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Abstract 

This work describes the development and evaluation of two smart home-based Internet of Things (IoT) systems applied to 
HVAC (Heating, Ventilation and Air Conditioning) monitoring and control, including parameters such as temperature, 
humidity, air quality, smoke detection, and human presence. These systems are based on a flexible hybrid wireless 
network architecture combining Bluetooth Low Energy (BLE) and IEEE 802.11/Wi-Fi, in order to adapt to the 
requirements of different types of sensor and actuator devices. The original implemented network is based on Cypress 
PSoC 4 BLE boards and HyperText Transfer Protocol (HTTP), whereas the new network uses ESP32 boards and includes 
Message Queue Telemetry Transport (MQTT), a lightweight messaging protocol suitable for IoT devices which provides 
additional quality of service (QoS) mechanisms to guarantee the delivery of messages. A smart temperature control system 
was implemented in the BLE/Wi-Fi gateway (Raspberry Pi) to keep the room temperature inside a user-defined range. An 
online database was also developed using the Amazon Web Services (AWS) cloud platform, allowing the users to access 
the HVAC data and control the system parameters, through the Internet, using a mobile app developed for Android 
devices. Experimental tests were performed to validate the functionalities and performance of the developed systems. The 
obtained results demonstrate that the new network provides lower delay values compared with the original 
implementation. 
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1. Introduction

Over the last few decades, technological advances 
enabled a large part of the world’s population to have 
access to the Internet, and this access is mainly being 
done through mobile devices, using either cellular data 
networks or Wi-Fi. This trend, coupled with the 
increasing incorporation of sensor devices in a variety of 
equipment, opens a wide range of opportunities for the 
growing market of Internet of Things (IoT) applications, 

in areas such as transportation, healthcare, agriculture, 
industrial automation, smart home, among others [1]. 

The IoT enables physical objects to interact with the 
surrounding environment without requiring human 
intervention and to communicate with each other to share 
information and to coordinate decisions. The IoT allows 
connecting billions of objects through the Internet, so 
there is the need to define a layered architecture to handle 
the complexity associated with the different required 
tasks. In this sense, there has been an increasing number 
of proposed architectures, but there is not a consensual 
reference model yet. In [2], the authors present a 

EAI Endorsed Transactions  
on Energy Web         Research Article 

EAI Endorsed Transactions on 
Energy Web 

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

mailto:https://creativecommons.org/licenses/by/4.0/


Ruben E. Figueiredo et al. 

2 

five-layer model, where the first layer, Object, represents 
the physical sensors and actuators of the IoT that aim to 
collect and process information. The second layer, Object 
Abstraction, represents how the data is transferred from 
the physical objects. The third layer, Service 
Management, pairs a service with its requester, based on 
addresses and names. The fourth layer, Application, is 
responsible for providing high-quality smart services to 
meet customer’s needs. Finally, the fifth layer, Business, 
defines the steps to build a business model based on the 
developed IoT system. 

In order to maximize the lifetime of battery-operated 
sensor devices, it is desirable the use of low-power 
wireless sensor networks (WSN) technologies, such as 
Bluetooth Low Energy (BLE) [3] or IEEE 
802.15.4/ZigBee [4]. WSNs enable new applications but 
require non-conventional paradigms for protocol design 
[5]. With characteristics such as low cost, low energy 
consumption [6], low latency and high reliability, as well 
a native hardware and software support provided by most 
current mobile devices, BLE takes a leading position for 
the implementation of IoT sensor devices over ZigBee in 
many areas of application [7][8]. However, since both 
BLE and ZigBee devices do not implement the 
Transmission Control Protocol/Internet Protocol (TCP/IP) 
protocol stack, they require the introduction of a gateway 
device into the system to allow communication with other 
IoT devices, such as an IoT server or a mobile client [9]. 

To store the data collected by the sensor devices, a 
database is required. The successful implementation of an 
IoT system requires service provision with ubiquity, 
reliability, high-performance, efficiency and scalability. A 
way to achieve all of these goals is merging the IoT and 
the cloud computing concepts, as suggested in [10]. 

Concerning related work, in [11], the authors presented 
a networking solution for connecting BLE devices with 
the IoT, enabling end-to-end IP connectivity to the BLE 
devices in an efficient manner, especially in the aspects 
that are most critical for IoT devices: energy consumption 
and memory footprint of the implementation. In [9], the 
authors proposed a smartphone-based IoT gateway 
implemented as a software service that provides universal 
and ubiquitous Internet access to BLE connected IoT 
devices. This approach uses the smartphone both as an 
IPv6 router for less resource-constrained endpoints and as 
a BLE proxy, relaying profile data from the sensor device 
to the cloud. 

This paper is an extended version of a previous 
conference paper [12]. The two smart home IoT systems 
are presented and evaluated in this paper using BLE to 
collect heating, ventilation and air conditioning (HVAC) 
data from sensor devices and send the information to an 
implemented BLE/Wi-Fi gateway, which also 
communicates with other local devices, such as actuators. 
Regarding data storage, the developed systems provide 
communication with a remote IoT server, in a cloud-based 
architecture, allowing the collected data to be accessible 
through the Internet. The new proposed system is based 
on the new BLE and Wi-Fi boards, introducing a more 

suitable messaging protocol at the application layer and 
also providing a local database as an offline alternative. A 
mobile app (client) was also developed in order to allow 
access to the data for the user. The developed systems are 
capable of smart temperature control on the desired room 
within a configurable temperature range. 

The rest of this paper is organized as follows. Section 2 
presents an overview of the proposed smart home IoT 
system architecture. Section 3 describes the 
implementation, in terms of hardware and software, of the 
original smart home network of the proposed IoT system, 
namely the BLE nodes and the gateway, while Section 4 
provides an equivalent description for the new developed 
smart home network. Section 5 and Section 6 describe the 
development of the IoT cloud services and the IoT client 
(mobile app), respectively. Section 7 presents 
experimental results concerning the functional and non-
functional aspects of the developed IoT system. Finally, 
Section 8 presents the conclusions. 

2. System overview

The two smart home IoT systems developed in the context 
of this work share a common architecture composed by 
several components that exchange data with each other, as 
shown in Figure 1. Inside the smart home, the IoT devices 
communicate using a local hybrid BLE/Wi-Fi wireless 
network infrastructure, whose main components are the 
BLE sensor nodes, the BLE/Wi-Fi gateway, a wireless 
router (which provides connection to the Internet and acts 
as the local Wi-Fi access point) and actuator nodes. 
Besides the local components, the developed IoT system 
also includes an Android mobile app (client) and an 
Amazon Web Service (AWS) cloud server.  

Figure 1. General architecture of the two developed 
smart home IoT systems. 

The proposed architecture supports several sensor 
nodes and actuator nodes. Each BLE sensor node 
comprises two main components: a BLE device and a 
sensor, which may send data to the BLE device using an 
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analog-to-digital converter (ADC) or a digital interface, 
such as Universal Asynchronous Receiver-Transmitter 
(UART), Serial Peripheral Interface (SPI) or 
Inter-Integrated Circuit (I2C). Likewise, each actuator 
node is composed by a wireless device (either Wi-Fi or 
BLE) attached to an actuator. 

The HVAC monitoring and control system built on top 
of the smart home IoT system works under the control of 
the local gateway even in case of failure of the Internet 
connection. When the Internet connection is available, the 
HVAC data collected by the BLE devices (sensor nodes) 
is also forwarded through the gateway, the Wi-Fi wireless 
router and the Internet infrastructure, until it reaches the 
cloud server, for storage. The Android client allows the 
user to access the data stored in the cloud server and send 
commands to configure and control the smart home 
devices (e.g., to define the minimum and maximum 
temperature for a room).  

3. Original smart home network

The BLE devices used in the development and test of the 
system prototype were PSoC 4 BLE modules [13], from 
Cypress Semiconductor. Each BLE module was attached 
to a development board provided by the 
CY8CKIT-042-BLE-A kit, as shown in Figure 2. The 
BLE/Wi-Fi gateway was implemented using a 
Raspberry Pi 3 Model B [14], whereas the HVAC sensors 
and actuators were emulated using personal computers 
(PCs), which also acted as Wi-Fi devices for the actuator 
nodes. The development of each component of the IoT 
system is described in the next topics. 

Figure 2. Main hardware components used in the 
development of the original smart home network. 

3.1. BLE nodes design 

This section describes the development of the BLE sensor 
nodes firmware. The BLE network is mainly responsible 
for collecting data, which in the context of the proposed 
application corresponds to HVAC parameters. In this 
sense, five representative sensors were considered: smoke 
detection, temperature, humidity, air quality and human 
presence detection. The data generated by these sensors 
were emulated using a PC-based Java application, which 
was developed using the IntelliJ IDEA IDE. The sensor 

data were transferred to the BLE modules using a serial 
data interface.  

BLE devices have different roles at different layers of 
the Bluetooth protocol stack [15]. In this sense, the BLE 
modules were configured as slaves at the link layer, 
peripherals devices at the Generic Access Profile (GAP) 
layer and servers at the Generic Attribute Profile (GATT) 
layer, whereas the BLE/Wi-Fi gateway (Raspberry Pi) 
was configured as master, central device and client, 
respectively. 

As aforementioned, the CY8CKIT-042-BLE-A 
development kit [13] was used for the implementation of 
the BLE slave/peripheral devices. Besides the PSoC 4 
BLE module, this kit includes a development board (BLE 
pioneer), which allows programming and debugging the 
BLE module firmware through a PC. The C code for the 
BLE module microcontroller was developed using PSoC 
Creator 4.2 Integrated Development Environment (IDE). 
As referred before, all BLE modules act as peripheral de-
vices, therefore, all of them include the same basic PSoC 
components.  

In the PSoC Creator project IDE, the main component 
included in the design diagram of the sensor nodes is 
called BLE. This component is used to configure the BLE 
protocol parameters, such as advertising packets, 
connection interval, and the BLE notifications. It was 
necessary to create a GATT service and its characteristics. 
This component allows the use of predefined services, for 
example, a heart rate monitor or a proximity sensor, with 
its own characteristics; however, for this system, it was 
necessary to create new characteristics for each sensor 
value to be sent over BLE. Each sensor is connected to its 
respective BLE sensor node and has its own service. Of 
the five HVAC sensor values, one (smoke detection) is 
sent to the central device using BLE notifications, while 
the other four (temperature, humidity, air quality, and 
presence detection) are read by the central device 
(gateway) every 20 seconds (this time is configurable by 
the user in the app). To allow an automatic connection 
between the peripheral and central devices, it was 
necessary to include the Universally Unique Identifier 
(UUID) of the service in the advertisement packet, which 
was achieved in the “GAP Settings” tab of the BLE 
component. Two characteristics were created on the BLE 
component of each of the five sensor nodes: one 
characteristic represents the corresponding HVAC sensor 
value, whereas the other characteristic stores the identifier 
(ID) of the room where the sensor node was placed. 

The second main component included in the design 
was a serial data interface, to collect the data from the 
sensors. In this prototype, we used the UART component 
provided by the PSoC Creator. For this component, it was 
only necessary to configure the same UART parameters 
as the Java application that was used to generate the 
HVAC data, such as the baud rate, which was set to 
9600 bps. 

A function called CustomEventHandler was used to 
detect and handle all events associated with the BLE 
stack. These events can be triggered by the central device 
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when it connects or disconnects to the peripheral device 
or when the peripheral device announces its presence to 
the central device. It is also responsible for managing 
writing requests, made by the central device, to 
characteristics that have writing permission. On the 
developed system, the only characteristic with write 
permission was the room ID, which is configurable from 
the mobile app. 

3.2. Gateway development 

A Raspberry Pi 3 Model B was used to implement the 
BLE/Wi-Fi gateway and to act as the central device for 
the BLE network. The development was made in Python 
and using the Raspbian operating system. An external 
library called Pexpect was installed to allow the BLE 
communication with the peripheral devices. This library 
can generate processes related to certain applications, 
controlling them, and handle the response based on 
provided response patterns. On the developed gateway 
application software, it was used to automate the 
command “hcitool lescan” for monitoring BLE devices 
that are in an advertising state to central devices. 
JavaScript Object Notation (JSON) and Urllib2 libraries 
were also used, the former for converting data to JSON 
format and the latter for sending HyperText Transfer 
Protocol (HTTP) requests to store the collected data in the 
cloud. It was also necessary the installation of the BlueZ, 
an official Linux Bluetooth protocol stack, to handle the 
communication with BLE devices. 

The developed BLE/Wi-Fi gateway provides 
bidirectional communication between the sensor nodes, 
the cloud server database, and the actuator nodes (which 
were implemented in Wi-Fi devices). For this purpose, the 
first task is to search and to connect to the desired BLE 
sensor nodes. Then, the central device needs to subscribe 
to notifications from the smoke detector. After that, the 
central device application starts to read the sensor values 
from the peripheral devices periodically and sends the 
data to the cloud database. Figure 3 shows a flowchart 
representing these tasks of the Raspberry Pi gateway 
application. 

Figure 3. Flowchart for the data collection and 
storage tasks of the Raspberry Pi application of the 

original smart home network. 

4. New smart home network

The new IoT system that was developed has the same 
architecture as the original one, represented in Figure 1, 
but the communication between the IoT entities in the 
smart home relies on the Message Queue Telemetry 
Transport (MQTT) protocol, which is an Organization for 
the Advancement of Structured Information Standards 
(OASIS) and International Organization for 
Standardization (ISO) standard messaging protocol 
suitable for the Internet of Things. 

In the developed prototype, ESP32 boards were used 
for both the sensor and actuator nodes, since they support 
both BLE and Wi-Fi, and the local gateway was 
implemented in a Raspberry Pi 4. The development of 
each component of the new smart home network is 
described in the following topics. 

4.1. BLE nodes design 

The FireBeetle ESP32 [16] development board was used 
for the implementation of the BLE sensor devices. The 
firmware was developed using the Arduino IDE, with the 
Arduino core for ESP32 developed by Espressif Systems 
[17]. In order to implement the BLE functionalities, the 
libraries made available by Neil Kolban [18] were 
imported. 

Each BLE sensor node was designed to have its own 
service and two characteristics, as in the original smart 
home network, and the same characteristics properties 
(read, write, and notification) were attributed too.  

To collect the data from attached sensors, the UART 
interface available in the ESP32 board was used. It was 
configured with the same UART parameters as the Python 
script that was used to generate the HVAC data, such as 
the baud rate, which was set to the same value used in the 
original network (9600 bps). 

4.2. Gateway development 

A Raspberry Pi 4 Model B [19] with the Raspbian as its 
main operating system was used to implement the 
gateway, replacing the Raspberry Pi 3 Model B used in 
the original smart home network. The gateway acts as the 
central brain of the system, running important processes 
and applications such as: automation and control 
algorithms; a BLE/Wi-Fi gateway; a local database; a 
HTTP server that provides access to the local database; a 
MQTT broker and others. In order to use the same IP 
address to access services and applications located on the 
Raspberry Pi, a static address to the network interface was 
configured and attributed. 

MQTT was used in the development of the new 
network to handle the message exchange between the 
devices in the smart home. It requires minimal resources, 
so that it can be used with low-cost microcontrollers, as in 
ESP32 boards, has support for unreliable networks with 
limited bandwidth and uses an easy and simple 
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publish/subscribe model that handles the message 
exchange, even if the IP addresses of the devices change 
along the time [20].  

The MQTT protocol defines two types of network 
entities: the clients and a message broker. The clients are 
publishers if they generate data, such as sensor devices, 
and subscribers if they are interested in receiving data 
from particular topics, such as actuator devices. The 
broker is a server that manages the registrations for 
specific topics from publishers, receives all messages 
from the clients and routes them to the appropriate 
destinations.  

MQTT offers a reliable message delivery with three 
quality service levels: 0 - at most once; 1 - at least once; 
and 2 - exactly once. In QoS level 0, the message is sent 
only once, and there is no checking if the message was 
delivered (fire and forget). QoS level 1 uses an 
acknowledgement message called PUBACK to confirm 
the delivery of the data message (acknowledged delivery). 
If the sender does not receive the acknowledgement, it 
retransmits the message. It is possible to receive a 
duplicate copy of the data message if the PUBACK 
message is lost. QoS level 2 uses a 4-way handshake 
mechanism to ensure that the data message is delivered 
exactly once (assured delivery) [21]. On the other hand, 
the exchange of these four messages can lead to higher 
end-to-end delays compared to the other QoS levels. 

The MQTT broker was implemented through the 
installation of an open source and lightweight message 
broker called Eclipse Mosquitto [22]. Since MQTT clients 
cannot be installed in BLE devices, given that BLE do not 
use the Internet protocol suite, a script performing 
functions of a BLE/Wi-Fi gateway, as well as the MQTT 
client required for publishing the data generated by the 
BLE devices, were implemented in the Raspberry Pi, 
through the installation of the Eclipse Paho MQTT 
Python client library (paho-mqtt) [23], which implements 
the MQTT protocol, as well as bluepy [24], a Python 
module used to execute the BLE client to handle the 
wireless communication with the BLE devices. 

For local data storage, it was used an open source 
database management system (DBMS) based on MySQL, 
called MariaDB [25], and installed the Apache HTTP 
server [26]. 

4.3. Wi-Fi nodes design 

The Wi-Fi nodes are mainly used for actuator nodes, 
which do not have as many restrictions in terms of energy 
consumption. Therefore, considering the application 
scenario, the Wi-Fi nodes were implemented in the new 
smart home network too, but, unlike to the original 
network, these nodes were implemented using the same 
type of ESP32 boards used in the BLE sensor nodes, 
instead of being emulated using PCs.  

The firmware was developed using the Arduino IDE, 
and the Joël Gähwiler MQTT library [27] was utilized to 
implement the MQTT client. The MQTT client acts as a 

publisher in the case of a sensor node, and acts as a 
subscriber in the case of an actuator node. 

5. Cloud services development

This section describes the IoT services developed for the 
proposed system using the AWS cloud services platform, 
namely the database structure defined and the 
implemented functions. Instead of the traditional 
server-based approach, where the developer needs to 
handle the infrastructure management tasks, such as 
cluster provisioning, patching, operating system 
maintenance, and capacity provisioning, a serverless 
solution, which shifts these operational responsibilities to 
the AWS, was used. This solution is based on three 
individual services provided by the AWS: The Amazon 
Relational Database Service (RDS), the AWS Lambda, 
and the AWS API Gateway service. The choice of AWS 
over other cloud services providers was made based on an 
analysis of cost, performance and security [28]. 

5.1. RDS database 

RDS is a free relational database service for new accounts 
during the first year, offering 750 hours per month. An 
alternative to this service is the Dynamo DB service, 
which is similar to RDS, but implements non-relational 
databases. The first step in the development of the 
database structure was to identify the data to be collected 
and to be shown to the user, which includes: (i) User data, 
representing the information provided when the user 
registers on the mobile app; (ii) Building data, containing 
the building address, name and ID; (iii) HVAC data, 
containing temperature, humidity, air quality, presence 
detection data, a timestamp and the room ID; (iv) Smoke 
detection data, containing the room ID and a timestamp; 
(v) Configuration data, including the maximum and
minimum temperature values for the smart temperature
control and other parameters.

For the implementation of the database on the AWS 
console, it was necessary to create an RDS instance, as 
well as making other configurations [29]. After that, the 
MySQL Workbench software [30] was used to develop all 
the tables and fields necessary to store the data. Even 
though smoke detection belongs to the HVAC parameters 
data, a separate MySQL table was created because this 
data was sent using BLE notifications, so it might have a 
different timestamp from the remaining parameters. It was 
also necessary to create inbound and outbound rules and 
apply them to the created instance in order to ensure 
access control to the data by other applications. 

5.2. AWS Lambda 

The AWS Lambda is a service that allows running code 
without provisioning or managing servers. This service 
executes the code when needed and scales automatically 
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from a few requests per day to thousands per second. The 
free year offers 1 million requests to the created functions 
per month. The code can be run for any type of 
application or backend service with zero administration. 
AWS Lambda can be used in response to events, such as 
changes to data in the Amazon Dynamo DB or RDS 
tables, to run code in response to HTTP requests using the 
Amazon API Gateway or simply to invoke code using 
API calls made using AWS Software Development Kit 
(SDK). 

For the proposed system, various functions were 
developed in NodeJS language. Each function is 
responsible for a functionality, as for example, getting the 
last HVAC parameters values from its correspondent table 
from the RDS database. The AWS console allows the 
development of the functions in two different ways: 
editing the code online or uploading zip files with the 
code and necessary packages inside. In this work, the 
second way was chosen. The AWS Lambda also allows 
testing the developed functions by providing a test event 
with a JSON body. All the data sent to and received from 
the AWS Lambda are in JSON format. Further 
configurations were necessary to give permissions to the 
functions created to access to the RDS database. 

5.3. Amazon API gateway 

The Amazon API Gateway is a service that makes easy to 
create, publish, maintain, monitor, and secure APIs at any 
scale. It can create Representational State Transfer 
(REST) and WebSocket APIs that allow applications to 
access data from backend services, such as AWS Lambda. 
In the proposed system, the API Gateway was used to 
connect the functions developed in the AWS Lambda to a 
REST API. When creating the REST API in the AWS 
console, it was necessary to create resources. In this 
system, a resource can represent the HVAC data or the 
buildings and is used to construct the path used on the 
HTTP requests methods. Each resource has been assigned 
to all the necessary methods, according to the needs by 
the different applications, such as GET, POST, DELETE 
or PUT. For the type of data to be received (JSON), it was 
necessary to configure each method and defining a body 
template for the GET methods in order to identify the 
parameters received by the HTTP requests. After creating 
the API, it was necessary to make it publicly accessible by 
creating a test stage. The Postman [31] software was used 
to test the created API. 

6. Mobile app development

This section describes the implementation of the mobile 
app (IoT client). It was developed using the Android 
Studio IDE. This application communicates with the 
AWS database using the API Gateway service. 

The Android app requires permissions to use the 
Internet. In order to accomplish with that, it is necessary 

to add dependencies to the AndroidManifest.xml file 
generated by the IDE when the application is created. The 
build.gradle file was also modified to allow the use of 
some required classes and layouts. Every layout 
implemented follows the Android guidelines by using the 
ConstraintLayout, which allows the application to run on 
any device, regardless its size. One of the most important 
classes used was the AsyncTask. This class allows that 
short asynchronous operations to run in the background, 
and it is usually used to perform network operations that 
do not require the download of much data. In the 
proposed system, it is used to do HTTP requests to the 
REST API.  

The application allows the users to register or login 
using the classic email password combination. For 
registration, the user only needs his email, name, and 
password. After the login, the user is presented with a list 
of buildings that he/she has access and can eliminate or 
add new ones. A long click on a building allows the user 
to go to the building rooms and a list of rooms is 
presented to the user. The user can add new rooms by 
simply introducing the room name or delete those already 
created. When the user adds a new room, a table is 
automatically created that contains a default maximum 
and minimum temperature values for that room. Clicking 
on a room opens the information panel related to its 
HVAC parameter values. The user can see the most recent 
values collected or change the temperature interval and 
room ID. 

7. Experimental results and discussion

This section presents the results of the experimental tests 
performed for the overall system and involves the 
evaluation of both functional features (data collection and 
presentation) and non-functional features (communication 
delay and reliability). 

7.1. Data collection and presentation 

The gateway is responsible for receiving the HVAC data 
from the BLE sensor nodes, process, and send it to the 
AWS database and/or the actuators and handle the smart 
temperature control process. The mobile app, on the other 
hand, is responsible for presenting the collected data to 
the user and allowing manual control of the system. 

The application has a bottom navigation menu that 
makes easy to change between functionalities. The default 
choice of the bottom navigation menu is the HVAC 
screen (Figure 4), which shows the timestamp of the 
collected data, the temperature, humidity and air quality 
reading, as well as the state of the heating (on or off). The 
second option (Detectors) shows the data regarding the 
smoke and presence detectors and their corresponding 
timestamps. The last option (Configurations) allows the 
user to check and change the desired maximum and 
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minimum temperature values and change the ID of the 
room where a sensor is located. 

Figure 4. Example of values presented on the 
HVAC screen of the developed mobile app. 

7.2. Communication delay and reliability 

The communication delay, from the time instant that the 
sensor data is generated until the control information is 
delivered to the respective actuator, is an important 
parameter, since it affects the system performance, 
namely the response time of the control system. Despite 
in the proposed application the smart temperature control 
is not very demanding, since the room temperature 
changes slowly, a test setup was conceived and 
implemented in order to evaluate the performance 
associated to the temperature data sensing/actuation 
process, as shown in Figure 5. The total delay is the sum 
of several partial delays in the path through different 
devices, from the source to the destination, including data 
transmission times in the different data interfaces (UART, 
BLE, and Wi-Fi), as well as medium access delays and 
processing delays. The measured total delay corresponds 
to the time elapsed since the data is sent by the source 
(start time) until it is received in the destination (end 
time). The same device (a PC) was used as a source and 
destination in order to provide a common clock, which is 
necessary for a precise measurement of the delay. 

Figure 5. Method used to measure the 
communication delay for each packet.  

In each test, 1000 data packets were generated at the 
source and the same amount was received at the 
destination; therefore, the communication reliability was 
100%. Table 1 shows the main representative statistics for 
the delay measured in the performed tests: minimum, 
mean, maximum and standard deviation (SD).  

An analysis of the delay distribution results from these 
tests shows that the original network has 96.8% of the 
delay samples in the range from 100 ms to 299 ms 
(Figure 6). On the other hand, the new network has 98.4% 
of the delay samples in the range from 20 ms to 99 ms 
with QoS 1 (Figure 7) and 95.1% of the delay samples in 
the range from 20 ms to 139 ms with QoS 2, (Figure 8). 
These results show that the new smart home network has 
better performance than the original one, and that, as 
expected, QoS 2 has slightly higher delay values than 
QoS 1. 

Table 1. Main statistics concerning the measured 
communication delay. 

Tests Min. 
(ms) 

Mean 
(ms) 

Max. 
(ms) 

SD 
(%) 

Original 110 194 563 57.6 
New, QoS 1 22 61 203 31.2 
New, QoS 2 29 85 361 36.9 
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Figure 6. Delay distribution for the test performed 
with the original smart home network. 

Figure 7. Delay distribution for the test performed 
with the new smart home network and MQTT QoS 1. 

Figure 8. Delay distribution for the test performed 
with the new smart home network and MQTT QoS 2. 

The maximum delay values observed, in all cases 
(563 ms for the original network, 203 ms with QoS 1, and 
351 ms with QoS 2) are below the typical HVAC time 
constraints. Nevertheless, the new smart home network 
provides additional QoS mechanisms to guarantee the 
delivery of messages and presents lower time delay values 
when compared with the original network.  

Regarding the MQTT QoS level to be used in the 
system, QoS 0 was not considered since it does not 
guarantee the delivery at the destination. Based on the 
obtained results, we advise the use of QoS 2 because, 
although the QoS 1 delays are lower, duplicate messages 
may occur and possibly affect the behaviour of the 
system, which means that the receiver implementation 
would require additional logic to detect duplicates. 

8. Conclusion

This paper described the development and evaluation of 
two smart home IoT systems applied to HVAC 
monitoring and control using a mobile app. The proposed 
systems are based on a local hybrid BLE/Wi-Fi wireless 
network infrastructure and are composed by multiple data 
processing and communication components that work 
together to perform the desired functions. 

The BLE/Wi-Fi gateway plays a central role in this 
system, with relevance to both the data communication 
and the processing algorithms of the HVAC application, 
such as in the case of the smart temperature control 
algorithm. An online database was also developed using 
the AWS cloud platform, in a serverless approach, and a 
mobile app (IoT client) was developed for the Android 
mobile operating system. 

The developed systems were validated through 
experimental tests comprising the evaluation of their main 
functionalities, ranging from data collection at the BLE 
sensor nodes to the presentation at the mobile app, as well 
as the evaluation of its performance in the path between 
the sensors and actuators. The communication reliability 
was 100% for both versions, but the new smart home 
network presented better performance. Besides that, the 
new network introduces several new features, such as the 
implementation of Wi-Fi actuator nodes using the same 
type of wireless communication board (FireBeetle ESP32) 
used in the BLE sensor nodes, and the provision of a local 
database implemented using MariaDB as an alternative/ 
complement to the cloud RDS database. 

Besides the considered application scenario, the 
proposed smart home IoT architecture and the associated 
message protocols may also be extended to use in a wide 
range of other application areas, such as lighting control 
and security, as well as in smart grids and microgrids. 
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