
1

Development and Evaluation of Smart Home IoT
Systems applied to HVAC Monitoring and Control
Ruben E. Figueiredo1,*, Aníbal A. Alves2, Vitor Monteiro1, J. G. Pinto1, João L. Afonso1, and José A.
Afonso2

1 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal
2 CMEMS-UMinho Center, University of Minho, Guimarães, Portugal

Abstract

This work describes the development and evaluation of two smart home-based Internet of Things (IoT) systems applied to
HVAC (Heating, Ventilation and Air Conditioning) monitoring and control, including parameters such as temperature,
humidity, air quality, smoke detection, and human presence. These systems are based on a flexible hybrid wireless
network architecture combining Bluetooth Low Energy (BLE) and IEEE 802.11/Wi-Fi, in order to adapt to the
requirements of different types of sensor and actuator devices. The original implemented network is based on Cypress
PSoC 4 BLE boards and HyperText Transfer Protocol (HTTP), whereas the new network uses ESP32 boards and includes
Message Queue Telemetry Transport (MQTT), a lightweight messaging protocol suitable for IoT devices which provides
additional quality of service (QoS) mechanisms to guarantee the delivery of messages. A smart temperature control system
was implemented in the BLE/Wi-Fi gateway (Raspberry Pi) to keep the room temperature inside a user-defined range. An
online database was also developed using the Amazon Web Services (AWS) cloud platform, allowing the users to access
the HVAC data and control the system parameters, through the Internet, using a mobile app developed for Android
devices. Experimental tests were performed to validate the functionalities and performance of the developed systems. The
obtained results demonstrate that the new network provides lower delay values compared with the original
implementation.

Keywords: Internet of Things, Smart Home, HVAC, Bluetooth Low Energy, Wi-Fi, MQTT, Wireless Sensor Networks.

Received on 05 September 2020, accepted on 17 November 2020, published on 19 November 2020

Copyright © 2020 Ruben E. Figueiredo et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the
original work is properly cited.

doi: 10.4108/eai.19-11-2020.167205

*Corresponding author. Email: ruben.figueiredo@algoritmi.uminho.pt

1. Introduction

Over the last few decades, technological advances
enabled a large part of the world’s population to have
access to the Internet, and this access is mainly being
done through mobile devices, using either cellular data
networks or Wi-Fi. This trend, coupled with the
increasing incorporation of sensor devices in a variety of
equipment, opens a wide range of opportunities for the
growing market of Internet of Things (IoT) applications,

in areas such as transportation, healthcare, agriculture,
industrial automation, smart home, among others [1].

The IoT enables physical objects to interact with the
surrounding environment without requiring human
intervention and to communicate with each other to share
information and to coordinate decisions. The IoT allows
connecting billions of objects through the Internet, so
there is the need to define a layered architecture to handle
the complexity associated with the different required
tasks. In this sense, there has been an increasing number
of proposed architectures, but there is not a consensual
reference model yet. In [2], the authors present a

EAI Endorsed Transactions
on Energy Web Research Article

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

mailto:https://creativecommons.org/licenses/by/4.0/

Ruben E. Figueiredo et al.

2

five-layer model, where the first layer, Object, represents
the physical sensors and actuators of the IoT that aim to
collect and process information. The second layer, Object
Abstraction, represents how the data is transferred from
the physical objects. The third layer, Service
Management, pairs a service with its requester, based on
addresses and names. The fourth layer, Application, is
responsible for providing high-quality smart services to
meet customer’s needs. Finally, the fifth layer, Business,
defines the steps to build a business model based on the
developed IoT system.

In order to maximize the lifetime of battery-operated
sensor devices, it is desirable the use of low-power
wireless sensor networks (WSN) technologies, such as
Bluetooth Low Energy (BLE) [3] or IEEE
802.15.4/ZigBee [4]. WSNs enable new applications but
require non-conventional paradigms for protocol design
[5]. With characteristics such as low cost, low energy
consumption [6], low latency and high reliability, as well
a native hardware and software support provided by most
current mobile devices, BLE takes a leading position for
the implementation of IoT sensor devices over ZigBee in
many areas of application [7][8]. However, since both
BLE and ZigBee devices do not implement the
Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol stack, they require the introduction of a gateway
device into the system to allow communication with other
IoT devices, such as an IoT server or a mobile client [9].

To store the data collected by the sensor devices, a
database is required. The successful implementation of an
IoT system requires service provision with ubiquity,
reliability, high-performance, efficiency and scalability. A
way to achieve all of these goals is merging the IoT and
the cloud computing concepts, as suggested in [10].

Concerning related work, in [11], the authors presented
a networking solution for connecting BLE devices with
the IoT, enabling end-to-end IP connectivity to the BLE
devices in an efficient manner, especially in the aspects
that are most critical for IoT devices: energy consumption
and memory footprint of the implementation. In [9], the
authors proposed a smartphone-based IoT gateway
implemented as a software service that provides universal
and ubiquitous Internet access to BLE connected IoT
devices. This approach uses the smartphone both as an
IPv6 router for less resource-constrained endpoints and as
a BLE proxy, relaying profile data from the sensor device
to the cloud.

This paper is an extended version of a previous
conference paper [12]. The two smart home IoT systems
are presented and evaluated in this paper using BLE to
collect heating, ventilation and air conditioning (HVAC)
data from sensor devices and send the information to an
implemented BLE/Wi-Fi gateway, which also
communicates with other local devices, such as actuators.
Regarding data storage, the developed systems provide
communication with a remote IoT server, in a cloud-based
architecture, allowing the collected data to be accessible
through the Internet. The new proposed system is based
on the new BLE and Wi-Fi boards, introducing a more

suitable messaging protocol at the application layer and
also providing a local database as an offline alternative. A
mobile app (client) was also developed in order to allow
access to the data for the user. The developed systems are
capable of smart temperature control on the desired room
within a configurable temperature range.

The rest of this paper is organized as follows. Section 2
presents an overview of the proposed smart home IoT
system architecture. Section 3 describes the
implementation, in terms of hardware and software, of the
original smart home network of the proposed IoT system,
namely the BLE nodes and the gateway, while Section 4
provides an equivalent description for the new developed
smart home network. Section 5 and Section 6 describe the
development of the IoT cloud services and the IoT client
(mobile app), respectively. Section 7 presents
experimental results concerning the functional and non-
functional aspects of the developed IoT system. Finally,
Section 8 presents the conclusions.

2. System overview

The two smart home IoT systems developed in the context
of this work share a common architecture composed by
several components that exchange data with each other, as
shown in Figure 1. Inside the smart home, the IoT devices
communicate using a local hybrid BLE/Wi-Fi wireless
network infrastructure, whose main components are the
BLE sensor nodes, the BLE/Wi-Fi gateway, a wireless
router (which provides connection to the Internet and acts
as the local Wi-Fi access point) and actuator nodes.
Besides the local components, the developed IoT system
also includes an Android mobile app (client) and an
Amazon Web Service (AWS) cloud server.

Figure 1. General architecture of the two developed
smart home IoT systems.

The proposed architecture supports several sensor
nodes and actuator nodes. Each BLE sensor node
comprises two main components: a BLE device and a
sensor, which may send data to the BLE device using an

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Development and Evaluation of Smart Home IoT Systems applied to HVAC Monitoring and Control

3

analog-to-digital converter (ADC) or a digital interface,
such as Universal Asynchronous Receiver-Transmitter
(UART), Serial Peripheral Interface (SPI) or
Inter-Integrated Circuit (I2C). Likewise, each actuator
node is composed by a wireless device (either Wi-Fi or
BLE) attached to an actuator.

The HVAC monitoring and control system built on top
of the smart home IoT system works under the control of
the local gateway even in case of failure of the Internet
connection. When the Internet connection is available, the
HVAC data collected by the BLE devices (sensor nodes)
is also forwarded through the gateway, the Wi-Fi wireless
router and the Internet infrastructure, until it reaches the
cloud server, for storage. The Android client allows the
user to access the data stored in the cloud server and send
commands to configure and control the smart home
devices (e.g., to define the minimum and maximum
temperature for a room).

3. Original smart home network

The BLE devices used in the development and test of the
system prototype were PSoC 4 BLE modules [13], from
Cypress Semiconductor. Each BLE module was attached
to a development board provided by the
CY8CKIT-042-BLE-A kit, as shown in Figure 2. The
BLE/Wi-Fi gateway was implemented using a
Raspberry Pi 3 Model B [14], whereas the HVAC sensors
and actuators were emulated using personal computers
(PCs), which also acted as Wi-Fi devices for the actuator
nodes. The development of each component of the IoT
system is described in the next topics.

Figure 2. Main hardware components used in the
development of the original smart home network.

3.1. BLE nodes design

This section describes the development of the BLE sensor
nodes firmware. The BLE network is mainly responsible
for collecting data, which in the context of the proposed
application corresponds to HVAC parameters. In this
sense, five representative sensors were considered: smoke
detection, temperature, humidity, air quality and human
presence detection. The data generated by these sensors
were emulated using a PC-based Java application, which
was developed using the IntelliJ IDEA IDE. The sensor

data were transferred to the BLE modules using a serial
data interface.

BLE devices have different roles at different layers of
the Bluetooth protocol stack [15]. In this sense, the BLE
modules were configured as slaves at the link layer,
peripherals devices at the Generic Access Profile (GAP)
layer and servers at the Generic Attribute Profile (GATT)
layer, whereas the BLE/Wi-Fi gateway (Raspberry Pi)
was configured as master, central device and client,
respectively.

As aforementioned, the CY8CKIT-042-BLE-A
development kit [13] was used for the implementation of
the BLE slave/peripheral devices. Besides the PSoC 4
BLE module, this kit includes a development board (BLE
pioneer), which allows programming and debugging the
BLE module firmware through a PC. The C code for the
BLE module microcontroller was developed using PSoC
Creator 4.2 Integrated Development Environment (IDE).
As referred before, all BLE modules act as peripheral de-
vices, therefore, all of them include the same basic PSoC
components.

In the PSoC Creator project IDE, the main component
included in the design diagram of the sensor nodes is
called BLE. This component is used to configure the BLE
protocol parameters, such as advertising packets,
connection interval, and the BLE notifications. It was
necessary to create a GATT service and its characteristics.
This component allows the use of predefined services, for
example, a heart rate monitor or a proximity sensor, with
its own characteristics; however, for this system, it was
necessary to create new characteristics for each sensor
value to be sent over BLE. Each sensor is connected to its
respective BLE sensor node and has its own service. Of
the five HVAC sensor values, one (smoke detection) is
sent to the central device using BLE notifications, while
the other four (temperature, humidity, air quality, and
presence detection) are read by the central device
(gateway) every 20 seconds (this time is configurable by
the user in the app). To allow an automatic connection
between the peripheral and central devices, it was
necessary to include the Universally Unique Identifier
(UUID) of the service in the advertisement packet, which
was achieved in the “GAP Settings” tab of the BLE
component. Two characteristics were created on the BLE
component of each of the five sensor nodes: one
characteristic represents the corresponding HVAC sensor
value, whereas the other characteristic stores the identifier
(ID) of the room where the sensor node was placed.

The second main component included in the design
was a serial data interface, to collect the data from the
sensors. In this prototype, we used the UART component
provided by the PSoC Creator. For this component, it was
only necessary to configure the same UART parameters
as the Java application that was used to generate the
HVAC data, such as the baud rate, which was set to
9600 bps.

A function called CustomEventHandler was used to
detect and handle all events associated with the BLE
stack. These events can be triggered by the central device

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Ruben E. Figueiredo et al.

4

when it connects or disconnects to the peripheral device
or when the peripheral device announces its presence to
the central device. It is also responsible for managing
writing requests, made by the central device, to
characteristics that have writing permission. On the
developed system, the only characteristic with write
permission was the room ID, which is configurable from
the mobile app.

3.2. Gateway development

A Raspberry Pi 3 Model B was used to implement the
BLE/Wi-Fi gateway and to act as the central device for
the BLE network. The development was made in Python
and using the Raspbian operating system. An external
library called Pexpect was installed to allow the BLE
communication with the peripheral devices. This library
can generate processes related to certain applications,
controlling them, and handle the response based on
provided response patterns. On the developed gateway
application software, it was used to automate the
command “hcitool lescan” for monitoring BLE devices
that are in an advertising state to central devices.
JavaScript Object Notation (JSON) and Urllib2 libraries
were also used, the former for converting data to JSON
format and the latter for sending HyperText Transfer
Protocol (HTTP) requests to store the collected data in the
cloud. It was also necessary the installation of the BlueZ,
an official Linux Bluetooth protocol stack, to handle the
communication with BLE devices.

The developed BLE/Wi-Fi gateway provides
bidirectional communication between the sensor nodes,
the cloud server database, and the actuator nodes (which
were implemented in Wi-Fi devices). For this purpose, the
first task is to search and to connect to the desired BLE
sensor nodes. Then, the central device needs to subscribe
to notifications from the smoke detector. After that, the
central device application starts to read the sensor values
from the peripheral devices periodically and sends the
data to the cloud database. Figure 3 shows a flowchart
representing these tasks of the Raspberry Pi gateway
application.

Figure 3. Flowchart for the data collection and
storage tasks of the Raspberry Pi application of the

original smart home network.

4. New smart home network

The new IoT system that was developed has the same
architecture as the original one, represented in Figure 1,
but the communication between the IoT entities in the
smart home relies on the Message Queue Telemetry
Transport (MQTT) protocol, which is an Organization for
the Advancement of Structured Information Standards
(OASIS) and International Organization for
Standardization (ISO) standard messaging protocol
suitable for the Internet of Things.

In the developed prototype, ESP32 boards were used
for both the sensor and actuator nodes, since they support
both BLE and Wi-Fi, and the local gateway was
implemented in a Raspberry Pi 4. The development of
each component of the new smart home network is
described in the following topics.

4.1. BLE nodes design

The FireBeetle ESP32 [16] development board was used
for the implementation of the BLE sensor devices. The
firmware was developed using the Arduino IDE, with the
Arduino core for ESP32 developed by Espressif Systems
[17]. In order to implement the BLE functionalities, the
libraries made available by Neil Kolban [18] were
imported.

Each BLE sensor node was designed to have its own
service and two characteristics, as in the original smart
home network, and the same characteristics properties
(read, write, and notification) were attributed too.

To collect the data from attached sensors, the UART
interface available in the ESP32 board was used. It was
configured with the same UART parameters as the Python
script that was used to generate the HVAC data, such as
the baud rate, which was set to the same value used in the
original network (9600 bps).

4.2. Gateway development

A Raspberry Pi 4 Model B [19] with the Raspbian as its
main operating system was used to implement the
gateway, replacing the Raspberry Pi 3 Model B used in
the original smart home network. The gateway acts as the
central brain of the system, running important processes
and applications such as: automation and control
algorithms; a BLE/Wi-Fi gateway; a local database; a
HTTP server that provides access to the local database; a
MQTT broker and others. In order to use the same IP
address to access services and applications located on the
Raspberry Pi, a static address to the network interface was
configured and attributed.

MQTT was used in the development of the new
network to handle the message exchange between the
devices in the smart home. It requires minimal resources,
so that it can be used with low-cost microcontrollers, as in
ESP32 boards, has support for unreliable networks with
limited bandwidth and uses an easy and simple

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Development and Evaluation of Smart Home IoT Systems applied to HVAC Monitoring and Control

5

publish/subscribe model that handles the message
exchange, even if the IP addresses of the devices change
along the time [20].

The MQTT protocol defines two types of network
entities: the clients and a message broker. The clients are
publishers if they generate data, such as sensor devices,
and subscribers if they are interested in receiving data
from particular topics, such as actuator devices. The
broker is a server that manages the registrations for
specific topics from publishers, receives all messages
from the clients and routes them to the appropriate
destinations.

MQTT offers a reliable message delivery with three
quality service levels: 0 - at most once; 1 - at least once;
and 2 - exactly once. In QoS level 0, the message is sent
only once, and there is no checking if the message was
delivered (fire and forget). QoS level 1 uses an
acknowledgement message called PUBACK to confirm
the delivery of the data message (acknowledged delivery).
If the sender does not receive the acknowledgement, it
retransmits the message. It is possible to receive a
duplicate copy of the data message if the PUBACK
message is lost. QoS level 2 uses a 4-way handshake
mechanism to ensure that the data message is delivered
exactly once (assured delivery) [21]. On the other hand,
the exchange of these four messages can lead to higher
end-to-end delays compared to the other QoS levels.

The MQTT broker was implemented through the
installation of an open source and lightweight message
broker called Eclipse Mosquitto [22]. Since MQTT clients
cannot be installed in BLE devices, given that BLE do not
use the Internet protocol suite, a script performing
functions of a BLE/Wi-Fi gateway, as well as the MQTT
client required for publishing the data generated by the
BLE devices, were implemented in the Raspberry Pi,
through the installation of the Eclipse Paho MQTT
Python client library (paho-mqtt) [23], which implements
the MQTT protocol, as well as bluepy [24], a Python
module used to execute the BLE client to handle the
wireless communication with the BLE devices.

For local data storage, it was used an open source
database management system (DBMS) based on MySQL,
called MariaDB [25], and installed the Apache HTTP
server [26].

4.3. Wi-Fi nodes design

The Wi-Fi nodes are mainly used for actuator nodes,
which do not have as many restrictions in terms of energy
consumption. Therefore, considering the application
scenario, the Wi-Fi nodes were implemented in the new
smart home network too, but, unlike to the original
network, these nodes were implemented using the same
type of ESP32 boards used in the BLE sensor nodes,
instead of being emulated using PCs.

The firmware was developed using the Arduino IDE,
and the Joël Gähwiler MQTT library [27] was utilized to
implement the MQTT client. The MQTT client acts as a

publisher in the case of a sensor node, and acts as a
subscriber in the case of an actuator node.

5. Cloud services development

This section describes the IoT services developed for the
proposed system using the AWS cloud services platform,
namely the database structure defined and the
implemented functions. Instead of the traditional
server-based approach, where the developer needs to
handle the infrastructure management tasks, such as
cluster provisioning, patching, operating system
maintenance, and capacity provisioning, a serverless
solution, which shifts these operational responsibilities to
the AWS, was used. This solution is based on three
individual services provided by the AWS: The Amazon
Relational Database Service (RDS), the AWS Lambda,
and the AWS API Gateway service. The choice of AWS
over other cloud services providers was made based on an
analysis of cost, performance and security [28].

5.1. RDS database

RDS is a free relational database service for new accounts
during the first year, offering 750 hours per month. An
alternative to this service is the Dynamo DB service,
which is similar to RDS, but implements non-relational
databases. The first step in the development of the
database structure was to identify the data to be collected
and to be shown to the user, which includes: (i) User data,
representing the information provided when the user
registers on the mobile app; (ii) Building data, containing
the building address, name and ID; (iii) HVAC data,
containing temperature, humidity, air quality, presence
detection data, a timestamp and the room ID; (iv) Smoke
detection data, containing the room ID and a timestamp;
(v) Configuration data, including the maximum and
minimum temperature values for the smart temperature
control and other parameters.

For the implementation of the database on the AWS
console, it was necessary to create an RDS instance, as
well as making other configurations [29]. After that, the
MySQL Workbench software [30] was used to develop all
the tables and fields necessary to store the data. Even
though smoke detection belongs to the HVAC parameters
data, a separate MySQL table was created because this
data was sent using BLE notifications, so it might have a
different timestamp from the remaining parameters. It was
also necessary to create inbound and outbound rules and
apply them to the created instance in order to ensure
access control to the data by other applications.

5.2. AWS Lambda

The AWS Lambda is a service that allows running code
without provisioning or managing servers. This service
executes the code when needed and scales automatically

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Ruben E. Figueiredo et al.

6

from a few requests per day to thousands per second. The
free year offers 1 million requests to the created functions
per month. The code can be run for any type of
application or backend service with zero administration.
AWS Lambda can be used in response to events, such as
changes to data in the Amazon Dynamo DB or RDS
tables, to run code in response to HTTP requests using the
Amazon API Gateway or simply to invoke code using
API calls made using AWS Software Development Kit
(SDK).

For the proposed system, various functions were
developed in NodeJS language. Each function is
responsible for a functionality, as for example, getting the
last HVAC parameters values from its correspondent table
from the RDS database. The AWS console allows the
development of the functions in two different ways:
editing the code online or uploading zip files with the
code and necessary packages inside. In this work, the
second way was chosen. The AWS Lambda also allows
testing the developed functions by providing a test event
with a JSON body. All the data sent to and received from
the AWS Lambda are in JSON format. Further
configurations were necessary to give permissions to the
functions created to access to the RDS database.

5.3. Amazon API gateway

The Amazon API Gateway is a service that makes easy to
create, publish, maintain, monitor, and secure APIs at any
scale. It can create Representational State Transfer
(REST) and WebSocket APIs that allow applications to
access data from backend services, such as AWS Lambda.
In the proposed system, the API Gateway was used to
connect the functions developed in the AWS Lambda to a
REST API. When creating the REST API in the AWS
console, it was necessary to create resources. In this
system, a resource can represent the HVAC data or the
buildings and is used to construct the path used on the
HTTP requests methods. Each resource has been assigned
to all the necessary methods, according to the needs by
the different applications, such as GET, POST, DELETE
or PUT. For the type of data to be received (JSON), it was
necessary to configure each method and defining a body
template for the GET methods in order to identify the
parameters received by the HTTP requests. After creating
the API, it was necessary to make it publicly accessible by
creating a test stage. The Postman [31] software was used
to test the created API.

6. Mobile app development

This section describes the implementation of the mobile
app (IoT client). It was developed using the Android
Studio IDE. This application communicates with the
AWS database using the API Gateway service.

The Android app requires permissions to use the
Internet. In order to accomplish with that, it is necessary

to add dependencies to the AndroidManifest.xml file
generated by the IDE when the application is created. The
build.gradle file was also modified to allow the use of
some required classes and layouts. Every layout
implemented follows the Android guidelines by using the
ConstraintLayout, which allows the application to run on
any device, regardless its size. One of the most important
classes used was the AsyncTask. This class allows that
short asynchronous operations to run in the background,
and it is usually used to perform network operations that
do not require the download of much data. In the
proposed system, it is used to do HTTP requests to the
REST API.

The application allows the users to register or login
using the classic email password combination. For
registration, the user only needs his email, name, and
password. After the login, the user is presented with a list
of buildings that he/she has access and can eliminate or
add new ones. A long click on a building allows the user
to go to the building rooms and a list of rooms is
presented to the user. The user can add new rooms by
simply introducing the room name or delete those already
created. When the user adds a new room, a table is
automatically created that contains a default maximum
and minimum temperature values for that room. Clicking
on a room opens the information panel related to its
HVAC parameter values. The user can see the most recent
values collected or change the temperature interval and
room ID.

7. Experimental results and discussion

This section presents the results of the experimental tests
performed for the overall system and involves the
evaluation of both functional features (data collection and
presentation) and non-functional features (communication
delay and reliability).

7.1. Data collection and presentation

The gateway is responsible for receiving the HVAC data
from the BLE sensor nodes, process, and send it to the
AWS database and/or the actuators and handle the smart
temperature control process. The mobile app, on the other
hand, is responsible for presenting the collected data to
the user and allowing manual control of the system.

The application has a bottom navigation menu that
makes easy to change between functionalities. The default
choice of the bottom navigation menu is the HVAC
screen (Figure 4), which shows the timestamp of the
collected data, the temperature, humidity and air quality
reading, as well as the state of the heating (on or off). The
second option (Detectors) shows the data regarding the
smoke and presence detectors and their corresponding
timestamps. The last option (Configurations) allows the
user to check and change the desired maximum and

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Development and Evaluation of Smart Home IoT Systems applied to HVAC Monitoring and Control

7

minimum temperature values and change the ID of the
room where a sensor is located.

Figure 4. Example of values presented on the
HVAC screen of the developed mobile app.

7.2. Communication delay and reliability

The communication delay, from the time instant that the
sensor data is generated until the control information is
delivered to the respective actuator, is an important
parameter, since it affects the system performance,
namely the response time of the control system. Despite
in the proposed application the smart temperature control
is not very demanding, since the room temperature
changes slowly, a test setup was conceived and
implemented in order to evaluate the performance
associated to the temperature data sensing/actuation
process, as shown in Figure 5. The total delay is the sum
of several partial delays in the path through different
devices, from the source to the destination, including data
transmission times in the different data interfaces (UART,
BLE, and Wi-Fi), as well as medium access delays and
processing delays. The measured total delay corresponds
to the time elapsed since the data is sent by the source
(start time) until it is received in the destination (end
time). The same device (a PC) was used as a source and
destination in order to provide a common clock, which is
necessary for a precise measurement of the delay.

Figure 5. Method used to measure the
communication delay for each packet.

In each test, 1000 data packets were generated at the
source and the same amount was received at the
destination; therefore, the communication reliability was
100%. Table 1 shows the main representative statistics for
the delay measured in the performed tests: minimum,
mean, maximum and standard deviation (SD).

An analysis of the delay distribution results from these
tests shows that the original network has 96.8% of the
delay samples in the range from 100 ms to 299 ms
(Figure 6). On the other hand, the new network has 98.4%
of the delay samples in the range from 20 ms to 99 ms
with QoS 1 (Figure 7) and 95.1% of the delay samples in
the range from 20 ms to 139 ms with QoS 2, (Figure 8).
These results show that the new smart home network has
better performance than the original one, and that, as
expected, QoS 2 has slightly higher delay values than
QoS 1.

Table 1. Main statistics concerning the measured
communication delay.

Tests Min.
(ms)

Mean
(ms)

Max.
(ms)

SD
(%)

Original 110 194 563 57.6
New, QoS 1 22 61 203 31.2
New, QoS 2 29 85 361 36.9

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Ruben E. Figueiredo et al.

8

Figure 6. Delay distribution for the test performed
with the original smart home network.

Figure 7. Delay distribution for the test performed
with the new smart home network and MQTT QoS 1.

Figure 8. Delay distribution for the test performed
with the new smart home network and MQTT QoS 2.

The maximum delay values observed, in all cases
(563 ms for the original network, 203 ms with QoS 1, and
351 ms with QoS 2) are below the typical HVAC time
constraints. Nevertheless, the new smart home network
provides additional QoS mechanisms to guarantee the
delivery of messages and presents lower time delay values
when compared with the original network.

Regarding the MQTT QoS level to be used in the
system, QoS 0 was not considered since it does not
guarantee the delivery at the destination. Based on the
obtained results, we advise the use of QoS 2 because,
although the QoS 1 delays are lower, duplicate messages
may occur and possibly affect the behaviour of the
system, which means that the receiver implementation
would require additional logic to detect duplicates.

8. Conclusion

This paper described the development and evaluation of
two smart home IoT systems applied to HVAC
monitoring and control using a mobile app. The proposed
systems are based on a local hybrid BLE/Wi-Fi wireless
network infrastructure and are composed by multiple data
processing and communication components that work
together to perform the desired functions.

The BLE/Wi-Fi gateway plays a central role in this
system, with relevance to both the data communication
and the processing algorithms of the HVAC application,
such as in the case of the smart temperature control
algorithm. An online database was also developed using
the AWS cloud platform, in a serverless approach, and a
mobile app (IoT client) was developed for the Android
mobile operating system.

The developed systems were validated through
experimental tests comprising the evaluation of their main
functionalities, ranging from data collection at the BLE
sensor nodes to the presentation at the mobile app, as well
as the evaluation of its performance in the path between
the sensors and actuators. The communication reliability
was 100% for both versions, but the new smart home
network presented better performance. Besides that, the
new network introduces several new features, such as the
implementation of Wi-Fi actuator nodes using the same
type of wireless communication board (FireBeetle ESP32)
used in the BLE sensor nodes, and the provision of a local
database implemented using MariaDB as an alternative/
complement to the cloud RDS database.

Besides the considered application scenario, the
proposed smart home IoT architecture and the associated
message protocols may also be extended to use in a wide
range of other application areas, such as lighting control
and security, as well as in smart grids and microgrids.

Acknowledgements.
This work was supported by FCT national funds, under the
national support to R&D units grant, through the reference
project UIDB/04436/2020 and UIDP/04436/2020.

References
[1] Ullo, Silvia Liberata, and G R Sinha, “Advances in Smart

Environment Monitoring Systems Using IoT and Sensors,”
Sensors (Basel, Switzerland), vol. 20, 11 3113, 31 May.
2020, doi:10.3390/s20113113.

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

Development and Evaluation of Smart Home IoT Systems applied to HVAC Monitoring and Control

9

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari,
and M. Ayyash, “Internet of things: A survey on enabling
technologies, protocols, and applications,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, 2015,
pp. 2347-2376.

[3] J.A. Afonso, A.J.F. Maio, and R. Simoes, “Performance
evaluation of Bluetooth Low Energy for high data rate
body area networks,” Wireless Personal Communications,
vol. 90, no. 1, Sept. 2016, pp. 121-141.

[4] P. Castro, J.L. Afonso, and J.A. Afonso, “A Low-Cost
ZigBee-based Wireless Industrial Automation System,”
12th Portuguese Conference on Automatic Control,
Guimaraes, Portugal, 2016.

[5] C. Buratti, A. Conti, D. Dardari, and R. Verdone, “An
overview on wireless sensor networks technology and
evolution,” Sensors, vol. 9, no. 9, Aug. 2009, pp. 6869-
6896.

[6] S. Kamath and J. Lindh, “Measuring Bluetooth Low
Energy power consumption,” Application Note AN092,
Texas Instruments, 2012, pp. 1-24.

[7] M. Siekkinen, M. Hiienkari, J.K. Nurminen, and J.
Nieminen, “How low energy is Bluetooth Low Energy?
Comparative measurements with ZigBee/802.15.4,” IEEE
WCNCW Wireless Communications and Networking
Conference Workshops, Apr. 2012, pp. 232-237.

[8] P. Trelsmo, P. Di Marco, P. Skillermark, R. Chirikov and
J. Ostman, "Evaluating IPv6 Connectivity for IEEE
802.15.4 and Bluetooth Low Energy," 2017 IEEE Wireless
Communications and Networking Conference Workshops
(WCNCW), San Francisco, CA, 2017, pp. 1-6, doi:
10.1109/WCNCW.2017.7919088.

[9] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N.
Jackson and P. Dutta, “The Internet of Things Has a
Gateway Problem,” 16th International Workshop on
Mobile Computing Systems and Applications, 2015, pp.
27-32.

[10] A. Biswas and R. Giaffreda, “IoT and cloud convergence:
Opportunities and challenges,” IEEE World Forum on
Internet of Things (WF-IoT), Seoul, South Korea, 2014.

[11] J. Nieminem et al., “Networking Solutions for Connecting
Bluetooth Low Energy Enabled Machines to the Internet of
Things,” IEEE network, vol. 28, no. 3, 2014.

[12] Aníbal A. Alves, Vitor Monteiro, J. G. Pinto, J. L. Afonso
and José A. Afonso, “Development of an Internet of
Things System for Smart Home HVAC Monitoring and
Control”, SESC (2019), Braga, Portugal.

[13] Cypress Semiconductor, “CY8CKIT-042-BLE-A
Bluetooth Low Energy 4.2 Compliant Pioneer Kit.”
[Online]. Available:
https://www.cypress.com/documentation/development-
kitsboards/cy8ckit-042-ble-bluetooth-low-energy-42-
compliant-pioneer-kit.

[14] Raspberry Pi Foundation, “Raspberry Pi 3 Model B.”
[Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/.

[15] Bluetooth Special Interest Group. Specification of the
Bluetooth System, Covered Core Package Version: 5.0,
Kirkland, WA, USA, Dec. 2014.

[16] DFRobot, “Firebeetle ESP32.” [Online]. Available:
https://wiki.dfrobot.com/FireBeetle_ESP32_IOT_Microco
ntroller(V3.0)__Supports_WiFi_&_Bluetooth__SKU__DF
R0478.

[17] Espressif Systems, “Arduino core for the ESP32”.
[Online]. Available: https://github.com/espressif/arduino-
esp32.

[18] N. Kolban, “esp32-snippets/BLE C++ Guide”. [Online].
Available: https://github.com/nkolban/esp32-
snippets/blob/master/Documentation/BLE C%2B%2B
Guide.pdf.

[19] Raspberry Pi Foundation, “Raspberry Pi 4 Model B.”
[Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-
model-b/.

[20] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh and R. Al-
Hatmi, "Internet of Things: Survey and open issues of
MQTT protocol," 2017 International Conference on
Engineering & MIS (ICEMIS), Monastir, 2017, pp. 1-6,
doi: 10.1109/ICEMIS.2017.8273112.

[21] K. Grgić, I. Špeh and I. Heđi, "A web-based IoT solution
for monitoring data using MQTT protocol," 2016
International Conference on Smart Systems and
Technologies (SST), Osijek, 2016, pp. 249-253, doi:
10.1109/SST.2016.7765668.

[22] Eclipse Foundation, “Eclipse Mosquitto”. [Online].
Available: https://mosquitto.org/.

[23] Eclipse Paho, “MQTT and MQTT-SN software”. [Online].
Available: https://www.eclipse.org/paho/clients/python/.

[24] Harvey I., “Python interface to Bluetooth LE on Linux”.
[Online]. Available: https://github.com/IanHarvey/bluepy.

[25] MariaDB Foundation, “About MariaDB - MariaDB.org”.
[Online]. Available: https://mariadb.org/about/.

[26] Apache, “Apache HTTP server project”. [Online].
Available: https://httpd.apache.org/.

[27] Joël Gähwiler, “MQTT”. [Online]. Available:
https://github.com/256dpi/arduino-mqtt.

[28] Amazon, “Amazon Web Services (AWS) - Cloud
Computing Services.” [Online]. Available:
https://aws.amazon.com/pt/.

[29] Amazon, “10-Minute Tutorials with Amazon Web
Services (AWS).” [Online]. Available:
https://aws.amazon.com/getting-started/tutorials/.

[30] Oracle Corporation, “MySQL: MySQL Workbench.”
[Online]. Available:
https://www.mysql.com/products/workbench/.

[31] Postman, Inc., “POSTMAN | API Development
Environment.” [Online]. Available:
https://www.getpostman.com/.

EAI Endorsed Transactions on
Energy Web

05 2021 - 07 2021 | Volume 8 | Issue 34 | e2

https://aws.amazon.com/pt/
https://aws.amazon.com/getting-started/tutorials/
https://www.mysql.com/products/workbench/

