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Abstract 

Recommender Systems are the most well-known applications in E-commerce sites. However, the trade-off between run-
time and the accuracy in making recommendations is a big challenge. This work combines several traditional techniques to 
reduce the limitation of each single technique and exploits the Item2Item model to improve the prediction accuracy. As a 
case study, this paper focuses on user behaviour prediction in restaurant recommender systems and uses a public dataset 
including restaurant information and user sessions. Within this dataset, user behaviour can be discovered for the 
collaborative filtering, and restaurant information is extracted for the content-based filtering. The idea of the pre-trained 
word embedding in Natural Language Processing is utilized in the item-based collaborative filtering to find the similarity 
between restaurants based on user sessions. Experimental results have shown that the combination of these 
techniques makes valuable recommendations. 
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1. Introduction

It is undoubted that a person can make his decisions from 
when getting enough information. To make right decisions 
from enormous information, however, is not a trivial task. 
A Recommendation System or Recommender System is 
introduced to handle this problem. It is a type of 
information retrieval systems which are used to predict 
items of interest for a specific user. Recommendation 
Systems are categorized into different types, e.g. Content-
based filtering, Collaborative filtering and combination of 
these techniques. Content-based filtering algorithms base 
on similar items and item descriptions. They, then, try to 
recommend items similar to what a user has purchased or 
has been interested in. Therefore, user profiles are 
important in these techniques. Whereas, collaborative 
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filtering algorithms use the same tastes between user-to-
user to suggest items. 

Collaborative filtering technique has two types, user-
based collaborative filtering and item-based collaborative 
filtering [1]. User-based collaborative filtering algorithms 
try to find the nearest neighbours of a target user by 
computing similarity between users, and then give 
suggestions based on these neighbours’ interests. In 
another hand, item-based collaborative filtering algorithms 
take into account user-user relations through item-item 
relations in order to recommend items close to the target 
user’s interests.  

The purpose of this paper is to build a hybrid restaurant 
recommendation technique which is the combination of 
content-based filtering, user-based collaborative filtering 
and item-based collaborative filtering.  

Firstly, the cosine similarity in the content-based 
filtering process is used to calculate distance between 
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restaurant profiles to find the nearest neighbours for each 
restaurant visited by an active user. The most similar 
restaurants are selected for recommendation. Secondly, in 
the user-based filtering process, user-to-user similarity is 
represented by Euclidean distance. Users who are the most 
similar to the target user are selected. To reduce the number 
of distance computations, users are organised into groups 
by a clustering algorithm. We, then, only need to evaluate 
distances between users in the same group. Thirdly, in 
item-based collaborative filtering process, the Word2Vec 
model, a pre-trained word embedding, in the natural 
language processing [2] is utilised to learn relationships 
between restaurants in user sessions and then recommend 
interesting restaurants. The final suggestion is the 
combination of results from each single technique. 

The paper is presented as follows. Section 2 briefly 
introduces related work; Section 3 discusses methodology; 
Section 4 summaries Experimental results, and finally 
conclusions in Section 5.  

2. Related work

As known, two main approaches to Recommender Systems 
are content-based and collaborative filtering. Both need a 
sufficient amount of data for recommendations but 
different types of data. The content-based filtering needs 
item descriptions and user profile, whereas the 
collaborative filtering needs transaction patterns or user 
transaction history.  

The advantage of content-based recommender 
systems is that it can start to recommend as soon as there 
are item descriptions. In other words, new items can be 
suggested before being rated by users. When users interact 
with the system, user profile will be collected as input data. 
Providing more inputs, such as item descriptions and user 
profile, item recommendation becomes more and more 
accurate. However, this recommendation does not depend 
on the similarity between users, though this information 
may be useful. 

In contrast, the recommendation engine of the 
collaborative filtering is based on the real-life activity, 
sequences of user behaviour or user sessions, so the more 
people interact with system, the better recommendations 
can be made. The strong points of this technique are no 
item description needed and it can capture changes of user 
interests over time. However, this type of system cannot 
give good recommendations to new users because it needs 
user’s rating, transaction history, or user history. Moreover, 
new items cannot be recommended by collaborative 
filtering techniques neither if these items have not appeared 
in any transaction histories. This problem is also known as 
the cold-star problem which can be solved by Content-
based filtering techniques. 

Hybrid Recommender Systems are the mix of the 
above recommendation techniques to gain better 
performance. This recommendation engine inherits 
advantages of each single technique together with reducing 
their limitations. Netflix is a good example of Hybrid 

Recommendation Systems. Its recommendation system is 
based on the watching habits of similar users and similar 
films which users have already rated. In this study, we 
focus on clustering techniques for the content-based 
filtering, and sequence mining techniques for the 
collaborative filtering. 

2.1. Recommendation based on clustering 

K-Means clustering algorithm is one of the most used
algorithms. By clustering and giving an active item, we can
quickly find the most relevant items in the same cluster. K-
Means, however, has limitations like computational speed,
sensitive to outliers and inefficiency for large datasets.
Mini-Batch K-Means [3], a modified version of K-Means,
is faster than K-Means and commonly used for large
datasets. It can solve the low computational speed of K-
Means by using mini-batches to reduce the computation
time. The main idea of Mini-Batch K-Means is to randomly
extract subsets from the whole dataset. For each iteration,
a new random sample from dataset is used to update the
cluster until convergence.

In the both clustering algorithms, we need to determine 
the “right” number of clusters in a dataset. Figuring out 
what the right number of clusters often depends on the 
distribution’s shape and scale in the dataset, as well as the 
clustering resolution required by the user [4].  There are 
several simple ways to determine the number of clusters: 

 A simple method to determine the number of clusters

is aboutට



, where n is the number of points in a

dataset. In expectation, each cluster has √ points.
 Elbow method: Technically, given a number k > 0 (k

is the number of clusters), we calculate the sum of
within-cluster variance of each cluster, var(k). And
then the curve of var is plotted with respect to k. The
first (or most significant) turning point of the curve
suggests the “right” number.

2.2. Recommendation based on sequence 
mining 

User behaviours or the sequences of user interactions play 
an important role in making recommendations. Many 
techniques are being applied to analyse sequences of user 
behaviours for discovering frequent patterns, such as 
Frequent Pattern Mining with Apriori algorithm, 
Association Rules, Frequent Pattern tree, Markov Chain 
Modeling, and Hidden Markov Model [4]. More advanced, 
based on the idea of Word Embedding Model, particularly, 
word2Vec model in Natural Language Processing, Neural 
Item Embedding called item2Vec has been used to analyse 
item-item relations to produce item-to-item similarities [5]. 
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2.2.1. Word Embedding in Natural Language 
Processing 
2.2.1.1. Introduction 
The main challenge in Natural Language Processing (NLP) 
is how to make computers understand natural human 
language since they can only understand number and 
binary. According to Wikipedia, word embedding is “the 
collective name for a set of language modelling and feature 
learning techniques in NLP where words or phrases from 
the vocabulary are mapped to vectors of real numbers”. 
Word embedding is the type of mapping that allows words 
with similar meaning having similar representations. 
Word2Vec is one of the popular word-embedding models 
used to represent a word as a vector. 

2.2.1.2. Word2Vec 
Word2Vec was developed by a researcher team led by 
Tomas Mikilov in 2013 at Google [6]. The idea of 
word2Vec is to transfer one word from a one-hot vector to 
a new vector with a defined vector size. Word2Vec is a 
feed-forward and fully connected neural network. In the 
word2Vec model, the input is a text corpus, and its output 
is the set of feature vectors for each word in the corpus. It 
first constructs a vocabulary from the training text data and 
then learns the vector representation of words. Most 
applications of word2Vec use the cosine similarity to 
quantify the closeness of words. Two important models 
inside word2Vec are Continuous Bag of Words (CBOW) 
and Skip-gram. In Skip-gram, the model tries to predict the 
neighbours or context of a word. The input is a target word 
and the output are words surrounding the target. 

CBOW model tries to predict the word given its 
neighbours or context. It predicts the word “by summing 
all the context word vectors together to represent the word” 
[7]. So, it is similar to skip-gram except swapping the input 
and output. 

Therefore, the big difference between two models is 
how feature vectors are generated and the Skip-gram model 
is sensitive to positions of context words. According to 
Mikolov, the Skip-gram works well with small training 
data and presents good representations for rare words, 
while CBOW performs better in large training data [7]. 

2.2.2. From word2Vec to item2Vec 

The result of word2Vec models is the set of feature 
vectors. These vectors can be used to determine similarity 
between words.  Based on this idea, item2Vec was 
introduced by Oren Barkan and Noam Koenigstein [5] in 
order to determine the similarity between items for 
recommendation. It is argued that there is an equivalence 
between words in NLP and items in user behaviour 
sequence mining, so word2Vec becomes item2Vec [8].  

Let U = { ݑଵ, ,ଶݑ ,ଷݑ . . . . ,  } = } be a set of users and Iݑ
݅ଵ, ݅ଶ, ݅ଷ, . . . , ݅} be a set of items, where n, m denotes the 
number of users and items, respectively. For each user u, 
transaction history of user u is given by: 

Tu := Tu
1, Tu

2, …, Tu
t, where Tu

t  I 
The transaction history of all users is denoted as T = { 

ܶଵ, ܶଶ, . . . , ܶ௨}, as the input of the item2Vec model. 

3. Methodology

3.1. Overview framework 

This subsection describes the framework of the proposed 
system as Figure 1. It is a hybrid restaurant 
recommendation given restaurant features and user 
behaviours of restaurants visited. 

Figure 1. The proposed framework of the restaurant recommendation system 

Each record in the Restaurant Database stores the 
features of one restaurant. The Session Database presents 

restaurant interactions as user sessions. Three data mining 
techniques: (1) content-based, (2) user-based collaborative 
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and (3) item-based collaborative filtering, are conducted 
for making hybrid restaurant recommendations.  

In the content-based filtering, the cosine similarity is 
used to calculate the similarity between features of 
different restaurants, and n most similar restaurants with 
restaurants that a user has already visited are selected. The 
Session Database is used to build two models: clustering 
model and item2Vec model. The user-based collaborative 
filtering finds users having the same interests. In that, the 
clustering is performed to organize users into groups, k 
most similar users are chosen for recommendation given a 
target user. The user similarity is computed based on the 
list restaurants that users have already visited. The 
restaurant similarity is calculated using the Item2Vec 
model which is constructed from the list of visited 
restaurant sequences. In the item-based collaborative 
filtering, from the list of visited restaurants, the system 
finds restaurants usually visited together. The three above 
results are combined to obtain a final recommendation for 
the active user. 

3.2. DATA PREPROCESSING 

As a case study, the Entrée Chicago Restaurant dataset [9] 
is used in the proposed system. There are two main files in 
the dataset, one is restaurants file and the other is sessions 
file. The raw data needs to be pre-processed, i.e. 
reformatted and clean, for later mining. Table 1 describes 
partial data of restaurant features after formatting, 
including restaurant ID, restaurant name, feature codes. 
The meanings of feature codes are explained in the dataset 
description. There are totally 256 features, e.g. Excellent 
Food, Excellent Service, etc. Table 2 describes the partial 
session data after formatting, including date, IP, entry 
point, restaurant rating. Actually, this data describes how 
users interact Chicago restaurant recommendation systems, 
and rate restaurants. In this dataset, rating a restaurant 
means having some behaviour, e.g. moving from one 
restaurant to another, searching for a restaurant cheaper or 
nicer, etc. Therefore, behaviours moving from one 
restaurant to another are extracted and considered as users’ 
behaviours of restaurant visits. 

Table 1. Restaurant data after formatting 
Restaurant 

ID 
Restaurant 

Name 
Features 

0 Moti Mahal 214, 035, 149, 021, 117, 075, 
204, 051, 163 

1 Village 026, 249, 174, 004, 132, 249, 
198, 191, 192, 125, 075, 205, 

054, 165 

After formatting, the data is clean, that is, irrelevant, 
insufficient or unnecessary data instances are removed. 

Table 2. Session data after formatting 
Date IP Entry 

Point 
Restaurant Rating 

29/Mar/1999
:06:32:41 

152.163.
207.79 

0 330L,540L,99L,490L,500 

29/Mar/1999
:09:40:38 

204.221.
190.230 

0 369L,316 

3.3. Content-based filtering engine 

The main idea of the content-based filtering is based on the 
similarity between restaurant features. The process of its 
engine is shown in Figure 2. 
When a new sequence comes, a list of recently visited 
restaurants of a user, the system calculates the similarity 
between the recently visited restaurants with all restaurants 
to choose k most similar restaurants followed these steps: 

 Convert restaurant features into vectors: The
length of vector is 256 represented for 256
features.  If a restaurant has the ith feature, 1 is
assigned to the ith position of the vector, otherwise
0 assigned.

Figure 2. Content-based filtering process 

 Calculate similarities between restaurant feature
vectors:  For each ݐ݊ܽݎݑܽݐݏ݁ݎ  stored in the
database, calculate the total similarity between
 with each restaurant in the recentlyݐ݊ܽݎݑܽݐݏ݁ݎ
visited restaurant list. The Cosine similarity is
used to calculate distance between two feature
vectors. The greater the similarity between two
vectors is, the more similar two restaurants are.

 Get k nearest neighbours and recommend:  sort the
list of the calculated similarity scores in
descending order and choose k first restaurants for
recommendation.
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3.4. User-based collaborative filtering 
engine 

In the user-based collaborative filtering, recommendations 
are generated based on the restaurant visit history of nearest 
users to the target user. So, the main step is to find k most 
similar users by calculating the user-to-user similarity. 
When the number of users is small, it is easy to compute 
user similarities. But in real applications, when a large 
number of users interact with the system, this is, then, a bad 
solution because it takes too much time for similarity 
calculations. To solve this, a clustering technique is firstly 
used to organize users/customers into groups and similarity 
calculations are made within a group. Figure 3 describes 
steps of the user-based collaborative filtering process. 

Figure 3. User-based collaborative filtering process 

3.4.1. Customer clustering 
A customer clustering is the process that clusters users into 
groups based on common characteristics. The process of 
the customer clustering is showed in Figure 4. 

Figure 4. Customer clustering Process 

Preparing data 
Each transaction in the Session database represents 

restaurants visited by one user, which is explored from the 
user session data. Before clustering, each transaction needs 
to be transformed into one vector. The length of vectors is 
676 represented for 676 restaurants in Chicago. Each 
element value in a vector is the number of times that a user 
visited a respective restaurant.  

For example, we have a transaction [452, 186, 186, 186, 
186, 513, 249, 1, 362, 155, 334, 134], in which each 
number stands for a restaurant ID. This transaction is 
converted to a vector with 676 elements. Restaurant ID 
starts from 0 and the vector index also starts from 0. In the 

transaction, the user visited the restaurant with ID 186 in 
four times then the 187th element of the vector has value 4. 
This manner is applied for all other elements in the vector. 

Clustering 
The prepared data are supplied into a clustering 

algorithm to organize users into groups. 

3.4.2 Fitting the target user into clusters 
To make suggestions for a target user, we need to know 

which user group that the target user belongs to. After 
fitting the user into clusters, a group of users similar to the 
target user is generated. 

3.4.3. Calculating similarity between users within 
a group 
If recommendations are given based on users in one large 
cluster, there still have some users whose similarities with 
the target user are low. It leads to degrade the 
recommendation accuracy. In this case, we should choose 
some most similar users for recommendations. 
Therefore, Euclidean measure is used to calculate the 
similarity between users, i.e. the distance between vectors 
represented for users. The lower the value is, the more 
similar the users are. 

3.4.4. Recommending based on the most similar 
users 
Based on the k most similar users at the above step, the 
system can provide a list of all restaurants that these users 
have already visited along with the number of visits. Then 
the top-n most visited restaurants are selected. 

3.5. Item-based collaborative filtering 
engine 

The main idea of the item-based collaborative filtering 
process is constructed on the similarity between items 
generated from sequences of user behaviours. It means that 
if restaurants X and Y are visited together in most 
transactions, it can conclude that restaurant X and Y are 
similar. So, if a user visited a restaurant X, then the system 
will recommend a restaurant Y to this user, and vice versa. 

In this study, item2Vec is used to recognize similar 
items given a sequence of user behaviours. Based on the 
way items appear together in user sessions, the similarities 
between items are found. Hence, the item2Vec model is 
built before collaborative filtering. The details of building 
the item2Vec model is presented in Sub-section 3.5.1. 

The process of the item-based collaborative filtering 
engine is shown in Figure 5. 
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Figure 5. Item-based collaborative filtering process 

3.5.1. Neural item embedding in item-based 
collaborative filtering 
The Item2Vec model is used for item-based collaborative 
filtering that produces embedding for items in a latent 
space [5]. The process of building an item2Vec model is 
showed in Figure 6. 

Figure 6. Process of building an Item2Vec model 

Preparing training data 
In the user session data, each transaction is the list of 

visited restaurant IDs. Each list is a sequence of items, i.e., 
restaurants, is formatted as shown in Figure 7. 

Figure 7. Examples of item sequences 

Building the item2Vec model 
The prepared data is input into the neural item 

embedding process to build the item2Vec model. 

3.5.2. Get k most similar restaurants for each 
visited restaurant in a user transaction sequence 
To give suggestions for a user, a user transaction sequence 
of recently visited restaurants is taken into account. For 
each visited restaurant in the sequence, similar restaurants 
are fetched and ranked in a descending order of the 
similarity by applying the item2Vec model. Then top-n 
items with highest similarity are selected and stored in lists. 

3.5.3. Get n restaurants appearing most for 
recommendation 

In Sub-section 3.5.2, the system finds the top-n most 
similar restaurants corresponding to each restaurant in the 

active user transaction sequence.  A list of most similar 
restaurants is combined and sorted in the descending order 
of the number of occurrences in the list, and first n 
restaurants after sorting are selected for recommendations. 

3.6. Combining the recommended results 

The main purpose of this process is to combine the results 
recommended from the above collaborative filtering 
engines. This helps to reduce the weakness of each single 
collaborative filtering technique. First, the restaurants most 
recommended by the three engines are selected. Next, the 
remaining restaurants suggested by item-based 
collaborative filtering are listed. Then, the ones suggested 
by user-based collaborative filtering and by content-based 
filtering are appended to the final recommendation list. 

For example, given a list of restaurants visited by a user, 
the content-based collaborative filtering (CF) engine 
recommends restaurants: A, D, C, E; the user-based CF 
engine recommends restaurants: B, A, D, Q; and the item-
based CF engine recommends restaurants:  B, T, H, D. It is 
noticed that the restaurants in the lists generated by the 
three single engines are sorted in descending order of score. 
The three lists are combined as follows: 

 Restaurant D is recommended by the three
engines, so we select D first.

 Restaurants A, B are recommended by the two
single engines, so we select A, B next. The
priority is not defined yet.

 Restaurant C, E, Q, T, H are recommended by
every single technique. So, restaurants
recommended by the item-based one are
prioritised, namely T, H, are appended into the
final recommendation list. After that, the
restaurant recommended by the user-based one,
i.e., Q, is selected. Finally, restaurants C and E
recommended by the content-based one are
selected.

Thus, the final recommendation list is D, A, B, T, H, Q, 
C, E. 

4. Experimental results

The main purpose of building a recommender system is to 
increase the revenue. It leads to the important of accuracy 
in making recommendations. 

As mentioned, the Entrée Chicago Recommendation 
dataset is used in experiments. This data contains a record 
of user interactions with the Entrée Chicago restaurant 
recommendation system from September 1996 to April 
1999. The data has been pre-processed as described in 
Section 3. 

4.1. Evaluation measures 
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According to Zhou [10], the accuracy of item 
recommendations can be measured by precision and 
satisfaction. In all experiments, the two measures are used 
to evaluate the performance of the proposed recommender 
system. 

Let S = ܽଵ,ܽଶ… .ܽܽାଵ. . . ܽ be the user transaction 
sequence. Each sequence is the list of visited restaurants of 
one user.  For each prefix sequence ܵ௫ ൌ ܽଵܽଶ. . . . ܽ ( 
݇ ⩽ ሺ݄ݐ݈݃݊݁ݏ′݁ܿ݊݁ݑݍ݁ݏሻ െ 1), a recommendation rule is 
generated ܴܴ ൌ ݁ଵ, ݁ଶ, . . . , ݁ெ  using the recommendation 
engine, and a correct recommendation and/or satisfied 
recommendation is determined based on following 
conditions: 

 If ܽାଵ ∈ ܴܴ, RR is correct
 If ∃ܽ ∈ ܴܴ, (k+1 ≤ i ≤ n), RR is satisfied.

R= { ܴܴଵ, ܴܴଶ, . . . , ܴܴே} be a set of recommendation 
rules and |R| = N is total number of recommendations. 

 Precision

Let ܴbe the subset of R that consists of all correct 
recommendation rules. 

Precision =  
|ோ|

ே

 Satisfaction

Let ܴ௦be the subset of R that consists of all satisfied 
recommendation rules. 

 Satisfaction = 
|ோೞ|

ே
 

Figure 8.  Process of evaluating recommendation 
performance  

The process of evaluating the recommendation 
performance is depicted in Figure 8. 

4.2. Experiments and results 

There are four experiment cases carried out for validating 
the built recommendation engines.  

 Case 1 is for the content-based filtering engine.
Recommendations are based on similarity
between features of different restaurants.

 Case 2 is for the user-based collaborative filtering
engine. Recommendations are based on users with
same interests.

 Case 3 is for the item-based collaborative filtering
engine. Recommendations are based on
restaurants that are usually visited together.

 Case 4 is for the hybrid recommendation engine.
It is the combination of the three techniques.

The experiments are conducted on an Intel Core i3 
processor with a CPU clock rate of 1.8 GHz, 4GB of main 
memory, running on an Ubuntu 16.04 LTS. The algorithms 
are implemented in Python. The results of each experiment 
case are evaluated using 10-fold cross validation.  

4.2.1. Experiments on Content-based filtering 
technique 
This experiment follows the procedure mentioned in Figure 
8, in which the recommendation engine is the content-
based filtering engine.  

The important parameter in the content-based filtering 
technique is the number of the most similar restaurants 
recommended to an active user (denoted by n). The main 
purpose of this experiment is to find the most suitable 
parameter n. As a result, precisions and satisfactions are 
measured with different parameters n, as shown in Figure 
9 and 10, respectively. 

As we can see from the graph in Figure 9 and 10, the 
higher the value n is, the higher the precision and 
satisfaction are. It can be easy to explain, when more and 
more similar restaurants are selected, the higher probability 
that has a restaurant in the recommendation list matching 
with the user’s choice is. However, a long suggestion list is 
not often used in recommender systems. In this study, 
the default value n in the content-based filtering is 20. 
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Figure 9. Precision in the content-based filtering model 
with different parameters n 

Figure 10. Satisfaction in the content-based filtering 
model with different parameters n 

For n=20, top-20 restaurants are recommended for each 
request of an active user, evaluation results are as follows: 

 Total number of recommendations: 183,253
 Total number of correct recommendations:

74,385 → precision: 40.59%
 Total number of satisfied recommendations:

115,176 → satisfaction: 62.85%

After obtaining the precision and satisfaction for all 
recommendations, the precision and satisfaction for each 
user are considered and split into six levels: 

 0%
 From greater than 0% to less than 25%
 From 25% to less than 50%
 From 50% to less than 75%
 From 75% to less than 100%
 100%

Session sequences having the length equal 1 are ignored, 
so the total number of users is 48,417. With the parameter 
n = 20, the number of users having precision and 
satisfaction in six levels is presented column (1) and (2), 
respectively, in Table 3. 

Table 3. Precision and satisfaction of users in the content-
based filtering engine 

Accuracy level (1) (2) 

0% 19,227 18,118 

(0%, 25%) 2,335 895 

[25%, 50%) 7,880 3,691 

[50%, 75%) 10,301 8,433 

[75%, 100%) 2,087 4,996 

100% 6,587 12,284 

From the table above, the recommender system gives 
suggestions with 100% precision to 13.60% of users and 
100% satisfaction to 25.37% of users. And the percentages 
of users who are given recommendations of the 0% 
accuracy level are quite high, that is, 39.71% users get low 
precision and 37.42% users get low satisfaction. It can give 
recommendations with precision greater than 50% to 
39.19% of users, and with the satisfaction greater than 50% 
to 53.11% of users. 

4.2.2 User-based collaborative filtering 
There are two main parts in the user-based collaborative 
filtering engine: clustering users and making 
recommendations.  

Clustering method: 
First, we make the comparison between K-Means and 

Mini-Batch K-Means. Mini-Batch K-Means algorithm 
runs faster and especially good for a large dataset. For 
example: 

 With the dataset containing 450 users, the clustering
algorithms divide users into 15 groups.
 K-Means: total CPU times is 2.03(s).
 Mini-Batch K-Means: total CPU times 1.85 (s).

 With the dataset containing 40536 users and number
of clusters is 142.
 K-Means: total CPU times is 7min 58s.
 Mini-Batch K-Means: total CPU times 14.5 (s).

As can be seen from two examples, Mini-Batch K-
Means runs faster than K-Means. When the dataset is 
smaller (450 users), the time difference is not too much: 
2.03(s) of K-Means compared with 1.85(s) of Mini-Batch 
K-Means. However, when increasing the number of users
in that dataset, the time difference is bigger: 7 min 58s of
K-Means compared with 14.5(s) of Mini-Batch K-Means.
So that is why Mini-Batch K-Means clustering algorithm
is better for massive datasets than K-Means clustering
algorithm.

In this study, the Mini-Batch K-Means clustering 
algorithm is used to cluster users into groups. There are two 
main parameters in this algorithm: 

 batch-size: it controls the number of randomly
selected observations in each batch. In this
experiment, the number of batch_size chosen is 100.
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 Number of clusters: defines the number of groups.

Choosing the number of clusters suggested in [4] is ට
  

ଶ

(n is number of users). In this experiment, the number of 
users in the training data is 45,605, so the number of 
clusters is 151. We tried some values around that value. 
The number of most similar users is fixed at 20 for 
recommendations. The precision and satisfaction 
corresponding to different number of clusters are shown in 
Figure 11 and Figure 12. 

Figure 11. Precision in the user-based collaborative 
filtering model with different number of clusters 

Figure 12. Satisfaction in the user-based collaborative 
filtering model with different number of clusters 

As we can see in Figure 11 and Figure 12, when users 
are organized into 100 groups, we can achieve the best 
accuracy. However, the time of giving one suggestion is 
larger, around 3.5 seconds in comparison with 1.8 seconds 
(when number of clusters is 200). Because the difference 
of accuracy in the two cases is small, the number of clusters 
chosen is 200. This is the trade-off between the accuracy 
and the running time. 

The precision and satisfaction of the user-based 
collaborative filtering technique corresponding to 
parameter n (number of most similar users) are shown in 
Figure 13 and Figure 14. 

Figure 13. Precision in the user-based collaborative 
filtering model with different parameter n 

Figure 14. Satisfaction in the user-based collaborative 
filtering model with different parameter n 

As can be seen from Figure 13 and Figure 14, n = 200 
gives the highest precision and satisfaction.  

With the number of suggestions (n) given in each 
recommendation rule is 20: 

 Total number of recommendations: 183,253
 Total correct recommendations: 132,824 → 

precision:  72.48% 
 Total satisfied recommendations: 155,374 →

satisfaction: 84.79%

Similar as Section 4.2.1, we consider the accuracy for 
each user. 

From the Table 4, the recommender system gives 
recommendations with 100% precision to 42.8 % of users 
and 100% satisfaction to 60.77% of users. And the 
percentage of users who are given recommendations with 
accuracy 0% is lower (17.61% users get low precision and 
17.07% users get low satisfaction). The engine can give 
recommendations with precision greater than 50% to 
75.89% of users, and with satisfaction greater than 50% to 
80.25% of users. 
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Table 4. Precision and satisfaction of users in the user-
based collaborative filtering engine 

Accuracy level (1) (2) 

0% 8,526 8,266 

(0%, 25%) 380 130 

[25%, 50%) 2,775 1,168 

[50%, 75%) 9,790 5,810 

[75%, 100%) 6,233 3,619 

100% 20,723 29,424 

4.2.3 Item-based collaborative filtering 
In the item-based collaborative filtering, there are two 
parts, building the item2Vec model and recommending 
most similar restaurants based on the results of item2Vec 
model. The combination of following parameters is 
considered: the training algorithm, vector size (vec-size), 
min_count, number of epochs and number of most similar 
restaurants (n). We proceed to change one parameter while 
other parameters are fixed, so that best parameters can be 
selected. The number of final suggested restaurants given 
to an active user is 20.  

 vec-size: the size of feature vectors defined in the
item2Vec model. Each vector represents an item in
the latent space which is modelled from the user
session sequences and each item is a visited
restaurant.

 min_count:  all items have frequency less than this
value are ignored. In other words, it is used to make
a set of items, equivalent to the vocabulary in
Word2Vec model. To put all restaurants into this set,
min_count should be 1. The number of epochs is set
to 100.

First, training algorithm is Skip-gram. Vec-size takes 
one of values in the list [100, 200, 300, 400] and n takes 
values in the list [10, 15, 20, 25, 30]. Precision and 
satisfaction of each case are showed in Figure 15. 

When Skip-gram is used as the training algorithm, 
min_count and number of epochs are set to 1 and 100, 
respectively, the set of parameters that gives highest 
precisions and satisfactions in recommendations is {vec-
size: 300, n: 20}. The highest precision is 63.24%. The 
highest satisfaction is 80.48%. 

Next, when training CBOW algorithm, the precision and 
satisfaction of each case changing parameters is showed in 
Figure 16. 

Figure15. Precision and Satisfaction with different vector 
sizes and n using Skip-gram 

When CBOW is used as the training algorithm, 
min_count and number of epochs are set to 1 and 100, 
respectively. The set of parameters that give highest 
precisions and satisfactions in recommendations is {vec-
size: 300, n: 20}. The highest precision is 70.32%. The 
highest satisfaction is 84.89%. Therefore, CBOW is chosen 
as the training algorithm. Next are the experiments for 
choosing number of epochs. At this time, the training 
algorithm is CBOW, min_count is 1, vec-size is 300 and n 
is 20. The precision and satisfaction for each case in 
experiments is showed in Figure 17. 

When CBOW is used as the training algorithm, the set 
of parameters that give highest precision and satisfaction is 
{vec-size: 300, min_count: 1, number of epochs: 1000, n: 
20}. The highest precision is 71.72%. The highest 
satisfaction is 86.58 %. In conclusion, the set of parameters 
for the item-based collaborative filtering engine are: 

 Training algorithm: CBOW
 Dimensionality of feature vector: 300
 Min_count: 1
 Training epoch: 1000
 n: 20.
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Figure 16. Precision and Satisfaction with different vector 
sizes and n using CBOW 

Figure 17. Choosing number of epochs in building the 
item2Vec model 

With the number of suggestions (n) given in each 
recommendation rule is 20: 

 Total number of recommendations: 183,253
 Total correct recommendations: 131,424 →

precision: 71.72%
 Total satisfied recommendations: 158,660 →

satisfaction: 86.58%

Similar as Section 4.2.1, we consider the accuracy for 
each user. 

Table 5. Precision and satisfaction of users in the item-
based collaborative filtering engine 

Accuracy level (1) (2) 

0% 6,252 5,944 

(0%, 25%) 482 127 

 [25%, 50%) 3,005 996 

[50%, 75%) 9,705 4,799 

[75%, 100%) 5,563 3,458 

100% 23,410 33,093 

From the table above, the recommender system gives 
recommendations with 100% precision to 48.35% of users 
and 100% satisfaction to 68.35% of users. And the 
percentage of users who are given recommendations with 
accuracy 0% is quite small (12.91% users get low precision 
and 12.28% user get low satisfaction). It can give 
recommendations with the precision greater than 50% to 
79.89% of users and with the satisfaction greater than 50% 
to 85.40% of users. 

4.2.4 Hybrid recommendation engine 
Hybrid recommendation engine is the combination of three 
recommendation engines which are based on content, user 
and item. Top-20 suggested restaurants in each single 
recommendation engine are merged and sorted in the 
descending order of occurrences, then the first 20 
restaurants in the sorted list are suggested to the target user. 

With the number of suggestions (n) given in each 
recommendation rule is 20: 

 Total number of recommendations: 183,253
 Total correct recommendations: 143,151 →

precision: 78.12%
 Total satisfied recommendations: 163,108 →

satisfaction: 89.0%

Similar as Section 4.2.1, we consider the accuracy for 
each user, as shown in Table 6. The recommender system 
gives suggestions with 100% precision to 53.42% of users 
and 100% satisfaction to 70.81% of users. And the 
percentage of users who are given recommendations with 
accuracy 0% is lowest (12.09 % users getting low precision 
and 11.76% users getting low satisfaction. It can give 
recommendations with precision greater than 50% to 
83.25%of users and with satisfaction greater than 50% to 
86.44% of users.  
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Table 6. Precision and satisfaction of users in the hybrid 
recommendation engine 

Accuracy level (1) (2) 

0% 5,856 5,692 

(0%, 25%) 224 79 

[25%, 50%) 2,029 796 

[50%, 75%) 8,524 4,548 

[75%, 100%) 5,922 3,018 

100% 25,862 34,284 

4.3. EVALUATION 

In this section, we make the comparison between the built 
recommendation engines. There are four recommendation 
techniques to compare: content-based filtering technique 
(C1), user-based filtering technique (C2), item-based 
filtering technique (C3) and hybrid recommendation 
technique (C4), as presented in Table 7. The comparison is 
based on these criteria:  

 Precision: the number of correct recommendations
over the number of generated recommendations.

 Satisfaction: the number of satisfied
recommendations over the number of generated
suggestions.

 % users that get precision at least 50%: the
percentage of users that are given recommendations
with precision greater than or equal 50%. Remember
that, we ignore users who just visited only one
restaurant.

 % users that get satisfaction at least 50%: the
percentage of users that are given recommendations
with satisfaction greater than or equal 50%.

 % users that get precision 100%: the percentage of
users that are given recommendations with precision
equal 100%.

 % user that get satisfaction 100%: the percentage of
users that are given recommendations with
satisfaction equal 100%.

 Run-time: the average time that a recommendation
engine gives one recommendation. Time is
measured in seconds.

Table 7. Comparison between the recommendation 
engines 

C1 C2 C3 C4 

Precision 40.59% 72.48% 71.72% 78.12% 

Satisfaction 62.85% 84.79% 86.58% 89.0% 

% users that 
݊݅ݏ݅ܿ݁ݎ ≥ 50% 

39.19% 75.87% 79.89% 83.25% 

% users that 
݊݅ݐ݂ܿܽݏ݅ݐܽݏ ≥ 50% 

53.11% 80.25% 85.40% 86.44% 

% users that all 
recommendations are 

correct 

13.60% 42.80% 48.35% 53.42% 

% users that all 
recommendation are 

satisfied 

25.37% 60.77% 68.35% 70.81% 

Average run-time 0.471 1.603 0.005 2.052 

 Case 1 (C1) – Content-based filtering engine: Only
using k nearest neighbours for prediction. The
dataset contains 676 restaurants. It means that the
algorithm needs to calculate similarities of one
restaurant with the remaining 675 restaurants. This
case has the lowest precision and satisfaction.

 Case 2 (C2) – User-based collaborative filtering
engine: Users are organized into groups and
recommendations are made based on n most similar
users in the same group. The performance is better
than Case 1.

 Case 3 (C3) – Item-based collaborative filtering
engine:  The item2Vec model is used to analyse the
similarities between restaurants. The strongest point
of this engine in comparison with other techniques
is that the time of making a recommendation is
fastest.

 Case 4 (C4) – Hybrid recommendation engine: The
results of three recommendation engines are mixed
together to make final recommendations. Except
that the time making one recommendation is lowest,
this solution gives the best accuracy. The strongest
point of this technique is that it can solve the cold-
start problem, meaning that when a new restaurant
is added, it can still be recommended to users.

In conclusion, the content-based filtering engine gives 
us the worst results (i.e. lowest precision and satisfaction). 
Next is the user-based and item-based collaborative 
filtering engines. The hybrid recommendation engine gives 
the best accuracy. In four cases, the item-based 
collaborative filtering engine can make a recommendation 
fastest, i.e. 94 times faster than the content-based filtering 
engine; 320 times faster than the user-based collaborative 
filtering engine; more than 400 times faster than the hybrid 
recommendation engine. For the used dataset, if we focus 
on the running time, the item-based collaborative filtering 
is the best solution. However, if the accuracy is the first 
priority, the hybrid recommendation approach is the best 
solution. It needs to have the trade-off between running 
time and accuracy. 

5. Conclusions

A Recommender System plays an important role in many 
on-line services and websites. Recommender Systems can 
be categorized into two main types: content-based 
recommender systems and collaborative filtering 
recommender systems. While content-based recommender 
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systems are based on the item characteristics, collaborative 
filtering recommender systems are based on the user 
behaviour. Each technique has its own advantages and 
limitations, so hybrid recommender systems are the 
combination of these types in order to reduce the 
limitations of each single recommendation technique. 

In this study, some issues were addressed. In the 
content-based recommendation engine, the similarity 
between restaurant features is calculated by the cosine 
similarity and top-n “nearest” restaurants are 
recommended to user. In the user-based collaborative 
filtering engine, the Mini-Batch K-Means organises users 
into groups and recommendations for the target user are 
based on the top-n most similar users within a group. In the 
item-based collaborative filtering engine, item2Vec - a 
neural embedding algorithm - is used to analyse the 
“relationship” between restaurants given the visited 
restaurant sequences. Finally, the experimental results have 
figured out that the hybrid recommender system is the best 
architecture for the restaurant recommender system with 
the highest accuracy. 
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