
EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

1

Improving Customer Behaviour Prediction with the
Item2Item model in Recommender Systems

T.T.S. Nguyen1,*, P.M.T. Do1 and T.T. Nguyen2

1School of Computer Science & Engineering, International University, VNU-HCMC, Ho Chi Minh City, Vietnam
nttsang@hcmiu.edu.vn, dophamminhthu2403@gmail.com

2University of Buckingham, UK
tuan.nguyen@buckingham.ac.uk

Abstract

Recommender Systems are the most well-known applications in E-commerce sites. However, the trade-off between run-
time and the accuracy in making recommendations is a big challenge. This work combines several traditional techniques to
reduce the limitation of each single technique and exploits the Item2Item model to improve the prediction accuracy. As a
case study, this paper focuses on user behaviour prediction in restaurant recommender systems and uses a public dataset
including restaurant information and user sessions. Within this dataset, user behaviour can be discovered for the
collaborative filtering, and restaurant information is extracted for the content-based filtering. The idea of the pre-trained
word embedding in Natural Language Processing is utilized in the item-based collaborative filtering to find the similarity
between restaurants based on user sessions. Experimental results have shown that the combination of these
techniques makes valuable recommendations.

Keywords: recommender systems, sequence mining, item2item.

Received on 31 August 2018, accepted on 12 December 2018, published on 19 December 2018

Copyright © 2018 T.T.S Nguyen et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.19-12-2018.156079

1. Introduction

It is undoubted that a person can make his decisions from
when getting enough information. To make right decisions
from enormous information, however, is not a trivial task.
A Recommendation System or Recommender System is
introduced to handle this problem. It is a type of
information retrieval systems which are used to predict
items of interest for a specific user. Recommendation
Systems are categorized into different types, e.g. Content-
based filtering, Collaborative filtering and combination of
these techniques. Content-based filtering algorithms base
on similar items and item descriptions. They, then, try to
recommend items similar to what a user has purchased or
has been interested in. Therefore, user profiles are
important in these techniques. Whereas, collaborative

*Corresponding author. Email: nttsang@hcmiu.edu.vn

filtering algorithms use the same tastes between user-to-
user to suggest items.

Collaborative filtering technique has two types, user-
based collaborative filtering and item-based collaborative
filtering [1]. User-based collaborative filtering algorithms
try to find the nearest neighbours of a target user by
computing similarity between users, and then give
suggestions based on these neighbours’ interests. In
another hand, item-based collaborative filtering algorithms
take into account user-user relations through item-item
relations in order to recommend items close to the target
user’s interests.

The purpose of this paper is to build a hybrid restaurant
recommendation technique which is the combination of
content-based filtering, user-based collaborative filtering
and item-based collaborative filtering.

Firstly, the cosine similarity in the content-based
filtering process is used to calculate distance between

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

2

restaurant profiles to find the nearest neighbours for each
restaurant visited by an active user. The most similar
restaurants are selected for recommendation. Secondly, in
the user-based filtering process, user-to-user similarity is
represented by Euclidean distance. Users who are the most
similar to the target user are selected. To reduce the number
of distance computations, users are organised into groups
by a clustering algorithm. We, then, only need to evaluate
distances between users in the same group. Thirdly, in
item-based collaborative filtering process, the Word2Vec
model, a pre-trained word embedding, in the natural
language processing [2] is utilised to learn relationships
between restaurants in user sessions and then recommend
interesting restaurants. The final suggestion is the
combination of results from each single technique.

The paper is presented as follows. Section 2 briefly
introduces related work; Section 3 discusses methodology;
Section 4 summaries Experimental results, and finally
conclusions in Section 5.

2. Related work

As known, two main approaches to Recommender Systems
are content-based and collaborative filtering. Both need a
sufficient amount of data for recommendations but
different types of data. The content-based filtering needs
item descriptions and user profile, whereas the
collaborative filtering needs transaction patterns or user
transaction history.

The advantage of content-based recommender
systems is that it can start to recommend as soon as there
are item descriptions. In other words, new items can be
suggested before being rated by users. When users interact
with the system, user profile will be collected as input data.
Providing more inputs, such as item descriptions and user
profile, item recommendation becomes more and more
accurate. However, this recommendation does not depend
on the similarity between users, though this information
may be useful.

In contrast, the recommendation engine of the
collaborative filtering is based on the real-life activity,
sequences of user behaviour or user sessions, so the more
people interact with system, the better recommendations
can be made. The strong points of this technique are no
item description needed and it can capture changes of user
interests over time. However, this type of system cannot
give good recommendations to new users because it needs
user’s rating, transaction history, or user history. Moreover,
new items cannot be recommended by collaborative
filtering techniques neither if these items have not appeared
in any transaction histories. This problem is also known as
the cold-star problem which can be solved by Content-
based filtering techniques.

Hybrid Recommender Systems are the mix of the
above recommendation techniques to gain better
performance. This recommendation engine inherits
advantages of each single technique together with reducing
their limitations. Netflix is a good example of Hybrid

Recommendation Systems. Its recommendation system is
based on the watching habits of similar users and similar
films which users have already rated. In this study, we
focus on clustering techniques for the content-based
filtering, and sequence mining techniques for the
collaborative filtering.

2.1. Recommendation based on clustering

K-Means clustering algorithm is one of the most used
algorithms. By clustering and giving an active item, we can
quickly find the most relevant items in the same cluster. K-
Means, however, has limitations like computational speed,
sensitive to outliers and inefficiency for large datasets.
Mini-Batch K-Means [3], a modified version of K-Means,
is faster than K-Means and commonly used for large
datasets. It can solve the low computational speed of K-
Means by using mini-batches to reduce the computation
time. The main idea of Mini-Batch K-Means is to randomly
extract subsets from the whole dataset. For each iteration,
a new random sample from dataset is used to update the
cluster until convergence.

In the both clustering algorithms, we need to determine
the “right” number of clusters in a dataset. Figuring out
what the right number of clusters often depends on the
distribution’s shape and scale in the dataset, as well as the
clustering resolution required by the user [4]. There are
several simple ways to determine the number of clusters:

 A simple method to determine the number of clusters

is aboutට

, where n is the number of points in a

dataset. In expectation, each cluster has √ points.
 Elbow method: Technically, given a number k > 0 (k

is the number of clusters), we calculate the sum of
within-cluster variance of each cluster, var(k). And
then the curve of var is plotted with respect to k. The
first (or most significant) turning point of the curve
suggests the “right” number.

2.2. Recommendation based on sequence
mining

User behaviours or the sequences of user interactions play
an important role in making recommendations. Many
techniques are being applied to analyse sequences of user
behaviours for discovering frequent patterns, such as
Frequent Pattern Mining with Apriori algorithm,
Association Rules, Frequent Pattern tree, Markov Chain
Modeling, and Hidden Markov Model [4]. More advanced,
based on the idea of Word Embedding Model, particularly,
word2Vec model in Natural Language Processing, Neural
Item Embedding called item2Vec has been used to analyse
item-item relations to produce item-to-item similarities [5].

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

3

2.2.1. Word Embedding in Natural Language
Processing
2.2.1.1. Introduction
The main challenge in Natural Language Processing (NLP)
is how to make computers understand natural human
language since they can only understand number and
binary. According to Wikipedia, word embedding is “the
collective name for a set of language modelling and feature
learning techniques in NLP where words or phrases from
the vocabulary are mapped to vectors of real numbers”.
Word embedding is the type of mapping that allows words
with similar meaning having similar representations.
Word2Vec is one of the popular word-embedding models
used to represent a word as a vector.

2.2.1.2. Word2Vec
Word2Vec was developed by a researcher team led by
Tomas Mikilov in 2013 at Google [6]. The idea of
word2Vec is to transfer one word from a one-hot vector to
a new vector with a defined vector size. Word2Vec is a
feed-forward and fully connected neural network. In the
word2Vec model, the input is a text corpus, and its output
is the set of feature vectors for each word in the corpus. It
first constructs a vocabulary from the training text data and
then learns the vector representation of words. Most
applications of word2Vec use the cosine similarity to
quantify the closeness of words. Two important models
inside word2Vec are Continuous Bag of Words (CBOW)
and Skip-gram. In Skip-gram, the model tries to predict the
neighbours or context of a word. The input is a target word
and the output are words surrounding the target.

CBOW model tries to predict the word given its
neighbours or context. It predicts the word “by summing
all the context word vectors together to represent the word”
[7]. So, it is similar to skip-gram except swapping the input
and output.

Therefore, the big difference between two models is
how feature vectors are generated and the Skip-gram model
is sensitive to positions of context words. According to
Mikolov, the Skip-gram works well with small training
data and presents good representations for rare words,
while CBOW performs better in large training data [7].

2.2.2. From word2Vec to item2Vec

The result of word2Vec models is the set of feature
vectors. These vectors can be used to determine similarity
between words. Based on this idea, item2Vec was
introduced by Oren Barkan and Noam Koenigstein [5] in
order to determine the similarity between items for
recommendation. It is argued that there is an equivalence
between words in NLP and items in user behaviour
sequence mining, so word2Vec becomes item2Vec [8].

Let U = { ݑଵ, ,ଶݑ ,ଷݑ , } = } be a set of users and Iݑ
݅ଵ, ݅ଶ, ݅ଷ, . . . , ݅} be a set of items, where n, m denotes the
number of users and items, respectively. For each user u,
transaction history of user u is given by:

Tu := Tu
1, Tu

2, …, Tu
t, where Tu

t I
The transaction history of all users is denoted as T = {

ܶଵ, ܶଶ, . . . , ܶ௨}, as the input of the item2Vec model.

3. Methodology

3.1. Overview framework

This subsection describes the framework of the proposed
system as Figure 1. It is a hybrid restaurant
recommendation given restaurant features and user
behaviours of restaurants visited.

Figure 1. The proposed framework of the restaurant recommendation system

Each record in the Restaurant Database stores the
features of one restaurant. The Session Database presents

restaurant interactions as user sessions. Three data mining
techniques: (1) content-based, (2) user-based collaborative

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

4

and (3) item-based collaborative filtering, are conducted
for making hybrid restaurant recommendations.

In the content-based filtering, the cosine similarity is
used to calculate the similarity between features of
different restaurants, and n most similar restaurants with
restaurants that a user has already visited are selected. The
Session Database is used to build two models: clustering
model and item2Vec model. The user-based collaborative
filtering finds users having the same interests. In that, the
clustering is performed to organize users into groups, k
most similar users are chosen for recommendation given a
target user. The user similarity is computed based on the
list restaurants that users have already visited. The
restaurant similarity is calculated using the Item2Vec
model which is constructed from the list of visited
restaurant sequences. In the item-based collaborative
filtering, from the list of visited restaurants, the system
finds restaurants usually visited together. The three above
results are combined to obtain a final recommendation for
the active user.

3.2. DATA PREPROCESSING

As a case study, the Entrée Chicago Restaurant dataset [9]
is used in the proposed system. There are two main files in
the dataset, one is restaurants file and the other is sessions
file. The raw data needs to be pre-processed, i.e.
reformatted and clean, for later mining. Table 1 describes
partial data of restaurant features after formatting,
including restaurant ID, restaurant name, feature codes.
The meanings of feature codes are explained in the dataset
description. There are totally 256 features, e.g. Excellent
Food, Excellent Service, etc. Table 2 describes the partial
session data after formatting, including date, IP, entry
point, restaurant rating. Actually, this data describes how
users interact Chicago restaurant recommendation systems,
and rate restaurants. In this dataset, rating a restaurant
means having some behaviour, e.g. moving from one
restaurant to another, searching for a restaurant cheaper or
nicer, etc. Therefore, behaviours moving from one
restaurant to another are extracted and considered as users’
behaviours of restaurant visits.

Table 1. Restaurant data after formatting
Restaurant

ID
Restaurant

Name
Features

0 Moti Mahal 214, 035, 149, 021, 117, 075,
204, 051, 163

1 Village 026, 249, 174, 004, 132, 249,
198, 191, 192, 125, 075, 205,

054, 165

After formatting, the data is clean, that is, irrelevant,
insufficient or unnecessary data instances are removed.

Table 2. Session data after formatting
Date IP Entry

Point
Restaurant Rating

29/Mar/1999
:06:32:41

152.163.
207.79

0 330L,540L,99L,490L,500

29/Mar/1999
:09:40:38

204.221.
190.230

0 369L,316

3.3. Content-based filtering engine

The main idea of the content-based filtering is based on the
similarity between restaurant features. The process of its
engine is shown in Figure 2.
When a new sequence comes, a list of recently visited
restaurants of a user, the system calculates the similarity
between the recently visited restaurants with all restaurants
to choose k most similar restaurants followed these steps:

 Convert restaurant features into vectors: The
length of vector is 256 represented for 256
features. If a restaurant has the ith feature, 1 is
assigned to the ith position of the vector, otherwise
0 assigned.

Figure 2. Content-based filtering process

 Calculate similarities between restaurant feature
vectors: For each ݐ݊ܽݎݑܽݐݏ݁ݎ stored in the
database, calculate the total similarity between
 with each restaurant in the recentlyݐ݊ܽݎݑܽݐݏ݁ݎ
visited restaurant list. The Cosine similarity is
used to calculate distance between two feature
vectors. The greater the similarity between two
vectors is, the more similar two restaurants are.

 Get k nearest neighbours and recommend: sort the
list of the calculated similarity scores in
descending order and choose k first restaurants for
recommendation.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

5

3.4. User-based collaborative filtering
engine

In the user-based collaborative filtering, recommendations
are generated based on the restaurant visit history of nearest
users to the target user. So, the main step is to find k most
similar users by calculating the user-to-user similarity.
When the number of users is small, it is easy to compute
user similarities. But in real applications, when a large
number of users interact with the system, this is, then, a bad
solution because it takes too much time for similarity
calculations. To solve this, a clustering technique is firstly
used to organize users/customers into groups and similarity
calculations are made within a group. Figure 3 describes
steps of the user-based collaborative filtering process.

Figure 3. User-based collaborative filtering process

3.4.1. Customer clustering
A customer clustering is the process that clusters users into
groups based on common characteristics. The process of
the customer clustering is showed in Figure 4.

Figure 4. Customer clustering Process

Preparing data
Each transaction in the Session database represents

restaurants visited by one user, which is explored from the
user session data. Before clustering, each transaction needs
to be transformed into one vector. The length of vectors is
676 represented for 676 restaurants in Chicago. Each
element value in a vector is the number of times that a user
visited a respective restaurant.

For example, we have a transaction [452, 186, 186, 186,
186, 513, 249, 1, 362, 155, 334, 134], in which each
number stands for a restaurant ID. This transaction is
converted to a vector with 676 elements. Restaurant ID
starts from 0 and the vector index also starts from 0. In the

transaction, the user visited the restaurant with ID 186 in
four times then the 187th element of the vector has value 4.
This manner is applied for all other elements in the vector.

Clustering
The prepared data are supplied into a clustering

algorithm to organize users into groups.

3.4.2 Fitting the target user into clusters
To make suggestions for a target user, we need to know

which user group that the target user belongs to. After
fitting the user into clusters, a group of users similar to the
target user is generated.

3.4.3. Calculating similarity between users within
a group
If recommendations are given based on users in one large
cluster, there still have some users whose similarities with
the target user are low. It leads to degrade the
recommendation accuracy. In this case, we should choose
some most similar users for recommendations.
Therefore, Euclidean measure is used to calculate the
similarity between users, i.e. the distance between vectors
represented for users. The lower the value is, the more
similar the users are.

3.4.4. Recommending based on the most similar
users
Based on the k most similar users at the above step, the
system can provide a list of all restaurants that these users
have already visited along with the number of visits. Then
the top-n most visited restaurants are selected.

3.5. Item-based collaborative filtering
engine

The main idea of the item-based collaborative filtering
process is constructed on the similarity between items
generated from sequences of user behaviours. It means that
if restaurants X and Y are visited together in most
transactions, it can conclude that restaurant X and Y are
similar. So, if a user visited a restaurant X, then the system
will recommend a restaurant Y to this user, and vice versa.

In this study, item2Vec is used to recognize similar
items given a sequence of user behaviours. Based on the
way items appear together in user sessions, the similarities
between items are found. Hence, the item2Vec model is
built before collaborative filtering. The details of building
the item2Vec model is presented in Sub-section 3.5.1.

The process of the item-based collaborative filtering
engine is shown in Figure 5.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

6

Figure 5. Item-based collaborative filtering process

3.5.1. Neural item embedding in item-based
collaborative filtering
The Item2Vec model is used for item-based collaborative
filtering that produces embedding for items in a latent
space [5]. The process of building an item2Vec model is
showed in Figure 6.

Figure 6. Process of building an Item2Vec model

Preparing training data
In the user session data, each transaction is the list of

visited restaurant IDs. Each list is a sequence of items, i.e.,
restaurants, is formatted as shown in Figure 7.

Figure 7. Examples of item sequences

Building the item2Vec model
The prepared data is input into the neural item

embedding process to build the item2Vec model.

3.5.2. Get k most similar restaurants for each
visited restaurant in a user transaction sequence
To give suggestions for a user, a user transaction sequence
of recently visited restaurants is taken into account. For
each visited restaurant in the sequence, similar restaurants
are fetched and ranked in a descending order of the
similarity by applying the item2Vec model. Then top-n
items with highest similarity are selected and stored in lists.

3.5.3. Get n restaurants appearing most for
recommendation

In Sub-section 3.5.2, the system finds the top-n most
similar restaurants corresponding to each restaurant in the

active user transaction sequence. A list of most similar
restaurants is combined and sorted in the descending order
of the number of occurrences in the list, and first n
restaurants after sorting are selected for recommendations.

3.6. Combining the recommended results

The main purpose of this process is to combine the results
recommended from the above collaborative filtering
engines. This helps to reduce the weakness of each single
collaborative filtering technique. First, the restaurants most
recommended by the three engines are selected. Next, the
remaining restaurants suggested by item-based
collaborative filtering are listed. Then, the ones suggested
by user-based collaborative filtering and by content-based
filtering are appended to the final recommendation list.

For example, given a list of restaurants visited by a user,
the content-based collaborative filtering (CF) engine
recommends restaurants: A, D, C, E; the user-based CF
engine recommends restaurants: B, A, D, Q; and the item-
based CF engine recommends restaurants: B, T, H, D. It is
noticed that the restaurants in the lists generated by the
three single engines are sorted in descending order of score.
The three lists are combined as follows:

 Restaurant D is recommended by the three
engines, so we select D first.

 Restaurants A, B are recommended by the two
single engines, so we select A, B next. The
priority is not defined yet.

 Restaurant C, E, Q, T, H are recommended by
every single technique. So, restaurants
recommended by the item-based one are
prioritised, namely T, H, are appended into the
final recommendation list. After that, the
restaurant recommended by the user-based one,
i.e., Q, is selected. Finally, restaurants C and E
recommended by the content-based one are
selected.

Thus, the final recommendation list is D, A, B, T, H, Q,
C, E.

4. Experimental results

The main purpose of building a recommender system is to
increase the revenue. It leads to the important of accuracy
in making recommendations.

As mentioned, the Entrée Chicago Recommendation
dataset is used in experiments. This data contains a record
of user interactions with the Entrée Chicago restaurant
recommendation system from September 1996 to April
1999. The data has been pre-processed as described in
Section 3.

4.1. Evaluation measures

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

7

According to Zhou [10], the accuracy of item
recommendations can be measured by precision and
satisfaction. In all experiments, the two measures are used
to evaluate the performance of the proposed recommender
system.

Let S = ܽଵ,ܽଶ… .ܽܽାଵ. . . ܽ be the user transaction
sequence. Each sequence is the list of visited restaurants of
one user. For each prefix sequence ܵ௫ ൌ ܽଵܽଶ. . . . ܽ (
݇ ⩽ ሺ݄ݐ݈݃݊݁ݏ′݁ܿ݊݁ݑݍ݁ݏሻ െ 1), a recommendation rule is
generated ܴܴ ൌ ݁ଵ, ݁ଶ, . . . , ݁ெ using the recommendation
engine, and a correct recommendation and/or satisfied
recommendation is determined based on following
conditions:

 If ܽାଵ ∈ ܴܴ, RR is correct
 If ∃ܽ ∈ ܴܴ, (k+1 ≤ i ≤ n), RR is satisfied.

R= { ܴܴଵ, ܴܴଶ, . . . , ܴܴே} be a set of recommendation
rules and |R| = N is total number of recommendations.

 Precision

Let ܴbe the subset of R that consists of all correct
recommendation rules.

Precision =
|ோ|

ே

 Satisfaction

Let ܴ௦be the subset of R that consists of all satisfied
recommendation rules.

 Satisfaction =
|ோೞ|

ே

Figure 8. Process of evaluating recommendation
performance

The process of evaluating the recommendation
performance is depicted in Figure 8.

4.2. Experiments and results

There are four experiment cases carried out for validating
the built recommendation engines.

 Case 1 is for the content-based filtering engine.
Recommendations are based on similarity
between features of different restaurants.

 Case 2 is for the user-based collaborative filtering
engine. Recommendations are based on users with
same interests.

 Case 3 is for the item-based collaborative filtering
engine. Recommendations are based on
restaurants that are usually visited together.

 Case 4 is for the hybrid recommendation engine.
It is the combination of the three techniques.

The experiments are conducted on an Intel Core i3
processor with a CPU clock rate of 1.8 GHz, 4GB of main
memory, running on an Ubuntu 16.04 LTS. The algorithms
are implemented in Python. The results of each experiment
case are evaluated using 10-fold cross validation.

4.2.1. Experiments on Content-based filtering
technique
This experiment follows the procedure mentioned in Figure
8, in which the recommendation engine is the content-
based filtering engine.

The important parameter in the content-based filtering
technique is the number of the most similar restaurants
recommended to an active user (denoted by n). The main
purpose of this experiment is to find the most suitable
parameter n. As a result, precisions and satisfactions are
measured with different parameters n, as shown in Figure
9 and 10, respectively.

As we can see from the graph in Figure 9 and 10, the
higher the value n is, the higher the precision and
satisfaction are. It can be easy to explain, when more and
more similar restaurants are selected, the higher probability
that has a restaurant in the recommendation list matching
with the user’s choice is. However, a long suggestion list is
not often used in recommender systems. In this study,
the default value n in the content-based filtering is 20.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

8

Figure 9. Precision in the content-based filtering model
with different parameters n

Figure 10. Satisfaction in the content-based filtering
model with different parameters n

For n=20, top-20 restaurants are recommended for each
request of an active user, evaluation results are as follows:

 Total number of recommendations: 183,253
 Total number of correct recommendations:

74,385 → precision: 40.59%
 Total number of satisfied recommendations:

115,176 → satisfaction: 62.85%

After obtaining the precision and satisfaction for all
recommendations, the precision and satisfaction for each
user are considered and split into six levels:

 0%
 From greater than 0% to less than 25%
 From 25% to less than 50%
 From 50% to less than 75%
 From 75% to less than 100%
 100%

Session sequences having the length equal 1 are ignored,
so the total number of users is 48,417. With the parameter
n = 20, the number of users having precision and
satisfaction in six levels is presented column (1) and (2),
respectively, in Table 3.

Table 3. Precision and satisfaction of users in the content-
based filtering engine

Accuracy level (1) (2)

0% 19,227 18,118

(0%, 25%) 2,335 895

[25%, 50%) 7,880 3,691

[50%, 75%) 10,301 8,433

[75%, 100%) 2,087 4,996

100% 6,587 12,284

From the table above, the recommender system gives
suggestions with 100% precision to 13.60% of users and
100% satisfaction to 25.37% of users. And the percentages
of users who are given recommendations of the 0%
accuracy level are quite high, that is, 39.71% users get low
precision and 37.42% users get low satisfaction. It can give
recommendations with precision greater than 50% to
39.19% of users, and with the satisfaction greater than 50%
to 53.11% of users.

4.2.2 User-based collaborative filtering
There are two main parts in the user-based collaborative
filtering engine: clustering users and making
recommendations.

Clustering method:
First, we make the comparison between K-Means and

Mini-Batch K-Means. Mini-Batch K-Means algorithm
runs faster and especially good for a large dataset. For
example:

 With the dataset containing 450 users, the clustering
algorithms divide users into 15 groups.
 K-Means: total CPU times is 2.03(s).
 Mini-Batch K-Means: total CPU times 1.85 (s).

 With the dataset containing 40536 users and number
of clusters is 142.
 K-Means: total CPU times is 7min 58s.
 Mini-Batch K-Means: total CPU times 14.5 (s).

As can be seen from two examples, Mini-Batch K-
Means runs faster than K-Means. When the dataset is
smaller (450 users), the time difference is not too much:
2.03(s) of K-Means compared with 1.85(s) of Mini-Batch
K-Means. However, when increasing the number of users
in that dataset, the time difference is bigger: 7 min 58s of
K-Means compared with 14.5(s) of Mini-Batch K-Means.
So that is why Mini-Batch K-Means clustering algorithm
is better for massive datasets than K-Means clustering
algorithm.

In this study, the Mini-Batch K-Means clustering
algorithm is used to cluster users into groups. There are two
main parameters in this algorithm:

 batch-size: it controls the number of randomly
selected observations in each batch. In this
experiment, the number of batch_size chosen is 100.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

9

 Number of clusters: defines the number of groups.

Choosing the number of clusters suggested in [4] is ට

ଶ

(n is number of users). In this experiment, the number of
users in the training data is 45,605, so the number of
clusters is 151. We tried some values around that value.
The number of most similar users is fixed at 20 for
recommendations. The precision and satisfaction
corresponding to different number of clusters are shown in
Figure 11 and Figure 12.

Figure 11. Precision in the user-based collaborative
filtering model with different number of clusters

Figure 12. Satisfaction in the user-based collaborative
filtering model with different number of clusters

As we can see in Figure 11 and Figure 12, when users
are organized into 100 groups, we can achieve the best
accuracy. However, the time of giving one suggestion is
larger, around 3.5 seconds in comparison with 1.8 seconds
(when number of clusters is 200). Because the difference
of accuracy in the two cases is small, the number of clusters
chosen is 200. This is the trade-off between the accuracy
and the running time.

The precision and satisfaction of the user-based
collaborative filtering technique corresponding to
parameter n (number of most similar users) are shown in
Figure 13 and Figure 14.

Figure 13. Precision in the user-based collaborative
filtering model with different parameter n

Figure 14. Satisfaction in the user-based collaborative
filtering model with different parameter n

As can be seen from Figure 13 and Figure 14, n = 200
gives the highest precision and satisfaction.

With the number of suggestions (n) given in each
recommendation rule is 20:

 Total number of recommendations: 183,253
 Total correct recommendations: 132,824 →

precision: 72.48%
 Total satisfied recommendations: 155,374 →

satisfaction: 84.79%

Similar as Section 4.2.1, we consider the accuracy for
each user.

From the Table 4, the recommender system gives
recommendations with 100% precision to 42.8 % of users
and 100% satisfaction to 60.77% of users. And the
percentage of users who are given recommendations with
accuracy 0% is lower (17.61% users get low precision and
17.07% users get low satisfaction). The engine can give
recommendations with precision greater than 50% to
75.89% of users, and with satisfaction greater than 50% to
80.25% of users.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

10

Table 4. Precision and satisfaction of users in the user-
based collaborative filtering engine

Accuracy level (1) (2)

0% 8,526 8,266

(0%, 25%) 380 130

[25%, 50%) 2,775 1,168

[50%, 75%) 9,790 5,810

[75%, 100%) 6,233 3,619

100% 20,723 29,424

4.2.3 Item-based collaborative filtering
In the item-based collaborative filtering, there are two
parts, building the item2Vec model and recommending
most similar restaurants based on the results of item2Vec
model. The combination of following parameters is
considered: the training algorithm, vector size (vec-size),
min_count, number of epochs and number of most similar
restaurants (n). We proceed to change one parameter while
other parameters are fixed, so that best parameters can be
selected. The number of final suggested restaurants given
to an active user is 20.

 vec-size: the size of feature vectors defined in the
item2Vec model. Each vector represents an item in
the latent space which is modelled from the user
session sequences and each item is a visited
restaurant.

 min_count: all items have frequency less than this
value are ignored. In other words, it is used to make
a set of items, equivalent to the vocabulary in
Word2Vec model. To put all restaurants into this set,
min_count should be 1. The number of epochs is set
to 100.

First, training algorithm is Skip-gram. Vec-size takes
one of values in the list [100, 200, 300, 400] and n takes
values in the list [10, 15, 20, 25, 30]. Precision and
satisfaction of each case are showed in Figure 15.

When Skip-gram is used as the training algorithm,
min_count and number of epochs are set to 1 and 100,
respectively, the set of parameters that gives highest
precisions and satisfactions in recommendations is {vec-
size: 300, n: 20}. The highest precision is 63.24%. The
highest satisfaction is 80.48%.

Next, when training CBOW algorithm, the precision and
satisfaction of each case changing parameters is showed in
Figure 16.

Figure15. Precision and Satisfaction with different vector
sizes and n using Skip-gram

When CBOW is used as the training algorithm,
min_count and number of epochs are set to 1 and 100,
respectively. The set of parameters that give highest
precisions and satisfactions in recommendations is {vec-
size: 300, n: 20}. The highest precision is 70.32%. The
highest satisfaction is 84.89%. Therefore, CBOW is chosen
as the training algorithm. Next are the experiments for
choosing number of epochs. At this time, the training
algorithm is CBOW, min_count is 1, vec-size is 300 and n
is 20. The precision and satisfaction for each case in
experiments is showed in Figure 17.

When CBOW is used as the training algorithm, the set
of parameters that give highest precision and satisfaction is
{vec-size: 300, min_count: 1, number of epochs: 1000, n:
20}. The highest precision is 71.72%. The highest
satisfaction is 86.58 %. In conclusion, the set of parameters
for the item-based collaborative filtering engine are:

 Training algorithm: CBOW
 Dimensionality of feature vector: 300
 Min_count: 1
 Training epoch: 1000
 n: 20.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

11

Figure 16. Precision and Satisfaction with different vector
sizes and n using CBOW

Figure 17. Choosing number of epochs in building the
item2Vec model

With the number of suggestions (n) given in each
recommendation rule is 20:

 Total number of recommendations: 183,253
 Total correct recommendations: 131,424 →

precision: 71.72%
 Total satisfied recommendations: 158,660 →

satisfaction: 86.58%

Similar as Section 4.2.1, we consider the accuracy for
each user.

Table 5. Precision and satisfaction of users in the item-
based collaborative filtering engine

Accuracy level (1) (2)

0% 6,252 5,944

(0%, 25%) 482 127

 [25%, 50%) 3,005 996

[50%, 75%) 9,705 4,799

[75%, 100%) 5,563 3,458

100% 23,410 33,093

From the table above, the recommender system gives
recommendations with 100% precision to 48.35% of users
and 100% satisfaction to 68.35% of users. And the
percentage of users who are given recommendations with
accuracy 0% is quite small (12.91% users get low precision
and 12.28% user get low satisfaction). It can give
recommendations with the precision greater than 50% to
79.89% of users and with the satisfaction greater than 50%
to 85.40% of users.

4.2.4 Hybrid recommendation engine
Hybrid recommendation engine is the combination of three
recommendation engines which are based on content, user
and item. Top-20 suggested restaurants in each single
recommendation engine are merged and sorted in the
descending order of occurrences, then the first 20
restaurants in the sorted list are suggested to the target user.

With the number of suggestions (n) given in each
recommendation rule is 20:

 Total number of recommendations: 183,253
 Total correct recommendations: 143,151 →

precision: 78.12%
 Total satisfied recommendations: 163,108 →

satisfaction: 89.0%

Similar as Section 4.2.1, we consider the accuracy for
each user, as shown in Table 6. The recommender system
gives suggestions with 100% precision to 53.42% of users
and 100% satisfaction to 70.81% of users. And the
percentage of users who are given recommendations with
accuracy 0% is lowest (12.09 % users getting low precision
and 11.76% users getting low satisfaction. It can give
recommendations with precision greater than 50% to
83.25%of users and with satisfaction greater than 50% to
86.44% of users.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

12

Table 6. Precision and satisfaction of users in the hybrid
recommendation engine

Accuracy level (1) (2)

0% 5,856 5,692

(0%, 25%) 224 79

[25%, 50%) 2,029 796

[50%, 75%) 8,524 4,548

[75%, 100%) 5,922 3,018

100% 25,862 34,284

4.3. EVALUATION

In this section, we make the comparison between the built
recommendation engines. There are four recommendation
techniques to compare: content-based filtering technique
(C1), user-based filtering technique (C2), item-based
filtering technique (C3) and hybrid recommendation
technique (C4), as presented in Table 7. The comparison is
based on these criteria:

 Precision: the number of correct recommendations
over the number of generated recommendations.

 Satisfaction: the number of satisfied
recommendations over the number of generated
suggestions.

 % users that get precision at least 50%: the
percentage of users that are given recommendations
with precision greater than or equal 50%. Remember
that, we ignore users who just visited only one
restaurant.

 % users that get satisfaction at least 50%: the
percentage of users that are given recommendations
with satisfaction greater than or equal 50%.

 % users that get precision 100%: the percentage of
users that are given recommendations with precision
equal 100%.

 % user that get satisfaction 100%: the percentage of
users that are given recommendations with
satisfaction equal 100%.

 Run-time: the average time that a recommendation
engine gives one recommendation. Time is
measured in seconds.

Table 7. Comparison between the recommendation
engines

C1 C2 C3 C4

Precision 40.59% 72.48% 71.72% 78.12%

Satisfaction 62.85% 84.79% 86.58% 89.0%

% users that
݊݅ݏ݅ܿ݁ݎ ≥ 50%

39.19% 75.87% 79.89% 83.25%

% users that
݊݅ݐ݂ܿܽݏ݅ݐܽݏ ≥ 50%

53.11% 80.25% 85.40% 86.44%

% users that all
recommendations are

correct

13.60% 42.80% 48.35% 53.42%

% users that all
recommendation are

satisfied

25.37% 60.77% 68.35% 70.81%

Average run-time 0.471 1.603 0.005 2.052

 Case 1 (C1) – Content-based filtering engine: Only
using k nearest neighbours for prediction. The
dataset contains 676 restaurants. It means that the
algorithm needs to calculate similarities of one
restaurant with the remaining 675 restaurants. This
case has the lowest precision and satisfaction.

 Case 2 (C2) – User-based collaborative filtering
engine: Users are organized into groups and
recommendations are made based on n most similar
users in the same group. The performance is better
than Case 1.

 Case 3 (C3) – Item-based collaborative filtering
engine: The item2Vec model is used to analyse the
similarities between restaurants. The strongest point
of this engine in comparison with other techniques
is that the time of making a recommendation is
fastest.

 Case 4 (C4) – Hybrid recommendation engine: The
results of three recommendation engines are mixed
together to make final recommendations. Except
that the time making one recommendation is lowest,
this solution gives the best accuracy. The strongest
point of this technique is that it can solve the cold-
start problem, meaning that when a new restaurant
is added, it can still be recommended to users.

In conclusion, the content-based filtering engine gives
us the worst results (i.e. lowest precision and satisfaction).
Next is the user-based and item-based collaborative
filtering engines. The hybrid recommendation engine gives
the best accuracy. In four cases, the item-based
collaborative filtering engine can make a recommendation
fastest, i.e. 94 times faster than the content-based filtering
engine; 320 times faster than the user-based collaborative
filtering engine; more than 400 times faster than the hybrid
recommendation engine. For the used dataset, if we focus
on the running time, the item-based collaborative filtering
is the best solution. However, if the accuracy is the first
priority, the hybrid recommendation approach is the best
solution. It needs to have the trade-off between running
time and accuracy.

5. Conclusions

A Recommender System plays an important role in many
on-line services and websites. Recommender Systems can
be categorized into two main types: content-based
recommender systems and collaborative filtering
recommender systems. While content-based recommender

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

 T.T.S. Nguyen, P.M.T. Do and T.T. Nguyen

13

systems are based on the item characteristics, collaborative
filtering recommender systems are based on the user
behaviour. Each technique has its own advantages and
limitations, so hybrid recommender systems are the
combination of these types in order to reduce the
limitations of each single recommendation technique.

In this study, some issues were addressed. In the
content-based recommendation engine, the similarity
between restaurant features is calculated by the cosine
similarity and top-n “nearest” restaurants are
recommended to user. In the user-based collaborative
filtering engine, the Mini-Batch K-Means organises users
into groups and recommendations for the target user are
based on the top-n most similar users within a group. In the
item-based collaborative filtering engine, item2Vec - a
neural embedding algorithm - is used to analyse the
“relationship” between restaurants given the visited
restaurant sequences. Finally, the experimental results have
figured out that the hybrid recommender system is the best
architecture for the restaurant recommender system with
the highest accuracy.

Acknowledgements.
This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
grant number: 06/2018/TN.

References

[1] Charu C. Aggarwal (2016) Recommender Systems, First
Edition, Springer.

[2] Mikolov, T., et al. (2013) Distributed Representations of
Words and Phrases and their Compositionality, In
Proceedings of NIPS, pp. 3111-3119, arXiv:1310.4546.

[3] D. Sculley (2010) Web-scale k-means clustering. In
Proceedings of the 19th international conference on World
wide web, ACM, pp. 1177–1178.

[4] Jiawei Han, Micheline Kamber, and Jian Pei (2011) Data
Mining: Concepts and Techniques, Third Edition, Morgan
Kaufmann.

[5] Oren Barkan and Noam Koenigstein (2016) Item2vec:
Neural item embedding for collaborative filtering, IEEE
Workshop on MLSP.

[6] Mikolov, T., et al. (2013) Distributed Representations of
Words and Phrases and their Compositionality, In
Proceedings of NIPS, pp. 3111-3119, arXiv:1310.4546.

[7] Lifeng Jin and William Schuler (2015) A Comparison of
Word Similarity Performance using Explanatory and Non-
explanatory Texts, In Proceedings of the North American
Association for Computational Linguistics (NAACL’15)
Boulder, Colorado.

[8] Yilma Bereket Abera (2017) Recommendation based on
Sequence: Item2Vec, DOI: 10.13140/RG.2.2.25358.97601.

[9] Dua, D. and Karra Taniskidou, E. (2017) UCI Machine
Learning Repository
[http://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Re
commendation+Data], Irvine, CA: University of
California, School of Information and Computer Science.

[10] Zhou, B. (2004) Intelligent Web Usage Mining, Nanyang
Technological University.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

11 2018 - 12 2018 | Volume 5 | Issue 17| e4

Improving Customer Behaviour Prediction with the Item2Item model in Recommender Systems

