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Abstract. Species distribution modeling, where the distribution of specific species 

locations is connected to the environmental factors. Such data is called spatial point 

patterns, and the modeling is conducted based on the spatial point process. One central 

question is to select the best subset of such environmental factors that explain the best 

species distribution. Besides, the computational issue arises when numerous environmental 

factor is available. This paper focuses on developing a computational strategy to deal with 

variable selection through regularization methods for Poisson point process. In particular, 

two-dimensional Bayesian Information Criteria is proposed to select two types of tuning 

parameters. The first parameter plays the role of decreasing bias, and the second one 

improves the variances. Finally, the methodology is applied to tropical rain forest data in 

Barro Corrolado Island. The results show the adaptive elastic net regularization with the 

tuning parameters produces the best inhomogeneous poisson point process model. 

Keywords: Two-Dimensional Bayesian Information Criteria, Regularization Methods, 

Species Distribution Modeling 

1 Introduction 

In ecology, one of the fundamental research areas is Species Distribution Modeling (SDM), 

where the aim is to explain the existence of a species associated with environmental factors [7]. 

Data on the existence of a species is included in the spatial point patterns data, and the modeling 

is conducted based on the spatial point process. The main focus in SDM is to choose the best 

covariate from the environmental factors that explain the distribution of the species.  

In analyzing spatial point pattern data on SDM , the first step is etermining the intensity 

value. Intensity act as a first-order characteristic of spatial point processes and has been a major 

focus in many studies, mostly when spatial covariates rely on the estimated strength. For 

example, a survey of spatial modeling of tree species distribution in forests related to 

environmental factors [8]. A Poisson point process is a common spatial point process because 

computational implementation is technically simple, and the posisson likelihood function can 

be systematically derived. In order to obtain parameter estimation results, the poisson likelihood 

function was developed to suit these models with the data [2]. 
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The poisson likelihood function uses the regularization method to select the best covariate 

that describes the best model to determine the intensity value of the more optimal 

inhomogeneous Poisson point processes [3]. Many regularization methods have been studied 

previously, like ridge regression, LASSO, elastic net and other expantion, such as the 

regularization method that focuses on adaptive LASSO for the best model [8], then continued 

with research on the adaptive LASSO method that estimates value using cross-validation for 

optimal results [9]. Further investigation found that the adaptive Elastic-net regularization 

method with tuning parameter  produces the best model compared to adaptive LASSO [3]. 

However, these studies only focus on estimating the first parameter , whereas, in the adaptive 

Elastic-Net regularization method, there is a second parameter  that is not tuned so that the 

results of the estimation of the regularization method are not optimal by adjusting the parameters   

and where the first parameter  plays a role in reducing bias and  to increase the variance so that 

the best model is obtained. The criteria used to determine the optimal parameter tuning value 

are the two-dimensional Bayesian Information Criterion (BIC). BIC's advantage as the criteria 

for selecting the best model is that it provides a penalty for adding parameters and is suitable 

for large data sizes. 

This paper will focus on developing computational strategies to handle variable selection 

through regularization methods for spatial point processes. We will select the   parameters 

simultaneously using the two-dimensional Bayesian Information Criteria (BIC). Finally, this 

methodology's results were applied to the point data of the Beilschmiedia pendula Lauraceae 

tree species on the Barro Colorado Island. 

2 Literature Review 

2.1 Poisson Point Process 

 

Let Y be a spatial point process on
dR . Let

dW  R  be a compact set of Lebesgue measure W

which will play the role of the observation domain. A realization of Y , m representing number 

of locations observed points in W . SupposeY  has  for intensity function and 
( )2

 for second-

order product density [3].  

A point process Y is a Poisson point process on W , if the following conditions are met: 

1. if 1 2, ,...C C W are disjoint field, then 1 2( ), ( ),...N C N C are independent variable randoms 

2. for any bounded C W  , the number of point C , ( ) ( )( )N C Poisson µ C  

Our research assumes that the function of intensity relies on a vector of parameters  , i.e. 

( )  , for the general spatial point processes model, as outlined in the introduction, maximum 

likelihood estimation is almost unfeasible. Instead of this approach, the Campbell formula offers 

an excellent tool to describe methods based on equations for estimating. In the form of spatial 

point processes, these approaches are now standard. The conventional parametric methods for 

evaluating   are obtained by maximizing the Poisson likelihood given respectively by: 
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2.2 Regularized estimating equations 

 

The Newton Raphson algorithm used to maximize the penalized log-likelihood function can be 

done using the iteratively reweighted least-squares (IRLS) method, as ( )β given by (1) is a 

concave function of the parameters. If the current estimate of the parameters is β , using Taylor's 

expansion, we construct a quadratic approximation of the Poisson log-likelihood function [3]: 
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The regularized Poisson linear model works by first deciding a    , min max     lowering 

sequence, starting with a minimum value of max  such that the entire vector ˆ 0 =  works. An 

outer loop for comp ( )Q β  at β  is generated for every value of  . Secondly, to solve a 

penalized least square problem, a regularized technique is used. 
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Suppose we've got the j  calculation for j k ,  1, 2,. . . , j k q= . The method involved in 

partially optimizing (2) j relates to this 
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For example in the case, the penalized update by setting   to 0 or 1 respectively for the adaptive 

elastic net is  
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= + is the fit value excluding the ikz covariate contribution, and ( ), S z 

is the operator of soft-thresholding with a value 
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Update (4) 1, 2,  , k p=  is replicated before convergence occurs. Methods of regularization for 

penalties are introduced in the glmnet R package [4]. For (4), γ = 1 set for adaptive lasso, while 

0 < γ < 1 set for adaptive elastic net. 

3 Method 

The spatial data used in this paper are secondary data sourced from Richard Condit et al.'s 

research on "Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years" 

regarding the location of Beilschmiedia pendula Lauraceae trees, which are located in an area 

of 50 hectares of forest, tropical rain Island Barro Colorado in Central Panama. Ninety-four 

covariates data related to environmental factors, consisting of 2 topological attributes, namely 

elevation and gradient; 13 soil nutrients, namely aluminium, boron, calcium, cooper, iron, 

potassium, magnesium, manganese, phosphorus, zinc, nitrogen, N(min) and pH; and 79 

interactions between 2 soil nutrients and 2 topological points. 

The method used in this paper is to estimate the parameters in the inhomogeneous Poisson 

point process model using the regularized maximum likelihood estimation. In regularized 

maximum likelihood estimation method, we will also do parameter selection for get the best 

model. In this method there are  and  parameters that will be tuned by using two-dimensional 

BIC. The simulation study will then be carried out with several scenarios. Then we run the 

regularization method on the case of the Beilschmiedia pendula Lauraceae trees. 

 

4 Result and Discussion 

It is really worth noting that penalized procedures depend primarily on the tuning 

parameters  and  in the adaptive elastic net, so that the choice of  and  is also becoming an 

essential activity. The approximate value of   from the maximum value of   is close to 1 in 

the selection of   for the adaptive elastic net system and the minimum value for   is near 0. If 

the value   selected is 1, the method switches to the adaptive lasso. In addition, the option of λ 

for the selected value is verified. The estimate with a huge value of  appears to have smaller 

variance, but larger biases, whereas the estimate with a small value of  contributes to zero 

biases, but greater variance. The trade-off between the biases and the variances results in an 

optimal option of  . A range of  values ranging from a maximum value of  , for which all 

penalized coefficients are zero to 0 = , is rational for choosing  . By fixing a path of  and

 , we select the tuning parameter  and  which minimizes ( ),BIC   , defined by 

( ) ( ) ( )2, log,sQBIC l W   = − +β  (5) 
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=  I  is the number of selected covariates with coefficients of 

nonzero regression and W  is the volume of observation describing the sample size. 

In simulation study, we make simulation with the spatial domain is W = [0, 1000] × [0, 

500]. We centre and scale the 201 × 101 pixel images of elevation ( 1x ) and gradient of elevation 

( 2x ) contained in the BPL datasets of spatstat library in R (R Core Team, 2016), and use them 

as two true covariates. In addition, we create scenarios to define extra covariates. We generate 

ninety two 201×101 pixel images of covariates as standard Gaussian white noise and denote 

them by 3 92, , x x . We define ( )uz  as the covariates vector. The regression coefficients for 

3 92,  ,   z z  are set to zero. 

The mean number of points over the domain W ,  , is chosen to be 50, 500 and 1500. 

We set the true intensity function to be ( ) ( ) ( ) 0 0 1 1 2 2log z u z u    = + + , where 1 3 =  

represents a relatively large effect of elevation, 2 0,5 =  reflects a relatively small effect of 

gradient, and 0  is selected such that each realization has 50, 500 or 1500 points in average. 

With these scenarios, we simulate spatial point patterns from a Poisson point process using the 

rpoispp function in the spatstat package. For each of the three scenarios, we fit the intensity 

to the simulated point pattern realizations with 10 looping. In simulation, the regularization 

methods under the adaptive LASSO (AL) and adaptive elastic net (AENET) penalty were 

applied. For solving the estimation, the glmnet library in R was used. First for AENET, we 

choose value of   with 0 1  . A quadratic approximation to the negative log-likelihood 

assessed in the current estimates was then generated for each value of  . Then, a method of 

regularization was introduced to solve a problem with penalized least squares. Finally, the 

( ),BIC    was minimized to obtain  and  . 

Table 1. The selection of the regularization methods 

  AL AENET 

x1 x2 x3- x94 x1, x2 x1 x2 x3- x94 x1, x2 

50 0 0.5 0.9195652 0 0 0.5 0.9315217 0 

500 1 1 0.9934783 1 1 1 0.9913043 1 

1500 1 1 0.9956522 1 1 1 0.9956522 1 

 

Table 1 shows the percentage of selection covariates of the regularization methods under 

various penalty functions in the simulation performance. The proportion of times when the 

actual covariates, elevation x1, and gradient x2 were correctly held in the selected model, and 

the average proportion of times when the noise covariates x3 to x94 were correctly selected, are 

recorded for different  values. Although the value of  is small, the methods of regularization 

are not really good for the selected true covariate, but the noise covariate can be selected better 

than adaptive LASSO.  

In application, censuses were performed in the 50-hectare area of the tropical moist forest 

of Barro Colorado Island, resulting in maps of tree species of Beilschmiedia pendula Lauraceae 



 

 

 

 

 

 

[Hubbell et al., 2005]. It is of interest to know how the coexistence of the very large number of 

different tree species continues. The positions of 3,604 Beilschmiedia pendula Lauraceae (BPL) 

trees are of special interest to us. As a log-linear function with 2 topological attributes, 13 soil 

properties and 79 interactions between them as covariates, we model the intensity of BPL trees. 

To pick and estimate parameters, we apply the regularized Poisson probability with comparisons 

between adaptive LASSO and adaptive elastic net. Notice that all the covariates are based to 

observe which covariates have a relatively large impact on the intensity. 

Table 2. Number of selected and non-selected covariates among 94 covariates 

Method 
Covariate  

Selected 

Covariate 

Non selected 
BIC 

AL 56 37 40011.3 

AENET 58 35 40019.3 

Table 2 showed the number of covariates selected and not selected by each process. 

Regarding the method of regularization, the method of regularization with adaptive lasso selects 

56 covariates. There are 58 covariates chosen in contrast to the adaptive elastic net methods. 

This implies that when the regularized Poisson probability is applied, adaptive LASSO selection 

and adaptive elastic net work almost equally. 

5 Conclusion 

Based on Poisson likelihood, we create regularized maximum likelihood estimation 

versions of estimating equations for estimate and select the paramater. For modeling the 

intensity of inhomogeneous Poisson point processes, our procedure may conduct covariate 

selection along with estimating it. We research the tuning parameter  and   in adaptive elastic 

net method using BIC can make regularized Poisson likehood estimates more optimal than other 

regularization method.  

In the simulation analysis, we carry out certain different parameters to observe the 

selection and prediction properties of the estimates. From the findings, we suggest applying the 

regularized Poisson likelihood combined with adaptive elastic net with tuning parameter when 

dealing with covariates that have a complex covariance matrix and when the point pattern looks 

very clustered. In its application to tree species of Beilschmiedia pendula Lauraceae data 

location, the regularized Poisson likelihood combined with adaptive elastic net with tuning 

parameter can estimate coefficient covaiate and choose the best covariate who have significant 

impact for the existence of a Beilschmiedia pendula Lauraceae tree species in the 50-hectare 

area of the tropical moist forest of Barro Colorado Island. 
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