Ratio Plot

5.2 Model Outcome

In this section, we introduce and compare three weighting schemes: portfolio with given
weights, portfolio with equal weights, and optimal portfolio weights. We utilize Monte Carlo
Simulation, Markowitz model, and Sharpe Ratio to determine the best weights for predicted
data. Through these steps, we get the optimal weights for Gold and bits is 0.188 : 0.812 from
Table I. That is to say; we decide to allocate $188 for Gold investment and $812 for Bitcoins
investment.

TABLE I OPTIMAL WEIGHT TABLE

gold bits
weight 0.188 0.812



6. OPTIMAL STRATEGY MODEL

6.1 Introduction to Dynamic Programming Model

From the optimal portfolio model result, we decide to use $188 to make investments in
Gold and $812 to make investments in Bitcoins. In this way, we can avoid the dif- ference
in trading days since only Bitcoins can be traded at weekends. When we decide to separately
invest the stocks, in order to get greater return, if we find a model that assists us maximize
either investment, the final return rate will definitely the highest return rate.

We decide to choose the dynamic programming model to find out the best time to trade since
this problem meets the optimality principle 2 with the overlap of subproblems 3  and no
posteriority4. In this model, in order to maximize the return rate for each day, we need to
compare and choose the the higher return rate for two choices: buy the assets or sell the assets.
From this guideline, we can gradually find the optimal operation from start day to the last
day.

In this model, M is as the cash, α is as transfer fee, S is as the stock. We first set the start of
cash  (M0) in hand as 1, and the start of stock as the maximum stock (S0) can be bought
using M0.
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The state transfer function will be as follow:
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6.2 Model Outcome

We predict the best time to trade from our Dynamic Pro- gramming (DP) Model and the
predicted stock price from the LSTM model. After applying the time information given by our
model, we make our investment change from 1,000.00 dollars to 14,140,234.70 dollars,
which is a big success.

2  Regardless of the past states and decisions, the remaining decisions must constitute the optimal
strategy for the state formed by the previous decisions.
3 Thesub-strategiess of an optimal strategy are always optimal
4 Each state is  a complete summary of the past  history



7. SENSITIVITY ANALYSIS

7.1 Method

To test the sensitivity of transaction, we decide to test our model by changing the transaction
fee rate from 50% to 150%. In other words, if the real Gold transaction fee rate is 1%, we will
test how will the return rates change when we change the transaction fee rate from 0.5% to
1.5%. We will decide whether the model is sensitive to transaction cost according to the
change of the final return.

7.2 Result

After making the transaction cost rate change from 50% to 150%, we create two plots, Figure
7, to show the influence of transaction fee rate on the final returns for these two stocks.

From the figure above, the left one shows Bitcoins’ change of return rate caused by increasing
transaction cost, and the right one shows Gold’s change of return rate caused by increasing
transaction cost. The return rate change for Bitcoins changes from 26000 to 12000, decreasing
for about 54%, while the return rate change for Gold changes from about 1.45 to 1.15,
decreasing for about 21%. Although comparing the two stocks, Bitcoins is more sensitive
to the change of transaction cost, the change for both stocks shows that they are all sensitive
to the transaction cost. This result is caused mainly by the dynamic programming model.
Since the dynamic programming model is to optimize the final return by catching each likely
chance to trade. Thus, even if the change of transaction cost from 0.01 to 0.03 does not
seem like a great number, it causes a great change to the final return.

Fig. 7. Sensitive Plot (Bitcoin / Gold)

8. STRENGTHS AND WEAKNESSES

8.1 Strengths

• The Optimal Portfolio Model can both fit for two types of volatile assets allocation but also
more types of volatile assets allocation.

• Dynamic Programming Model can accurately predict each possible profitable chance to
invest.



8.2 Weaknesses

• Our model results may be over-fitted, because the number of real data used for validating
the model is too small.

• Our model might be simple and not realistic since it is only based on the closing price
of Gold and Bitcoin without the highest and lowest daily price of these two volatile assets.

• The output from Dynamic Programming Model changes corresponding to change in
transaction commission.

9. CONCLUSION

To predict the trend of Bitcoin and Gold, we choose time series models LSTM. We perform
parameter tuning and final result comparison for LSTM models. We will choose the LSTM
Model for prediction since the results of our LSTM model are much better than those of other
models. After accessing the predicted asset daily prices, we use Dynamic Programming to
predict the optimal dates to trade and the type of asset to trade. After applying the
prediction to the raw data, we appreciate the investment from $1000.00 to $14,140,234.70.
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